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Abstract 

  

Iodine promoted cascade reaction has been developed for the synthesis of unrivalled 

Aza-γ-carboline alkaloid analogues via C-H functionalization of 2H-indazoles. The 

construction of the product has been realized under metal-free condition via in situ formation 

of imine, transimination followed by cyclization. In this present method iodine played a triple 

role, in imine formation, transimination and imine activation. The key features of the present 

protocol are metal-free, peroxide-free, operational simplicity and wide substrates scope. 
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Transition-Metal-Free Direct C(sp3)-H Functionalization 

leading to Aza-γ-Carboline Alkaloid Analogues in Cascade 

Fashion 

 

Introduction 

 Developing efficient environmentally benign routes for biologically important 

heterocycles is a constitute enterprise in organic chemistry.1Sustainability has emerged as a 

powerful approach in chemistry for the synthesis of diverse bio-active heterocyclic scaffolds.2 

For the construction of these heterocycles, transition metal-assisted C-C and C-Het 

(Heteroatom) bond forming reactions has become an integral part3(figure 1). Among carbon 

heteroatom bond forming reactions, C-N bond formation have gained a lot of attention to 

construct heterocycles.4 But an essential requirement of these conventional approaches 

include metal-based reagents either in stoichiometric or in catalytic amounts.5 Among these 

methods, copper-catalysed C-N bond formation is the most noticeable.6 Many biologically 

active molecules have been synthesised through C-N bond formation using Cu as catalyst by 

Buchwald,6b Hartwig,6c and Ma6d et.al. These methods have certain drawbacks like use of 

complex ligands, longer reaction times, harsh reaction conditions and pre-functionalised 

starting material.7 

 

Fig. 1 Site selectivity controlled by transition metal catalyzed C-H activation. 

 

 

 Due to these shortcomings, focus has shifted to latent functional groups to activate C(sp3)-

H, C(sp2)-H, C(sp)-H bonds in contrast to traditional methods which involved fully 

functionalized substrates.8 They reduce the number of synthetic steps, improve atom economy 

and most prominently induce site selectivity.9 Various functional groups that have been 

employed as directing groups for catalytic C-H bond functionalisation includes amide, 

anilide, imine, heterocycles, amine, carboxylic acid, ester, ketone, and hydroxyl groups.9 

Among them, Imines are versatile synthetic intermediates in a variety of organic 

transformations where imines are widely used in addition, reduction, aziridination, β-
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lactamization, and cyclization reactions.10 In contrast to previous reports, in our approach we 

have successfully demonstrated C(sp3)-H functionalisation of benzylic carbon in benzyl 

amine via oxidative arylation leading to C-3 functionalised annulated indazoles. Even though 

there are various methods for the formation of imines,11(figure 2) but very few reports have in 

situ generation of imine followed by cyclization leading to valuable heterocyclic 

scaffolds.12(figure 3) Moreover in most of these methods, imine is inserted between two 

hetero nucleophiles but there are very few reports of insertion between a carbon and a hetero 

nucleophile.13. Aiming this, we have targeted the development of new heterocycles by 

choosing less explored substrate in the literature. 

 

Fig. 2 Traditional and Modern method of Imine synthesis 
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Figure 3: Application of Imine in heterocyclic synthesis 

 

 

 Conventionally, synthesis of imines involves the condensation of an amine with an 

aldehyde or ketone but alternative routes are appreciated.14 (figure 2). The various new 

approaches of imine formation includes cross coupling between an alcohol and amine,15 self-

coupling between two amines16 and oxidative dehydrogenation of secondary amines.17 In our 

approach, we have focussed on the self-coupling of two amines to imine intermediates. 

 

Fig 4. Previous methodologies for imine formation via self-coupling of primary amines 

 

 There are broadly four categories for Imine formation via cross-coupling of two primary 

amines.16 They are metal-catalysed,16b non-metal-catalysed,16a photo-catalysed,19 and Bio-

inspired catalyst.20 Out of them, I2-mediated method is the most green and user-friendly.21 

Iodine is a non-metal under Group 17 of the periodic table. Although a relatively rare 

element, it is highly soluble in water which has contributed to its enrichment in the oceans.22 

It is the heaviest micronutrient element essential for all living organisms, with its deficiency 

known to cause severe health problems in animals and human beings.23 Deficiency of this 

element in humans is known to cause goiter and even mental retardation.24 The use of iodine 

as an inexpensive, non-toxic, readily available catalyst for various organic transformations 
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has recently been well reviewed.25 Reviews have also appeared focusing on the role of iodine 

for Iodocyclization,26 in the protection–deprotection of functional groups,27 for electrophilic 

iodination of organiccompounds,28 and for transformation of molecules containing oxygen 

functional groups.29 Though acid catalysis remains the most widely used type of catalysis, the 

commonly used acid catalysts continue to pose serious health and safety problems. Moreover, 

the mild Lewis acidity of iodine has enhanced its utility for several organic transformations 

starting from minor catalytic amounts to higher stoichiometric levels.30 

 

Biological and pharmaceutical importance of aza-γ-carboline alkaloid 

analogues. 

 Direct C-H bond activated reactions for the synthesis of nitrogen bearing poly heterocycles 

has emerged as a powerful tool for the synthesis of biologically active N-heterocycles.31 

These are the most abundant and integral scaffolds that occur ubiquitous in various fields 

like, bioactive natural products, synthetic drugs, pharmaceuticals, and agrochemicals. Among 

the N-heterocycles, 2H-indazoles occupy a special place in pharma sector than 1H-indazoles 

due to their potent bioactivities like anti-tumor,32 anti-microbial,33 anti-inflammatory,34 HIV 

protease inhibition35etc. For example, drugs like MK-4827 (anticancer),36 and pazopanib 

(tyrosine kinase inhibitor),37incorporate this basic scaffold (Figure 1). In recent years, there 

has been a rapid inflation in the development of fused heterocycles,38 due to their amplified 

bioactivity39. Keeping this in mind, we wanted to synthesize indazole fused skeletons by 

using environmentally benign methods. 

 

 In continuation of our studies in the development of green and sustainable methods for the 

synthesis of indazole containing fused system,40 herein, we wish to report “iodine-mediated” 

synthesis of indazoloquinoxalines through C-H functionalization of 2H-indazoles. This 

reaction operates through a sequential homo-coupling of two (aryl) methanamines via amine 

oxidation, transimination followed by cyclisation resulting in annulated indazoles. 
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Figure 5: Representative examples of bio-active scaffolds. 

 
 

Results and Discussion 

 Initially, to investigate the probability of approach and to optimize the reaction condition 

we have performed the bench mark reaction between 2-aminoindazole and benzyl amine in 

presence of DMSO solvent at 120 oC under oxygen atmosphere but we didn’t observed the 

expected product (Table 1, entry 1). Then, on the basis of the previous methodologies for the 

synthesis of imines, we carried out the reaction with various catalysts, though we failed to get 

our expected product yet we have observed the formation of imine intermediate (Table 1, 

entry 3-7). By this, we were ascertained that activation of insitu generated imine is imperative 

for product formation. Accordingly, we used TFA as lewis acid additive for imine activation. 

Surprisingly, our desired cyclized product 5 was obtained, albeit in moderate yield (Table 1, 

entry 8).Continuing our zest, in order to increase the yield of the product we optimized the 

catalyst, solvent and temperature of our reaction but it didn’t affect the yield much (Table 1, 

entry 10-15). In light of the aforestated advantages of using green catalyst, we incorporated 

molecular Iodine and gratifyingly, we observed the expected product with very good yield 

without additive (Table 1, entry 17). We tuned the reaction with various solvents, but we did 

not get any significant increase in yield (Table 1, entry 18-20). To make our protocol more 

environmentally benign, we have tried the reaction even in green solvents but our attempts 

went in vain (Table 1, entry 22-24). To validate the efficiency of iodine, we screened our 

reaction with its various equivalents and finally chose 1 equivalent of iodine, DMSO as 

solvent and 90 oC as reaction temperature, to further explore the protocol. 
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 Table 1Optimization conditions for the synthesis of 5aa,b 

 

Entry  Catalyst 

(equiv) 

Solvent  Additive  Temp 

(oC) 

Time 

(h) 

Yield 

(%) 

1c — DMSO — 120 24 Nd 

2c — Toluene  — 120 24 Nd 

3 CuCl2.2H2O (0.2) DMSO — 120 24 —d 

4 CuBr (0.2) DMSO — 120 24 —d 

5 CuSO4 (0.2) DMSO — 120 24 —d 

6 CuBr2  (0.2) DMSO — 120 24 —d 

7 CuSO4.5H2O (0.2) DMSO — 120 24 —d 

8 CuSO4.5H2O (0.2) DMSO TFA(0.3) 90 24 48 

9 CuBr (0.2) DMSO TFA(0.3) 90 24 50 

10 CuSO4 (0.2) DMSO TFA(0.3) 90 24 55 

11 CuCl2.2H2O (0.2) DMF TFA(0.3) 90 24 75 

12 CuSO4.5H2O (0.2) ACN TFA(0.3) 90 24 75 

13 CuSO4.5H2O (0.2) 1,4-Dioxane  TFA(0.3) 90 24 30 

14 CuSO4.5H2O (0.2) Toluene  TFA(0.3) 90 24 Nd 

15 

16                

CuCl2.2H2O (0.2) 

I2 (1)    

DMF 

DMSO 

TFA(0.3) 

TFA (0.3) 

110 

100           

24 

24 

65 

70 

17 I2 (1) DMSO — 90 24 88 

18 I2 (1) DMSO — 110 24 85 

19 I2 (1) DMF — 90 24 50 

20 I2 (1) ACN — 90 24 85 

21c I2 (1) DMSO — 90 24 88 

22 I2 (1) H2O — 90 24 Nd 

23 I2 (1) PEG-400 — 90 24 Nd 

24 I2 (1) MeOH — 90 24 Nd 

25 I2 (0.5) DMSO — 90 24 75 

26 I2 (1.5) DMSO — 90 24 85 
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aAll reactions were carriedout on 1mmol scale of 3 and 1.5 mmol of 4 and entry 3-14 used 1 equiv base. 

bIsolated yields of chromatographically pure products. cO2-balloon (1 atm) was used. Entry 1-9 and 19, 20 

starting material was recovered. d amine self-coupling product was isolated.  

 

 With the optimal conditions (Table 1, entry 16) in hand, we next probed the scope and 

generality of the protocol to various indazoles and amines. Firstly, we kept the indazole 

constant and modified the amine part. When we had electron donating groups at ortho- and 

para position of benzyl amines, they gave less yields (Table 2, 5b, 5c, 5d, 5e) but when 

electron donating groups (Table 2, 5f) and electron withdrawing groups were at meta-

position, they gave comparatively good yields (Table 2, 5j,5k). 

Table 3 Substrate scope of benzyl amine with respect to 2H-indazole (5a-5k)a,b 
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aReaction conditions: 3 (1 mmol), 4 (1.5 equiv), I2 (1 mmol) in 2 mL DMSO, at 90 ˚C for 15-20 h. bYields in the 

parentheses are isolated yields of chromatographically pure products.  

 

Table 2 Substrate scope of 2H-indazole with respect to benzylamines(5l-5t) 

 

aReaction conditions: 3 (1 mmol), 4(1.5 equiv), I2 (1mmol) in 2 mL DMSO, at 90 ˚C for 15-20h. bYields in the 

parentheses are isolated yields of chromatographically pure products. 

 

 Next, we examined the indazoles by keeping amine component constant. When electron 

withdrawing and donating groups were at 5th and 6th position of azide partner of indazole, 

they didn’t showed much difference in the yields (Table 3, 5l-5o) whereas in the case of 

amine partner having electron donating groups, gave good yields (Table 3, 5p-5r). Moreover, 

in the case of bromo substituted pyridine-amine, we failed to get our expected product (Table 

3, 5s). 
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 Based on the literature reports for the formation of imine we proposed a plausible 

mechanism for the synthesis of Indazoloquinoxaline alkaloid analogues (5). At first, self-

coupling of benzyl amine (4) takes place in presence of iodine to form corresponding imine, 

(I) which undergoes transimination to form imine intermediate (II). Intermediate (II) gets 

activated by iodine followed by cyclization, leads to formation of intermediate (III), which 

further undergoes aromatization to form indazoloquinoxaline (5)   

 

Figure 5.Credible pathway for the synthesis of indazoloquinoxalines (5) 

 

 

 

 

Conclusion 

 In summary we have successfully demonstrated C(sp3)-H functionalisation under metal-

free method in a tandem fashion using benzyl amine as C1 synthon for C-3 functionalisation 

of indazoles resulting in interesting N-Heterocycles i.e. aza-γ-carboline alkaloid analogues. 

This reaction operates through a sequential homocoupling of two (aryl) methanamines via 

amine oxidation, transimination followed by cyclisation resulting in annulated indazoles. The 

key features of the present protocol are C(sp3)-H functionalization, one carbon insertion, 

induced site selectivity, metal-free, free of harsh reagents, operational simplicity and wide 

substrates scope. 
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Experimental section 

 

General information 

      IR spectra were recorded on a FTIR spectrophotometer. 1H NMR spectra were recorded on 400 

MHz spectrometer at 295 K in CDCl3; chemical shifts (δ ppm) and coupling constants (Hz) are 

reported in standard fashion with reference to either internal standard tetramethylsilane (TMS) (δH = 

0.00 ppm) or CHCl3 (δH  = 7.25 ppm). 13C NMR spectra were recorded on 100 MHz spectrometer at 

RT in CDCl3; chemical shifts (δ ppm) are reported relative to CHCl3 [δC = 77.00 ppm (central line of 

triplet)]. In the 1HNMR, the following abbreviations were used throughout: s = singlet, d = doublet, t 

= triplet, q = quartet, qui = quintet, m = multiplet and br s. = broad singlet. The assignment of signals 

was confirmed by 1H, 13C, and DEPT spectra. High-resolution mass spectra (HR-MS) were recorded 

using Q-TOF multimode source. Melting points were determined on an electro thermal melting point 

apparatus and are uncorrected. O-azido-benzaldehyde prepared by using literature known 

procedures,1 2-aminophenols all were commercial available. Pd-catalysts and all bases were 

purchased from Sigma Aldrich. All dry solvents were used, toluene and THF were dried over sodium 

metal and DMSO, CH3CN and DMF were dried over calcium hydride and which are commercial 

available. 

All small scale dry reactions were carried out using standard syringe-septum technique. Reactions 

were monitored by TLC on silica gel using a combination of petroleum ether and ethyl acetate as 

eluents. Reactions were generally run under argon, nitrogen and oxygen atmosphere wherever 

necessary. Solvents were distilled prior to use; petroleum ether with a boiling range of 40 to 60 oC 

was used. Acme’s silica gel (60–120 mesh) was used for column chromatography (approximately 20 

g per one gram of crude material).  
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(I) General procedure (GP I) for the synthesis of 2-(2H-indazol-2-yl) aniline (3a-3g): 

 

2-Azidobenzaldehyde 1 (1 mmol), Boc protected o-phenylenediamine2 (1 mmol) were taken in a 10 

mL round bottom flask  and it was closed with stopper and placed in external heating oil bath at 120 

oC (oil bath temperature) for 1-1:30h. After completion of the starting materials, the mixture was 

cooled to room temperature and DCE solvent was added followed by BF3.Et2O and refluxed the 

reaction at 85 oC. Progress of the reaction was monitored by TLC until the reaction is completed. 

The reaction mixture was quenched by addition of aq. NaHCO3 solution and extracted with ethyl 

acetate (3  10 mL). The organic layers were dried (Na2SO4) and concentrated in vacuo. Purification 

of the residue on a silica gel column chromatography using petroleum ether/ethyl acetate as eluent 

furnished the product (3a-3j).  

 

(V) General procedure (II) for the synthesis of aza-γ-carboline (5a-5t): 

 

In an oven dried sealed tube, 2-(2H-indazol-2-yl)aniline 3a-3g (1 mmol), benzyl amine 4a-4b (2 

mmol), molecular Iodine (1mmol) were added followed by addition of DMSO (2 mL). The resulting 
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reaction mixture was stirred at 90C for 20-24 h. Progress of the reaction was monitored by TLC 

until the reaction is completed. The reaction mixture was quenched by addition of aq. 

Na4S2O3solution and extracted with ethyl acetate (3  10 mL). The organic layers were dried 

(Na2SO4) and concentrated in vacuo. Purification of the residue on a silica gel column 

chromatography using petroleum ether/ethyl acetate as eluent furnished the product aza-γ-carboline 

5a-5t. All the unknown compounds (5a-5t) were confirmed by FTIR, 1H NMR, 13CNMR and HR-

MS Spectral analyses.  

 

 

 

Spectral data of all compounds (5a-5t): 

 

6-phenylindazolo[2,3-a]quinoxaline (5a): Light yellow solid (88 %); mp 220-222 ˚C; IR (MIR-

ATR, 4000–600 cm-1): ʋmax = 3740, 2945, 2882, 1517, 1476, 1340, 1237, 1194, 1127, 1090, 966, 

896, 745, 707, 678;  1H NMR (CDCl3, 400 MHz): δH = 8.89 (dd, 1H, Ja = 8.1 and Jb = 1.2Hz), 8.27 

(dd, 2H, Ja = 8.1 and Jb = 1.2Hz), 8.07-8.06 (m, 2H), 7.76-7.78 (m, 2H), 7.61-7.63 (m, 5H), 7.23-7.25 

(m, 1H); 13C NMR (CDCl3, 100 MHz): 154.4, 149.6, 138.4, 138.1, 130.5, 130.3, 129.4, 129.2, 129.1, 

128.5, 128.4, 123.4, 121.6, 117.7, 117.5, 116.8; HR-MS (ESI+) m/z calculated for [C20H13N3]
+ = 

[M+H]+: 296.1188; found: 296.1183. 

 

6-(4-methoxyphenyl)indazolo[2,3-a]quinoxalines (5c):  Yellow solid (78%); mp 210-230 ˚C; IR 

(MIR-ATR, 4000–600 cm-1): ʋmax = 3740, 2944, 2892, 1553, 1502, 1459, 1339, 1296, 1174, 1129, 
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1029, 920, 827, 786, 751;  1H NMR (CDCl3, 400 MHz): δH = 8.90-8.87 (m, 1H), 8.25 (d, 1H, J = 

2Hz), 8.08 (d, 1H, J = 8.8Hz), 7.7-7.77 (m, 2H), 7.77-7.75 (m, 3H), 7.59 (ddd, 1H, Ja = 8.8 and Jb = 

8Hz, Jc = 1Hz), 7.27-7.19 (m, 1H), 7.19-7.18 (m, 2H), 3.99 (s, 3H) ; 13C NMR (CDCl3, 100 MHz): 

161.3, 138.1, 130.4.1, 129.8, 128.8 , 128.1, 128.0, 123.0, 121.4, 117.5, 116.4, 114.3; HR-MS (ESI+) 

m/z calculated for [C21H15N3O]+ = [M+H]+: 326.1293; found: 326.1295. 

 

 

6-(p-tolyl)indazolo[2,3-a]quinoxaline (5d): Yellow solid (82%); mp 222−224˚C; IR (MIR-ATR, 

4000–600 cm-1): ʋmax = 3740, 3391, 3360, 3009, 1639, 1517, 1475, 1422, 1341, 1193, 1126, 966, 

787, 723;  1H NMR (CDCl3, 400 MHz): δH = 8.87 (dd, 1H, Ja = 8.1 and Jb = 1.2Hz), 8.25 (dd, 1H, Ja 

= 8.1 and Jb = 1.2Hz), 8.06 (d, 1H, J = 8.3Hz), 7.83 (d, 2H, J = 7.8Hz), 7.82-7.78 (m, 3H), 7.56 

(d,1H, J = 7.8Hz), 7.46(d,2H, J = 7.8Hz), 7.24(dd, 1H, Ja = 15.9 and Jb = 8.6Hz), 2.54 (s, 3H); 13C 

NMR (CDCl3, 100 MHz): 154.5, 149.6, 140.6, 138.4,  135.3, 130.2, 129.8, 129.2, 129.1, 128.4, 

123.3, 121.7, 117.7, 117.5, 116, 123.0, 121.4, 117.4, 117.2, 116.4, 21.6; HR-MS (ESI+) m/z 

calculated for [C21H15N3]
+ = [M+H]+: 310.1344; found: 310.1344. 

 

6-(4-methoxyphenyl)indazolo[2,3-a]quinoxaline(5f):Yellow solid (90%); mp 146−150˚C; IR 

(MIR-ATR, 4000–600 cm-1): ʋmax = 3791, 3686, 3002, 2934, 2834, 1785, 1625, 1578, 1508, 1359, 
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1285, 1151, 970, 931, 872, 836, 743, 691;  1H NMR (CDCl3, 400 MHz): δH = 8.89-8.87 (m, 1H) , 

8.27 (dd, 1H, Ja = 7.8 and Jb = 1 Hz), 8.06(d, 1H, J = 8.8Hz), 7.75-7.65 (m, 2H), 7.66(d,  1H, J = 

8.8Hz), 7.57-7.55 (m, 2H), 7.51-7.49 (m, 2H), 7.27-7.24 (m, 2H), 3.92 (s, 3H); 13C NMR (CDCl3, 

100 MHz): 159.9, 153.9, 149.3, 139.0, 138.0, 130.0, 130.0, 129.1, 128.2, 128.1, 127.9, 125.7, 123.1, 

121.3, 121.4, 120.6, 117.4, 117.2, 116.5, 113.7, 55.4; HR-MS (ESI+) m/z calculated for 

[C21H15N3O]+ = [M+H]+: 326.1293; found: 326.1285. 

 

 

6-(4-fluorophenyl)indazolo[2,3-a]quinoxalines (5g): White solid(68%); mp 180−190 ˚C; IR (MIR-

ATR, 4000–600 cm-1): ʋmax = 3740, 3391, 3360, 3009, 1639, 1517, 1475, 1422, 1341, 1193, 1126, 

966, 787, 723 ;  1H NMR (CDCl3, 400 MHz): δH  = 8.9 (dd, 1H, Ja = 8.3 and Jb = 1.5 Hz), 8.26 (dd, 

1H, Ja = 8.1 and Jb = 1.2 Hz), 8.09 (d, 2H ,J = 8.8Hz), 7.95 (dd, 2H, Ja = 8.8 and Jb = 5.4 Hz), 7.95-

7.83 (m, 2H), 7.65-7.60 (m, 2H), 7.38-7.34 (m, 2H); 13C NMR (CDCl3, 100 MHz): 165.3, 153.0, 

149.3, 138.0, 134.0, 131.0, 130.9, 129.9, 129.2, 128.3, 128.2, 127.8, 125.6, 123.3, 121.0, 117.6, 

117.1, 116.5, 116.2, 115.9; HR-MS (ESI+) m/z calculated for [C20H12FN3]
+ = [M+H]+: 314.1094 ; 

found: 314.1091. 

 

6-(2-Chlorophenyl)indazolo[2,3-a]quinoxalines (5i): Yellow solid (75%); mp 144−160 ˚C; IR 

(MIR-ATR, 4000–600 cm-1): ʋmax = 3739, 3440, 3332, 3061, 1621, 1512, 1476, 1432, 1385, 1358, 

1325, 1229, 1196, 1128, 953, 786, 710;  1H NMR (CDCl3, 400 MHz): δH = 8.93 (dd, 1H, Ja = 8.3 and 



[Type text] 
 

18 
 

Jb = 1 Hz), 8.31 (dd, 1H, Ja = 7.8 and Jb = 1 Hz), 8.08 (d,1H, J = 8.8Hz), 7.68-7.65 (m, 1H), 7.64-

7.62 (m, 1H), 7.61-7.58 (m, 5H), 7.27-7.25 (m, 1H), 7.09 (d, 1H, J = 8.3Hz) ;13C NMR (CDCl3, 100 

MHz): 151.7, 149.2, 137.9, 136.5, 133.2, 131.2, 130.6, 130.2, 130.1, 129.6, 128.3, 128.2, 128.1, 

127.6, 126.1, 123.6, 120.4, 117.4, 117.3, 116.5; HR-MS (ESI+) m/z calculated for [C20H12ClN3]
+ = 

[M+H]+: 330.098; found: 330.0796. 

 

 

6-phenyl-[1,3]dioxolo[4',5':5,6]indazolo[2,3-a]quinoxaline (5l): Yellow solid (90 %); mp 208-210 

˚C; IR (MIR-ATR, 4000–600 cm-1): ʋmax = 3739, 2992, 2894, 1504, 1469, 1326, 1243, 1195, 1120, 

1033, 954, 824, 759, 706, 574;  1H NMR (CDCl3, 400 MHz): δH = 8.72 (dd, 1H, Ja = 8.3 and Jb = 

1Hz), 8.3 (dd, 1H, Ja = 8.3 and Jb = 1.5Hz), 7.85-7.84 (m, 2H),  7.67-7.65 (m, 1H), 7.65-7.64 (m, 

4H), 7.30 (s, 1H), 7.58 (s, 1H), 6.75(s, 2H); 13C NMR (CDCl3, 100 MHz): 153.8, 150.5, 147.3, 

146.5, 137.7, 137.2, 130.2, 129.9, 129.0, 128.9, 128.7, 128.1, 127.6, 127.0, 125.7, 115.7, 112.7, 

112.0, 101.8, 97.3, 94.7;HR-MS (ESI+) m/z calculated for [C21H13N3O2]
+ = [M+H]+: 340.1086; 

found: 340.1075. 

  

9-chloro-6-phenylindazolo[2,3-a]quinoxalines (5m): Light yellow solid(70 %); mp 228-234 ˚C; IR 

(MIR-ATR, 4000–600 cm-1): ʋmax = 3739, 3608, 3121, 2991, 2882, 1760, 1649, 1639, 1552, 1518, 

1391, 1282, 1193, 966, 937, 865, 812, 744, 678;  1H NMR (CDCl3, 400 MHz): δH = 8.86 (dd, 1H, Ja 
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= 8.1 and Jb = 1.7Hz), 8.28 (dd, 1H, Ja = 8.1 and Jb = 1.2Hz), 7.91-7.93 (m, 3H),  7.83 (d, 3H,J = 

7.8Hz), 7.80-7.82 (m, 3H), 7.65-7.67 (m,4H); 13C NMR (CDCl3, 100 MHz): 154.0, 147.7, 138.2, 

137.4, 131.8, 130.6, 130.1, 129.4, 129.1, 128.7, 128.6, 125.1, 124.9, 124.5, 124.0, 123.6, 119.1, 

118.4, 116.6, 116.5; HR-MS (ESI+) m/z calculated for [C21H15ClN3]
+ = 329.0720; found: 329.0718. 

 

 

9-bromo-6-phenylindazolo[2,3-a]quinoxalines (5n): Yellow solid (62 %); mp ˚C; IR (MIR-ATR, 

4000–600 cm-1): ʋmax = 3739, 2992, 2882, 1518, 1472, 1341, 1241, 1192, 1127, 1079, 965, 840, 746, 

707, 678;  1H NMR (CDCl3, 400 MHz): δH = 8.85 (dd, 1H, Ja = 8.1 and Jb  = 1.2Hz), 8.27 (dd, 1H, Ja 

= 8.1 and Jb  = 1.7Hz), 7.91-7.93 (m, 3H),  7.82-7.84 (m, 3H), 7.68-7.70 (m, 4H); 13C NMR (CDCl3, 

100 MHz): 154.3, 148.0, 138.5, 137.7, 132.0, 130.9, 130.4, 129.7, 129.4, 129.0, 128.9, 128.0, 123.8, 

119.4, 118.7, 116.9, 116.8; HR-MS (ESI+) m/z calculated for [C21H15ClN3]
+ = 373.0215; found: 

373.0214. 

 

 

8-bromo-6-phenylindazolo[2,3-a]quinoxalines (5o):  Yellow solid (92 %); mp 200-210 ˚C; IR 

(MIR-ATR, 4000–600 cm-1): ʋmax = 3739, 3524, 3391, 3106, 1640, 1519, 1476, 1422, 1392, 1367, 

1341, 1271, 1195, 1126, 967, 788, 745;  1H NMR (CDCl3, 400 MHz): δH = 8.84 (m, 1H), 8.27 (dd, 

1H, Ja = 8.1 and Jb = 1.7Hz), 7.8-8.0 (m, 1H), 7.8 (ddd, 2H, Ja = 10.4, Jb = 8.2 and Jc = 2Hz ), 7.7-7.6 

(m, 2H), 7.5-7.8 (m, 3H), 7.3-7.5 (m, 1H), 7.2-7.4 (m, 1H); 13C NMR (CDCl3, 100 MHz): 153.5, 

149.6, 137.8, 137.2, 130.1, 129.7, 129.1, 128.7, 128.4, 128.2, 127.3, 126.3, 125.6, 122.2, 121.9, 
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119.5, 116.2, 115.4; HR-MS (ESI+) m/z calculated for [C20H12BrN3]
+ = [M+H]+: 374.0293;  found: 

374.0291. 

 

 

2,3-dimethyl-6-phenylindazolo[2,3-a]quinoxaline (5q): Yellow solid (84 %); mp 200-210 ˚C; IR 

(MIR-ATR, 4000–600 cm-1): ʋmax = 3732, 3668, 3211, 2918, 2854, 1766, 1642, 1629, 1533, 1512, 

1361, 1228, 1193, 914, 873, 805, 757, 650;  1H NMR (CDCl3, 400 MHz): δH = 8.64 (s, 1H), 7.91-

7.90 (m, 2H),  7.90-7.89 (m, 2H),  7.64-7.63 (m, 4H), 7.63-7.62 (m, 1H), 7.56-7.26 (m, 1H), 2.59 (s, 

3H), 2.51 (s, 3H); 13C NMR (CDCl3, 100 MHz): 153.8, 150.0, 138.2, 137.5, 130.4, 130.0, 129.4, 

129.0, 128.8, 128.5, 127.7, 126.7, 125.9, 122.6, 122.2, 119.9, 116.5, 115.8; HR-MS (ESI+) m/z 

calculated for [C20H12BrN3]
+ = [M+H]+: 323.1422;  found: 323.1420. 

 

2-chloro-6-phenylindazolo[2,3-a]quinoxaline (5r):Yellow solid (78%); mp 200-210 ˚C; IR (MIR-

ATR, 4000–600 cm-1): ʋmax = 3725, 3628, 3032, 2924, 2852, 1750, 1641, 1624, 1549, 1508, 1360, 

951, 872, 824, 759, 700;  1H NMR (CDCl3, 400 MHz): δH = 8.88 (d, 1H, J = 2.4 Hz), 8.17 (d, 1H,J = 

8.8 Hz), 8.03 (s, 1H), 7.91 (dd, 2H, Ja = 3.9 and Jb = 2.9Hz), 7.67-7.65 (m, 6H), 7.26 (s, 1H); 13C 

NMR (CDCl3, 100 MHz): 153.8, 150.0, 138.2, 137.5, 130.4, 130.0, 129.4, 129.0, 128.8, 128.5, 



[Type text] 
 

21 
 

127.7, 126.7, 125.9, 122.6, 122.2, 119.9, 116.5, 115.8; HR-MS (ESI+) m/z calculated for 

[C20H12BrN3]
+ = [M+H]+: 329.0720;  found: 329.0717. 

 

 

 

phenyl(6-phenylindazolo[2,3-a]quinoxalin-3-yl)methanone (5t): Yellow solid (72 %); mp 200-

210 ˚C; IR (MIR-ATR, 4000–600 cm-1): ʋmax = 3739, 2991, 2880, 1517, 1475, 1366, 1276, 1127, 

1091, 967, 936, 865, 787, 745, 678;  1H NMR (CDCl3, 400 MHz): δH = 8.62 (d, 1H, J = 8.3Hz), 8.28 

(d, 1H, J = 1.5Hz), 7.96 (dd, 1H, Ja = 8.8 and Jb  = 2Hz), 7.72 (d, H, J = 8.8Hz), 7.58-7.53  (m, 2H), 

7.30-7.29 (m, 4H), 7.26-7.24 (m,1H), 7.19-7.15  (m, 2H), 6.92-6.90  (m, 2H); 13C NMR (CDCl3, 100 

MHz): 195.5, 155.2, 149.8, 137.4, 137.2, 137.2, 136.9, 132.8, 132.8, 130.5, 130.2, 130.1, 129.8, 

129.0,  128.8, 128.7, 128.5, 126.2, 123.8, 121.3, 117.7, 117.3, 117.0, 29.7; HR-MS (ESI+) m/z 

calculated for [C20H12BrN3]
+ = [M+H]+: 399.1372 ;  found: 399.1370. 

 

 

 

 

 

Copies of 1H, 13C NMR Spectra of all Compounds (S3, S4, 3a-w, 5 and 6a-i): 
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1H NMR (400 MHz) spectrum of compound 5a in CDCl3 
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13C NMR (100 MHz) spectrum of compound 5a in CDCl3 
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1H NMR (400 MHz) spectrum of compound 5d in CDCl3 
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13C NMR (100 MHz) spectrum of compound 5d in CDCl3 
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1H NMR (400 MHz) spectrum of compound 5f in CDCl3 

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

Chemical Shift (ppm)

1
5
9

.9
5

1
5
3

.8
9

1
4
9

.2
6

1
3
9

.0
0

1
3
7

.9
6

1
2
9

.9
5

1
2
9

.9
2

1
2
9

.0
7

1
2
8

.1
1

1
2
8

.0
9

1
2
3

.0
9

1
2
1

.3
2

1
2
1

.1
4

1
1
7

.3
7

1
1
7

.1
7

1
1
6

.4
1

1
1
3

.7
4

7
7
.3

1
7

7
.0

0
7

6
.6

8

5
5
.4

6

 

13C NMR (100 MHz) spectrum of compound 5f in CDCl3 
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1H NMR (400 MHz) spectrum of compound 5g in CDCl3 
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13C NMR (100 MHz) spectrum of compound 5g in CDCl3 
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1H NMR (400 MHz) spectrum of compound 5i in CDCl3

150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0

Chemical Shift (ppm)

1
5
1

.6
3

1
4
9

.1
7

1
3
7

.8
7

1
3
6

.4
8

1
3
3

.1
5

1
3
1

.1
2

1
3
0

.5
2

1
3
0

.1
5

1
2
9

.5
6

1
2
8

.2
1

1
2
8

.1
0

1
2
7

.5
3

1
2
3

.5
3

1
2
0

.3
4

1
1
7

.3
6

1
1
7

.2
1

1
1
6

.4
5

7
7
.3

1
7

7
.2

0
7

7
.0

0
7

6
.6

8

 

13C NMR (100 MHz) spectrum of compound 5i in CDCl3 
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1H NMR (400 MHz) spectrum of compound 5l in CDCl3 
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13C NMR (100 MHz) spectrum of compound 5l in CDCl3 
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1HNMR (400 MHz) spectrum of compound 5m in CDCl3 
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13CNMR (100 MHz) spectrum of compound 5m in CDCl3 
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1HNMR (400 MHz) spectrum of compound 5n in CDCl3 
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13C NMR (100 MHz) spectrum of compound 5n in CDCl3 
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1H NMR (400 MHz) spectrum of compound 5o in CDCl3 
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13C NMR (100 MHz) spectrum of compound 5o in CDCl3 
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1H NMR (400 MHz) spectrum of compound 5q in CDCl3 
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13C NMR (100 MHz) spectrum of compound 5q in CDCl3 
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1H NMR (400 MHz) spectrum of compound 5r in CDCl3 
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13C NMR (100 MHz) spectrum of compound 5r in CDCl3 
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1H NMR (400 MHz) spectrum of compound 5t in CDCl3 
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13C NMR (100 MHz) spectrum of compound 5t in CDCl3 

 


