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ABSTRACT 

 

 

A novel and facile dehydrogenative iodoarylation of N-aryl vinylogous carbamates with 

hypervalent iodine (III) as the source of aryl and iodide has been developed. This protocol 

provides a valuable synthetic tool for the assembly of a wide range of β-iodo N-arylated 

enamines under mild conditions with functional group tolerance and scalability. This attractive 

route for the synthesis of β-iodo N-arylated enamines is of great importance due to the product 

versatile reactivity for further transformations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

 

 

CONTENTS 

 

 

1.1 Introduction 

a) Metal-Free transformations in organic synthesis 

b) Hypervalent Iodine reagents and literature Study 

c) Importance of halogenated enamines  

1.2 Results and Discussions 

1.3 Mechanism 

1.4 Large Scale Synthesis 

1.5 Conclusions 

1.6 Notes and references  

1.7 Experimental section  

1.8 Spectral Data and Copies of 1H NMR and 13C NMR Spectra 

 

 

 

 

 

 



7 
 

 

1.1 Introduction 

 

a) Metal-Free transformations in organic synthesis 

The contemporary synthetic world is now focusing on green chemistry to keep the environment 

green and healthy. Any synthetic works related to green chemistry are highly valued. In this 

regard, the development of a transition-metal-free approach for direct oxidative C-C or C-het 

bonds formation is certainly a topic of great interest in organic synthesis1 since such 

transformations represent an attractive alternative to the traditional transition metal-catalyzed 

oxidative C-C or C-het coupling reactions.2 Compounds of iodine having higher oxidation state 

are commonly known as hypervalent iodine compounds or reagents. In recent decades, 

hypervalent iodine reagents have emerged as a class of efficient and environmentally benign 

non-metal oxidants that can recognize the constructions of C-C or C-het bonds without the 

involvement of transition metals.3 

  b) Hypervalent Iodine reagents and literature Study 

Among hypervalent iodine reagents, phenyliodine(III) diacetate(PIDA) (Scheme 1, eq. 1, 2, 5-

7)4, Phenyliodine(III) Bistrifluoroacetate(PIFA) (Scheme 1, eq. 3)5 and iodosobenzene PhIO 

(Scheme1, eq. 4)6 are widely used for elegant metal-free organic transformations, particularly, 

enamine derivatives as important precursors in organic transformations mediated by 

hypervalent reagents have been explored,7 wherein iodobenzene is always formed as a by-

product. For example as shown below. 

          1. 

 

            2. 
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3. 

 

4.   

 

 5. 

 

6. 

 

7. 

 

Scheme 1. Explorations of Enamine derivatives in organic transformations by hypervalent 

iodine reagents. 
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c) Importance of halogenated Enamines and literature methods  

Halogenation and related reactions of unfunctionalized enamines are emerged as expedient 

tools, due to resulting products, particularly halogenated enamines are an important class of 

building blocks in both organic synthesis and medicinal chemistry.8 The products can also be 

readily converted into numerous other valuable derivatives by replacing the halogen atoms 

through either intramolecular or intermolecular substitution reactions.9 For example, iodinated 

enamine (Scheme 3, eq. 1)10 used as a key precursor in the synthesis of central tryptophan core 

of Celogentin C. According to literature survey, a handful strategies also have been developed 

to incorporate iodide, arene group, and both arene as well as iodine into final products by using 

hypervalent iodine reagents. For example (i) α-iodination of β-cyclic enaminones using 1-

[hydroxy(tosyloxy)iodo]-2,2,2-trifluoroethane (Scheme 2, eq. 5)11  (ii) Copper-catalyzed direct 

arylation of cyclic enamides using diaryliodonium salts (Scheme 2, eq. 7),12 (iii) Concurrent 

α-iodination and N-arylation of cyclic β-enaminones using PIDA (Scheme 2, eq. 8).13 

 

1.

 

2. 

 

 

3. 

 

4. 
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5. 

 

6. 

 

7. 

 

8.     

 

Scheme 2. Methods for synthesis of halogenated enamines. 

 

Over the past decades, several attractive C−N bond forming methods have been developed 

using transition-metal catalysed or metal-free processes for the N-arylation of nitrogen-

containing substrates with prefunctionalized compounds such as aryl halides and arylboronic 

acids.14 However, the simultaneous construction of C–N and C–halogen bonds using 

hypervalent reagents as source of halogen and arene moiety in a tandem fashion is still 

challenging and desirable. Most recently, we have developed hypervalent iodine(III) promoted 

N-incorporation into N-aryl vinylogous carbamates to quinoxaline diesters using simple 

nitrogen sources under mild conditions.15 As a continuation of our interest in the development 

of metal-free protocols16 using hypervalent iodine reagents, herein we wish to report an 

efficient dehydrogenative iodoarylation of vinylogous carbamates using phenyliodine(III) 

diacetate (PIDA). To the best of our knowledge, the only example for the iodoarylation of 

cyclic β-enaminones using PIDA has been reported by Kang Zhao (Scheme 2, eq. 7).11  
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1. 

2.  

 

Scheme 3. Some important selected transformations of halogenated enamines  
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Our previous work: 

 

Our Present Work:                         

 

1.2 Results and Discussion 

Initially, we investigated the reaction with readily prepared diethyl 2-(phenylamino)maleate 

(1a) under reported conditions11 i.e. 1.5 equiv of PIDA, 60 o C, DCE (1,2 dichloroethane), 

unfortunately, the complex reaction mixture was formed rather desired β-iodo N-arylated 

enamine 2a. Then we performed the reaction at rt (25 o C), afforded the expected product (2a) 

albeit in low yield (15%) (Table 1, entry 2). The structure of 2a was confirmed by IR, NMR 

and HRMS. With this promising result in hand, we further optimized the reaction conditions. 

When the reaction was carried out in the presence of 4 equiv of Na2SO4 as additive, the product 

2a was yielded in 30 % after 18 h reaction time (Table 1, entry 3).  No product was detected 

when the reaction performed with 2 equiv of TBAI (Table 1, entry 4). We then turned our 

attention to the bases screening to improve the reaction performance. When the reaction was 

performed with 1.3 equiv of Cs2CO3, to our delight, the product 2a was obtained in 60% yield 

in 12 h (Table 1, entry 5). Other bases such as K2CO3, K3PO4, NaHCO3, Na2CO3, and DABCO 

could not improve the yield of the product (Table 1, entry 6-10). We then screened the 

equivalents of PIDA and Cs2CO3, 1 equiv of Cs2CO3 and 1.8 equiv of PIDA were found to be 

the best conditions and afforded the product 2a in 70 % yield in 12 h (Table 1, entry 13). 
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Table 1: Optimisation of β-Iodo and N-arylation of Vinylogous Carbamatesα 

                  

Entry Iodide and 

aryl source 

(equiv.) 

Base 

(equiv.) 

Solvent Time (h) Yield 

(%)a 

1 PIDA (1.5) ----- DCE 12 0b 

2 PIDA (1.5) ----- DCE 14 15c 

3 PIDA (1.5) ----- DCE 18 30d 

4 PIDA (1.5) ----- DCE 24 0e 

5 PIDA (1.5) Cs2CO4 (1.3) DCE 12 60 

6 PIDA (1.5) K2CO3 (1.3) DCE 12 50 

7 PIDA (1.5) K3PO4 (1.3) DCE 12 36 

8 PIDA (1.5) NaHCO3 (1.3) DCE 12 52 

9 PIDA (1.5) Na2CO3 (1.3) DCE 12 46 

10 PIDA (1.5) DABCO (1.3) DCE 12 ND 

11 PIDA (1.3) Cs2CO3 (1.3) DCE 12 55 

12 PIDA (2) Cs2CO3 (1.3) DCE 12 60 

 13 PIDA (1.8) Cs2CO3 (1) DCE 12 70 

14 PIDA (1.8) Cs2CO3 (1) DCM 12 64 

15 PIDA (1.8) Cs2CO3 (1) DCM 12 64 

16 PIDA (1.8) Cs2CO3 (1) MeCN 12 61 

17 PIDA (1.8) Cs2CO3 (1) THF 12 ND 

18 PIDA (1.8) Cs2CO3 (1) H2O 12 23 

19 PIDA (1.8) Cs2CO3 (1) EtOAc 12 30 

20 PIDA (1.8) Cs2CO3 (1) DCE: H2O 

(v/v=5:1) 

5 79 

21 PIDA (1.8) Cs2CO3 (1) DCE: H2O 

(v/v=4:1) 

4 88 

22 PIDA (1.8) Cs2CO3 (1) DCE: 

H2O(v/v=3:2 

4 80 

23 PIDA (1.8) Cs2CO3 (1) DCE: H2O 

(v/v=1:1) 

4 75 

24 PIDA (1.8) Cs2CO3 (1) MeCN: H2O     

(v/v=4:1) 

12 ND 

25 PIDA (1.8) Cs2CO3 (1) DCM:H2O 

(v/v=4:1) 

4 83 

Reaction conditions: 1a (1 mmol), PIDA (1.8 mmol), Cs2CO3 (1 mmol), 3 mL DCE:H2O  (v/v=4:1), rt (27 o C) 

for 4 h; aisolated yield through silica column chromatography; breaction was carried out at 60 oC; creaction was 

carried out at 25 o C; d4 equivalent Na2SO4 was used; e2 equivalent TBAI was used; ND = not detected. 
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Among the solvents tested, DCE was found to be the best solvent choice (Table1, entries 13-

19). Surprisingly, the experimental outcome showed that mixed solvent DCE/H2O (v/v = 4:1) 

was found to be particularly effective to increase the yield of 2a from 70 % to 88 % (Table 1, 

entry 21) in short reaction time (4 h). This is maybe due to hydrogen bonding between H2O 

and ester functionalities, and some representative results are summarized in Table 1. Under 

the optimal reaction condition (Table 1, entry 21), the generality of the method was 

investigated. 

In order to realise the versatility of this newly developed method, we anticipated to apply it to 

a series of enamines having different substituents viz. both weak electron withdrawing and 

electron donating groups on the phenyl ring of vinylogous carbamates. The results demonstrate 

that the substrates having weak electron- withd  rawing substituents on the phenyl ring afforded 

the products (Table 2, 2c, 2e, 2i, 2k and 2o) in good yield (73-86%), this may due to the 

stabilization of the intermediate IV by the weak electron withdrawing groups. The electron 

donating substituents (Me, OMe) destabilize the intermediate (IV) by giving electrons to the 

phenyl ring which results in relatively poor yield (Table 2, 2b, 2h, 2l, 2n and 2p). Presence of 

both weak electron withdrawing and electron donating groups on the same ring provided the 

products fairly in good yields (Table 2, 2d and 2j). Notably, unsubstituted vinylogous 

carbamates afforded the products in good yields (Table 2, 2a and 2m). 

 

 

 

 

 

 

 

 

 

 

 



15 
 

Table 2: Substrate Scope of β-Iodo and N-Arylated enamines  
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1.3 Mechanism 

After successfully establishing the method, we looked forward to design the mechanistic 

pathway for this reaction. Based on the literature reports17,11 we formulated the following 

plausible mechanism (scheme 4). In the first step the vinylogous carbamate is undergoing 

intermolecular reaction with PhI(OAc)2 and forms an imine (I) having phenyliodo acetate 

moiety in the β-position. Further which transformed to intermediate (III) by the loss of AcOH. 

Deacetylation followed by subsequent rearrangement leads to the formation of a zweterion (IV) 

which is then transformed into the final product 2a. 

 

Scheme 4. Plausible mechanism 
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1.4. Large scale synthesis of β-iodo N-arylated enamine (2a) 

After having successfully developed the syntheses of β-iodo N-arylated enamines (2a-2p), we 

have envisioned that these β-iodo N-arylated enamines could prove to be important starting 

materials for the synthesis of other complex molecules. Hence, we envisaged that it would be 

appropriate to check the scalability of our protocol for the synthesis of β-iodo N-arylated 

enamines. Accordingly, we performed the scaled-up reaction for the synthesis of β-iodo N-

arylated enamines (Scheme 5), resulted in 62% yield. 

 

                  Scheme 5. Large scale synthesis of 2a 

 

1.5 Conclusion 

We have developed a novel and facile approach for the synthesis of β-iodo N-arylated enamines 

by using Phenyliodine(III) diacetate as a source of iodide and aryl moiety. In this 

transformation, PIDA is not only facilitating the reaction but also incorporating into the product 

resulting the β-iodo N-arylated enamines. The significant feature of this reaction is the 

incorporation of iodide and aryl group concurrently in the same molecule. The advantages of 

this method are metal-free, mild reaction conditions and scalability. The synthesized β-iodo N-

arylated compounds could prove important precursors in various organic transformations and 

our efforts in this direction are currently underway in lab. 
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1.7 Experimental Sections 

General Considerations 

 IR spectra were recorded on a FTIR spectrophotometer. 1H NMR spectra were recorded on 

400 MHz spectrometer at 295 K in CDCl3; chemical shifts (δ ppm) and coupling constants (Hz) 

are reported in standard fashion with reference to either internal standard tetramethylsilane 

(TMS) (δH = 0.00 ppm) or CHCl3 (δH = 7.25 ppm). 13C NMR spectra were recorded on 100 

MHz spectrometer at RT in CDCl3; chemical shifts (δ ppm) are reported relative to CHCl3 [δC 

= 77.00 ppm (central line of triplet)]. In the 1H NMR, the following abbreviations were used 

throughout: s = singlet, d = doublet, t = triplet, q = quartet, qui = quintet, m = multiplet and br 

s. = broad singlet. The assignment of signals was confirmed by 1H, 13C CPD, and DEPT spectra. 

High-resolution mass spectra (HR-MS) were recorded using Q-TOF multimode source. 

Melting points (wherever required) were determined on an electrothermal melting point 

apparatus and are uncorrected. Hypervalent iodine reagent (PIDA) were purchased from Sigma 

Aldrich. All dry solvents used were dried over sodium metal and CH3CN, DMF, DCE, DCM, 

HFIP, TFE which are commercial available were bought from sigma Aldrich. 

 All small scale dry reactions were carried out using standard syringe-septum technique. 

Reactions were monitored by TLC on silica gel using a combination of petroleum ether and 

ethyl acetate as eluents. Reactions were generally run in open air although only a few were run 

under argon or nitrogen atmosphere whichever necessary. Solvents were distilled prior to use; 

petroleum ether with a boiling range of 40 to 60 ˚C was used. Acme’s silica gel (60–120 mesh) 

was used for column chromatography (approximately 20 g per one gram of crude material).  

I) General Procedure (GP-I) for the synthesis of (1a-1k)  

Amine (1 mmol) was taken in a dried round bottom flask, and dialkyl acetylenedicarboxylate 

(1 mmol) was then added slowly with thorough mixing to form a homogeneous paste. Then  

the reaction mixture was stirred (if required) at room temperature for 5−60 min and then filtered 

through a short silica gel column using petroleum ether/ethyl acetate (9.8:0.2 to 9.6:0.4) as 

eluent to furnish the dialkyl-2-(phenylamino)maleate 1a-1k. All the unknown compounds (1d, 

1i and 1j) were confirmed by FTIR, 1H NMR, 13C NMR and HR-MS Spectral analyses. 

Compounds 1a-1c, 1g, 1i-1k and 1l were prepared using the reaction conditions reported in 

literature. 
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Following vinylogous carbamates were used as starting materials for the synthesis of iodinated 

enamines. 

 

. 

II) General procedure (GP-II) for the synthesis of 2a-2p 

To a cold (0 C), magnetically stirred solution of N-aryl vinylogous carbamates 1a-1k, (0.19 

mmol), Cs2CO3 (0.285 mmol) in DCE:H2O in 3:1 ratio (3 mL), PIDA (0.38 mmol) was added 

portion wise for 10 minutes and the resulting mixture was stirred at room temperature (27 C) 

for 2-3 h. Progress of the reaction was monitored by TLC until the reaction was completed. A 

distinct yellow coloured spot on TLC indicates the formation of the desired product. The 

reaction mixture was quenched by addition of aq. Na2S2O3 (1.0 M, 5 mL) solution and extracted 

with EtOAc (3  10 mL). The organic layer was washed with saturated solution of NaHCO3 

and dried over Na2SO4, and concentrated in rotavapour. Purification of the residue on a silica 

gel column chromatography using petroleum ether/ethyl acetate (9.7:0.3 to 9.3:0.7) as eluent 

furnished the iodinated enamine products 2a-2p. All the compounds (2a-2p) were confirmed 

by FTIR, 1H NMR, 13C NMR and HR-MS Spectral analyses. 
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III) General procedure (GP-III) for the synthesis 4-Methoxycarbonyl 

[(Diacetoxy)iodo]benzene (1l) 

To a solution of methyl 4-iodobenzoate (1000 mg, 3.82 mmol) in AcOH (4 mL) was added 

MCPBA (ca. 65%, 757.46 mg, 4.39 mmol). The mixture was stirred at r.t. for 2 h. Then, H2O 

(2 mL) was added to the reaction mixture and then it was extracted with CHCl3 (3 × 20 mL). 

After being dried over Na2SO4, filtration, and removal of the solvent (residue ca. 3 mL), Et2O 

(20 mL) and hexane (20 mL) were added to the residue, and the mixture was cooled to 0 °C to 

induce precipitation. After filtration, the solids were washed with a mixture of Et2O and hexane 

to provide product. 4-Methoxycarbonyl(diacetoxyiodo)benzene. Yield: 70%.  
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1.8 Spectral data of 1d, 1i, 1j and 2a-2p compounds  

 

 

Dimethyl 2-((2, 5-dimethylphenyl)amino)maleate (1d) 

Yellow solid; (80%); mp 64−66 ˚C; IR (MIR-ATR, 4000–600 cm-1): ʋmax = 3270, 2951, 1741, 

1668, 1612, 1435, 1385, 1275, 1215, 1187, 1147, 1069, 1031, 798, 773; 1H NMR (CDCl3, 400 

MHz): δH = 9.55 (br s, 1H), 7.00-6.93 (m, 2H), 6.63 (d, 1H, J = 7.3 Hz), 5.36 (s, 1H), 3.74 (s, 

3H), 3.64 (s, 3H), 2.3 (s, 3H), 2.25 (s, 3H); 13C NMR (CDCl3, 100 MHz): 170.3, 164.9, 149.4, 

138.9, 137.8, 129.3, 126.8, 125.6, 119.7, 92.1, 52.7, 51.1, 20.5, 13.8; HR-MS (ESI+) m/z 

calculated for [C14H17NNaO4]
+ = [M+Na]+: 286.1050; found: 286.1061. 

 

 

 

Diethyl 2-((2,4-dimethylphenyl)amino)maleate (1i)  

Yellow viscous oil; (90%); IR (MIR-ATR, 4000–600 cm-1): ʋmax = 3272, 2980, 1738, 1665, 

1608, 1511, 1449, 1368, 1274, 1207, 1147, 1039, 813, 776; 1H NMR (CDCl3, 400 MHz): δH = 

9.47 (br s, 1H), 6.99 (s, 1H), 6.88 (d, 1H, J = 8.3 Hz), 6.68 (d, 1H, J = 7.8 Hz), 5.33 (s, 1H), 

4.19 (q, 2H, J = 7.3 Hz), 4.13 (q, 2H, J = 7.3 Hz), 2.3 (s, 3H), 2.27 (s, 3H), 1.30 (t, 3H, J = 7.1 

Hz), 1.07 (t, 3H, J = 7.1 Hz); 13C NMR (CDCl3, 100 MHz): 170.0, 164.4, 149.8, 136.5, 134.6, 

131.3, 130.8, 126.9, 122.2, 91.8, 61.8, 59.8, 20.8, 17.8, 14.4, 13.6; HR-MS (ESI+) m/z 

calculated for [C16H21NNaO4]
+ = [M+Na]+: 314.1363; found: 314.1378. 
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Diethyl 2-((2-bromo-4-methylphenyl)amino)maleate (1j)  

Yellow viscous oil; (65%); IR (MIR-ATR, 4000–600 cm-1): ʋmax = 3271, 2985, 2940, 1717, 

1671, 1611, 1368, 1234, 1206, 1094, 1035, 856, 746, 673; 1H NMR (CDCl3, 400 MHz): δH = 

9.65 (br s, 1H), 7.37 (s, 1H), 6.98 (d, 1H, J = 7.8 Hz), 6.7 (d, 1H, J = 8.3 Hz), 5.47 (s, 1H), 4.21 

(q, 2H, J = 7.3 Hz), 4.16 (q, 2H, J = 7.24 Hz), 2.28 (s, 3H), 1.3 (t, 3H, J =7.1 Hz), 1.12 (t, 3H, 

J = 7.1 Hz); 13C NMR (CDCl3, 100 MHz): 169.3, 164.0, 147.4, 136.3, 135.3, 133.3, 128.4, 

121.7, 116.1, 95.0, 62.1, 60.1, 20.5, 14.4, 13.7; HR-MS (ESI+) m/z calculated for 

[C15H18BrKNO4]
+ = [M+K]+: 394.0051; found: 394.0052 

 

 

 

Diethyl 2-(diphenylamino)-3-iodomaleate (2a) 

Yellow viscous oil; (88%, 31 mg ); FT-IR (MIR-ATR, 4000-600 cm-1): ѵmax = 3034.9, 2980.5, 

2936.4, 1729.9, 1491.7, 1288.1, 1219.4, 1041.4, 1027.6, 838.2, 756.9, 695.1; 1H NMR (CDCl3, 

400 MHz): δH = 7.30 (m, 4H); 7.11 (m, 6H); 4.26 (m, 2H, J = 7.2 Hz); 4.02 (q, 2H, J = 6.8 Hz); 

1.33 (t, 3H, J = 7.1 Hz); 0.96 (t, 3H, J = 7.1 Hz); 13C NMR (CDCl3, 100 MHz): 164.3, 145.4, 

144.5, 142.8, 141.8, 141.3, 133.3, 130.5, 102.6, 63.1, 14 .1; HR-MS (ESI+) m/z value 

calculated for [C20H20INO4]
+ = [M+H]+  : 466.0510; found: 466.0498. 
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Dimethyl 2-(diphenylamino)-3-iodomaleate (2b) 

Yellow gel; (79%, 29 mg); FT-IR: (MIR-ATR, 4000-600 cm-1): ѵmax = 3033.1, 3006.6, 2949.9, 

2849.1, 1732.8, 1550.3, 1489.7, 1434.1, 1288.7, 1223.3, 1147.4, 1042.8, 988.8, 757.4, 695.2; 

1H NMR (CDCl3, 400 MHz): δH = 7.30 (m, 4H); 7.1 (m, 6H); 3.80 (s, 3H); 3.57 (s, 3H); 13C 

NMR (CDCl3, 100 MHz):  166.2, 164.5, 149.5, 144.1, 129.3, 124.7, 124.0, 86.9, 53.5, 52.9;  

HR-MS (ESI+) m/z value calculated for [C18H16INO4]
+ = [M+K]+: 475.9756; found: 475.9749. 

 

 

 

Dimethyl 2-iodo-3-((4-methoxyphenyl)(phenyl)amino)maleate (2c) 

Yellowish gel; (61%, 22 mg); FT-IR: (MIR-ATR, 4000-600 cm-1): 3002.0, 2950.2, 2837.7, 

1731.2, 1546.9, 1505.4, 1433.7, 1242.1, 1220.0, 1145.9, 1031.6, 835.9, 758.7, 693.8; 1H NMR 

(CDCl3, 400 MHz): δH = 7.29 (m, 2H); 7.08 (m, 3H); 7.01 (d, 2H, J=7.8 Hz);  6.84 (d, 2H, J = 

8.8 Hz); 3.80 (s, 6H); 3.57 (s, 3H); 13C NMR (CDCl3, 100 MHz): 164.0, 157.2, 154.5, 144.7, 

137.0, 129.2, 126.7, 126.3, 124.2, 123.7, 123.4, 114.5, 83.5, 55.5, 53.5, 52.8; HR-MS (ESI+) 

m/z value calculated for [C19H18INO5]
+ = [M+H]+: 469.0335; found: 469.333. 
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Dimethyl 2-((2, 5 dimethylphenyl)(phenyl)methyl)-3-iodomaleate (2d) 

Yellowish gel; (61%, 22 mg); FT-IR: (MIR-ATR, 4000-600 cm-1): ѵmax =   2948.8, 1733.6, 

1541.7, 1490.2, 1432.2, 1219.6, 1043.2, 988.7, 758.4, 718.8, 697.4: 1H NMR (CDCl3, 400 

MHz): δH = 7.24 (br s, 2H); 7.08 (m, 3H); 7.04 (m, 2H); 3.76 ( s, 3H); 3.52 (s, 3H); 2.28 (s, 

3H); 2.02 (s, 3H); 13C NMR (CDCl3, 100 MHz): δ = 166.1, 164.8, 152.1, 144.9, 141.9, 138.5, 

135.2, 129.1, 128.6, 126.3, 124.1, 123, 82.9, 53.5, 52.7, 20.6, 15.4; HR-MS (ESI+) m/z value 

calculated for [C20H20INO4]
+ = [M+H]+: 465.0437; found: 465.0431. 

 

 

 

Dimethyl 2-((4-fluorophenyl)(phenyl)maleate)-3-iodomaleate (2e) 

Yellow oil; (73%, 26 mg); FT-IR: (MIR-ATR, 400-600 cm-1): ѵmax = 2952.9, 2916.2, 2849.7, 

1730.8, 1678.8, 1551.7, 1502.6, 1216.4, 1148.9, 616.8; 1H NMR (CDCl3, 400 MHz): δH = 7.29 

(m, 2H); 7.09 (m, 3H); 7.02 (m, 4H); 3.80 (s, 3H); 3.58 (s, 3H); 13C NMR (CDCl3, 100 MHz): 

δ = 166.1, 164.4, 161.1, 158.7, 149.6, 144.3 129.4 126.2, 124.6, 123.5, 116.3, 116.1, 86.5, 53.6, 

53.9; HR-MS (ESI+) m/z value calculated for [C18H15FINO4]
+ = (M+NH4)

+[-H2O]: 455.0262; 

found: 455.0255. 
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Dimethyl 2-((2-bromo-5-methylphenyl)(phenyl)amino)-3-iodomaleate (2f) 

Yellow oil; (70%, 23 mg); FT-IT: : (MIR-ATR,4000-600 cm-1): ѵmax =  3002.8, 2928.4, 2890.4, 

1720.6, 1555.7, 1429.7, 1420, 1230.6, 1078.9, 985.7, 760.5, 695.3; 1H NMR (CDCl3, 400 

MHz): δH = 7.42 (s, 1H); 7.22 (d, 2H, J = 7.8 Hz); 7.12 (d, 3H, J = 8.3 Hz); 7.08 (s, 1H); 7.06 

(s, 1H); 3.78 (s, 3H); 3.55 (s, 3H); 2.34 (s, 3H); 13C NMR (CDCl3, 100 MHz): δ = 166.1, 164.5, 

151.2, 144.3, 139.3, 138.3, 134.7, 129.7, 129.4, 129.1, 124.0, 123.1, 82.2, 53.5, 52.8, 20.8; HR-

MS (ESI+) m/z value calculated for [C19H17BrINO4]
+ = [M+Na]+ : 553.9260; found: 553.9271. 

 

 

 

Dimethyl 2-((2-fluorophenyl)(phenyl)amino)-3-iodomaleate (2g) 

Yellow oil; (83%, 30 mg); FT-IR: (MIR-ATR,4000-600 cm-1): ѵmax =  2951.5, 1990.1, 1731.9, 

1590.7, 1497.3, 1434.2, 1299.9, 1230.6, 1043.2, 988.9, 757.4, 695.0: 1H NMR (CDCl3, 400 

MHz): δH = 7.27 (m, 4H); 7.12 (m, 3H); 6.97 (d, 2H, J = 7.8 Hz); 3.80 (s, 3H); 3.58 (s, 3H); 

13C NMR (CDCl3, 100 MHz): δ = 166.1, 164.1, 158.9, 156.4, 149.5, 136.4, 129.2, 124.95, 

124.43, 121.77, 117.0, 116.8, 86.02, 53.56, 52.94; HR-MS(ESI+) m/z value calculated for 

[C18H15FINO4]
+ = [M+H]+ : 456.0103; found: 456.0096. 
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Diethyl 2-((4-chlorophenyl)(phenyl)amino)-3-iodomaleate (2h) 

Yellow gel; (75%, 25);  FT-IR: (MIR-ATR, 4000-600 cm-1): ѵmax = 2980.5, 2926.9, 2850.7, 

1725.5, 1586.9, 1554.1, 1486.6, 1366.3, 1283.9, 1213.8, 1147.2, 1091.3, 1040.8, 823.6, 758.3, 

695.5;  1H NMR (CDCl3, 400 MHz): δH =  7.29 (m, 4H); 7.11 (m, 3H); 7.04 (m, 2H); 4.27 (q, 

2H, J = 7.3 Hz); 4.05 (q, 2H, J =  7 Hz); 1.33 (t, 3H, J = 7.1 Hz); 1.01(t, 3H, J = 7.1 Hz); 13C 

NMR (CDCl3, 100 MHz): δ = 165.7, 163.6, 148.6, 143.9, 142.9, 129.5, 129.4, 124.8, 123.8, 

89.7, 62.8, 62.2, 13.9, 13.6; HR-MS (ESI+) m/z calculated for [C20H19ClINO4]
+ = [M+H]+: 

499.0047; found: 499.0039.  

 

 

 

Dimethyl 2-iodo-3-((4-(methoxycarbonyl)phenyl)(phenyl)amino)maleate (2i) 

Yellow gel; (87%, 36 mg); FR-IR: (MIR-ATR, 4000-600 cm-1): ѵmax = 3001.0, 2951.4, 2842.4, 

1713.4, 1589.6, 1489.4, 1432.9, 1271.4, 1217.8, 1104.8, 1039.7, 800.8, 760.9, 695.6; 1H NMR 

(CDCl3,  400 MHz): δH = 7.96 (d, 2H, J = 8.8 Hz); 7.34 (m, 2H); 7.18 (d, 3H, J = 8.3 Hz); 7.05 

(d, 2H, J = 8.8 Hz); 3.89 (s, 3H); 3.84 (s, 3H); 3.6 (s, 3H); 13C NMR (CDCl3, 100 MHz): δ  = 

166.6, 166.1, 163.8, 148.3, 147.5, 142.9, 131.1, 129.6, 125.6, 124.9, 124.7, 121.2,  92.7, 53.6, 

53.0, 52.0; HR-MS (ESI+) m/z value calculated for [C20H18INO6]
+ = (M+K)]+[H2O] 

:515.9705; found : 515.9701. 
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Diethyl 2-iodo-3-((4-(methoxycarbonyl)phenyl)(phenyl)amino)maleate (2j) 

Yellow oil; (65%, 29 mg); FT-IR : (MIR-ATR, 4000-600 cm-1): ѵmax = 2982.2, 2952.2, 1714.8, 

1590.5, 1506.7, 1489.8, 1434.6, 1366.6, 1271.9, 1216.4, 1175.6, 1106.7, 1039.5, 767.5, 695.5; 

1H NMR (CDCl3, 400 MHz): δH  = 7.96 (d, 2H, J = 8.8 Hz); 7.34 (m, 2H); 7.17 (m, 3H); 7.07 

(d, 2H, J = 8.3 Hz); 4.29 (q, 2H, J = 7.2 Hz); 4.05 (q, 2H, J = 6.8 Hz); 3.89 (s, 3H); 1.35 (t, 3H, 

J = 7.3 Hz); 1.01 (t, 3H, J = 7.3 Hz); 13C NMR (CDCl3, 100 MHz): δ = 166.6, 165.7, 163.1, 

148.5,  147.2, 143.1, 131.0, 129.5, 125.5, 124.8, 124.7, 121.2, 93.7, 62.8, 62.3, 52.0, 13.9, 13.6; 

HR-MS (ESI+) m/z value calculated for [C22H22INO6]
+ = [M+H]+: 523.0492; found: 523.0488.  

 

 

 

Dimethyl 2-iodo-3-((4-methoxycarbonyl)phenyl)(4-methoxyphenyl)aminomaleate (2k) 

Yellow gel; ( 49%, 19 mg); FT-IR (MIR-ATR, 4000-600 cm-1) ѵmax = 2952.1, 2924.2, 2851.7, 

1719.9, 1605.7, 1506.6, 1434.1, 1277.0, 1245.4, 1176.7, 1109.6, 1035.7, 838.2, 769.1, 696.9; 

1H NMR (CDCl3, 400 MHz): δH = 7.93 (d, 2H, J = 8.8 Hz); 7.14 (d, 2H, J = 8.8 Hz); 6.96 (d, 

2H, J = 8.8 Hz); 6.88 (d, 2H, J = 8.8 Hz); 3.89 (s, 3H); 3.82 (s, 3H); 3.61 (s, 3H); 13C NMR 

(CDCl3, 100 MHz): δ = 166.6, 166.0, 164.0, 157.8, 148.8, 148.1, 135.5, 131.0, 127.3, 124.4, 

120.0, 114.7, 90.3, 55.5, 53.6, 53.0, 52.0; HR-MS (ESI+) m/z value calculated for 

[C21H22INO7]
+ = [M+H]+: 525.0284; found: 525.0280. 

 



30 
 

 

Dimethyl 2-((4-fluorophenyl)(4-(methoxycarbonyl)phenyl)amino)-3-iodomaleate (2l) 

Yellow gel; (64%, 26 mg); FT-IR: (MIR-ATR, 4000-600 cm-1): ѵmax = 3001.7, 2952.1, 2848.0, 

1714.2, 1600.42, 1502.6, 1433.3, 1275.2, 1212.6, 1104.1, 1039.8, 986.4, 839.6, 768, 696.6; 1H 

NMR (CDCl3, 400 MHz): δH = 7.95 (d, 2H, J = 8.8 Hz); 7.17 (m, 2H); 7.05 (m, 2H); 6.99 (d, 

2H, J = 8.3 Hz); 3.89 (s, 3H); 3.84 (s, 3H); 3.61 (s, 3H); 13C NMR (CDCl3, 100 MHz): δ  = 

166.5, 165.9, 163.7, 161.6, 148.4, 147.4, 138.9, 131.2 126.9, 124.9, 124.4, 120.6, 116.6, 116.4, 

92.6, 53.7, 53.1, 53.0; HR-MS (ESI+) m/z value calculated for [C20H17FINO6]
+ = [M+H]+ 

:513.0085; found: 513.0078. 

 

 

 

Diethyl 2-((3-bromo-5-methylphenyl(4-(methoxycarbonyl)phenyl)amino-3-iodomaleate (2m) 

Yellow gel; ( 75%, 26 mg); FT-IR: (MIR-ATR, 4000-600 cm-1): ѵmax = 2981.3, 2951.9, 1714.3, 

1606.8, 1565, 1486.9, 1434.4, 1275, 1215.6, 1104.8, 1014.3, 850.3, 768.5, 735.2, 696.5; 1H 

NMR (CDCl3, 400 MHz): δH = 7.93 (m, 2H); 7.45 (s, 1H); 7.24 (s, 1H); 7.18 (s, 1H); 6.95 (br 

s, 1H); 6.74 (br s, 1H); 4.25 (q, 2H, J = 7.3 Hz); 4.03 (q, 2H, J = 6.8 Hz); 3.88 (s, 3H); 2.36 (s, 

3H); 1.32 (t, 3H, J = 7.1 Hz); 1.02 (t, 3H, J = 7.1 Hz); 13C NMR (CDCl3, 100 MHz): δ = 166.6, 

165.6, 163.5, 149.0, 148.4, 138.7, 138.3, 134.8, 130.8, 129.7, 129.3, 124.8, 123.0, 89.3, 67.1, 

62.8, 62.3, 52.0, 20.8, 13.9, 13.6; HR-MS (ESI+) m/z value calculated for [C23H23BrINO6]
+ = 

[M+H]+: 614.9753; found: 614.9749. 
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Dimethyl 2-((4-bromophenyl)(phenyl)amino)-3-iodomaleate (2n) 

Yellow gel; (73%, 24 mg); FT-IR(MIR-ATR, 4000-600 cm-1): ѵmax = 2951.6, 2923.2, 2851.3, 

1729.9, 1552.4, 1485.4, 1433.2, 1219.9, 1146.6, 1043, 986.7, 816, 733, 695;  1H NMR (CDCl3, 

400 MHz): δH  = 7.40 (d, 2H, J = 8.8 Hz); 7.31 (m, 2H); 7.13 (s, 1H); 7.08 (d, 2H, J = 7.8 Hz); 

6.96 (d, 2H, J = 8.8 Hz); 3.81 (s, 3H); 3.59 (s, 3H); 13C NMR (CDCl3, 100 MHz): δ = 166.1, 

164.1, 148.6, 143.7, 143.3, 132.4, 129.4, 125.1, 124.9, 123.9, 117.3, 88.9, 53.6, 53.0; HR-MS 

(ESI+) m/z value calculated for [C18H15BrINO4]
+ = [M+K]+: 514.9229; found: 514.9231. 

 

 

 

Dimethyl 2-((2, 5-dimethylphenyl)(4-methoxycarbonyl)phenylamino)-3-iodomaleate (2o) 

Yellow oil; (58%, 22 mg); FT-IR: (MIR-ATR, 4000-600 cm-1): ѵmax = 2951.5, 2919.1, 2850.4, 

1719, 1604.3, 1510.6, 1506.4, 1434.4, 1276.6, 1231.3, 1175.9, 1106.9, 1041.5, 770.3, 603.8; 

1H NMR (CDCl3, 400 MHz): δH  = 7.92 (br s, 2H); 7.11 (s, 1H); 7.03 (s, 1H); 6.99 (s, 1H); 6.9 

(br s, 1H); 6.8 (br s, 1H); 3.88 (s, 3H); 3.81 (s, 3H); 3.56 (s, 3H); 2.30 (s, 3H); 2.03 (s, 3H); 13C 

NMR (CDCl3, 100 MHz): δ = 166.6, 165.9, 164.3, 150.0, 148.5, 140.4, 137.2, 133.2, 131.6, 

130.9, 128.5, 124.7, 121.0, 84.9, 53.6, 52.9, 52.0, 20.9, 18.7; HR-MS (ESI+) m/z value 

calculated for [C22H22INO6]
+ = [M+H]+: 523.3177; found: 523.3174. 
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Diethyl 2-((3, 5-dimethylphenyl)(phenyl)amino)-3-iodomaleate (2p) 

Yellow gel; (60%, 20 mg); FT-IR: (MIR-ATR, 4000-600 cm-1): ѵmax = 2998.4, 2945.1, 2818.4, 

1718.9, 1600.3, 1500.6, 1498.4, 1419.3, 1216.5, 1200.8, 1143.4, 1100.8, 1032, 769.7, 693.2. 

1H NMR (CDCl3, 400 MHz): δH  = 7.23 (d, 2H, J = 6.4 Hz); 7.07, (m, 2H); 6.97 (m, 3H); 6.83 

(br s, 1H); 4.21 (d, 2H, J = 7.3 Hz); 3.98 (d, 2H, J = 7.3 Hz); 2.28 (s, 3H); 2.04 (s, 3H); 0.96 

(s, 3H). 13C NMR (CDCl3, 100 MHz): δ = 165.8, 164.2, 151.7, 144.8, 141.2, 136.2, 133.7, 

131.4, 129.0, 128.8, 127.7, 123.9, 123.2, 80.2, 62.5, 61.9, 21.7, 20.9, 18.8, 14, 13.5;  HR-MS 

(ESI+) m/z value calculated for [C22H24INO4]
+ = [M+H]+: 493.0750; found: 493.0744. 
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13C NMR (100 MHz) spectrum of compound 1j in CDCl3 
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1H NMR (400 MHz) spectrum of compound 2a in CDCl3 
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13C NMR (100 MHz) spectrum of compound 2a in CDCl3 
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1H NMR (400 MHz) spectrum of compound 2b in CDCl3 
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13C NMR (100 MHz) spectrum of compound 2b in CDCl3 
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1H NMR (400 MHz) spectrum of compound 2c in CDCl3 
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13C NMR (100 MHz) spectrum of compound 2c in CDCl3 

 



39 
 

 

 

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Chemical Shift (ppm)

3.072.973.133.092.033.112.10

7
.2

4
7

.0
9

7
.0

8
7

.0
8

7
.0

7
7

.0
5

7
.0

4
7

.0
3

3
.7

6

3
.5

2

2
.2

8

2
.0

2

 

1H NMR (400 MHz) spectrum of compound 2d in CDCl3 
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13C NMR (100 MHz) spectrum of compound 2d in CDCl3 
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1H NMR (400 MHz) spectrum of compound 2e in CDCl3 
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13C NMR (100 MHz) spectrum of compound 2e in CDCl3 
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1H NMR (400 MHz) spectrum of compound 2f in CDCl3 
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13C NMR (100 MHz) spectrum of compound 2f in CDCl3 
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1H NMR (400 MHz) spectrum of compound 2g in CDCl3 
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13C NMR (100 MHz) spectrum of compound 2g in CDCl3 
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1H NMR (400 MHz) spectrum of compound 2h in CDCl3 
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13C NMR (100 MHz) spectrum of compound 2h in CDCl3 
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1H NMR (400 MHz) spectrum of compound 2i in CDCl3 
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13C NMR (100 MHz) spectrum of compound 2i in CDCl3 
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1H NMR (400 MHz) spectrum of compound 2j in CDCl3 
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13C NMR (100 MHz) spectrum of compound 2j in CDCl3 
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1H NMR (400 MHz) spectrum of compound 2k in CDCl3 
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13C NMR (100 MHz) spectrum of compound 2k in CDCl3 
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1H NMR (400 MHz) spectrum of compound 2l in CDCl3 
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13C NMR (100 MHz) spectrum of compound 2l in CDCl3   
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1H NMR (400 MHz) spectrum of compound 2m in CDCl3 
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1H NMR (400 MHz) spectrum of compound 2n in CDCl3 
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13C NMR (100 MHz) spectrum of compound 2n in CDCl3 
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1H NMR (400 MHz) spectrum of compound 2o in CDCl3 

 

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

Chemical Shift (ppm)

1
6
6

.6
3

1
6
5

.9
9

1
6
4

.3
3

1
4
9

.9
5

1
4
8

.5
3

1
4
0

.4
5

1
3
7

.1
9

1
3
3

.1
8

1
3
1

.5
6

1
3
0

.9
5

1
2
8

.4
7

1
2
4

.6
9

1
2
1

.0
2

8
4
.8

5

5
3
.6

1
5

2
.8

9
5

2
.0

0

2
0
.8

7
1

8
.7

3

 

13C NMR (100 MHz) spectrum of compound 2o in CDCl3 
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1H NMR (400 MHz) spectrum of compound 2p in CDCl3 
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13C NMR (100 MHz) spectrum of compound 2p in CDCl3 

 

 


