Galerkin Approximations for Stability of Delay Differential Equations With Distributed Delays

Anwar, Sadath and Vyasarayani, C P (2015) Galerkin Approximations for Stability of Delay Differential Equations With Distributed Delays. Journal of Computational and Nonlinear Dynamics, 10 (6). 061024-1. ISSN 1555-1415

Full text not available from this repository. (Request a copy)

Abstract

Delay differential equations (DDEs) are infinite-dimensional systems, therefore analyzing their stability is a difficult task. The delays can be discrete or distributed in nature. DDEs with distributed delays are referred to as delay integro-differential equations (DIDEs) in the literature. In this work, we propose a method to convert the DIDEs into a system of ordinary differential equations (ODEs). The stability of the DIDEs can then be easily studied from the obtained system of ODEs. By using a space-time transformation, we convert the DIDEs into a partial differential equation (PDE) with a time-dependent boundary condition. Then, by using the Galerkin method, we obtain a finite-dimensional approximation to the PDE. The boundary condition is incorporated into the Galerkin approximation using the Tau method. The resulting system of ODEs will have time-periodic coefficients, provided the coefficients of the DIDEs are time periodic. Thus, we use Floquet theory to analyze the stability of the resulting ODE systems. We study several numerical examples of DIDEs with different kernel functions. We show that the results obtained using our method are in close agreement with those existing in the literature. The theory developed in this work can also be used for the integration of DIDEs. The computational complexity of our numerical integration method is O(t), whereas the direct brute-force integration of DIDE has a computational complexity of O(t2).

[error in script]
IITH Creators:
IITH CreatorsORCiD
Vyasarayani, Chandrika Prakashhttp://orcid.org/0000-0002-3396-0484
Item Type: Article
Uncontrolled Keywords: Galerkin Approximations, DIDEs, DDEs, ODEs
Subjects: Mathematics > Numerical analysis
Divisions: Department of Mechanical & Aerospace Engineering
Depositing User: Team Library
Date Deposited: 27 Aug 2015 06:34
Last Modified: 04 Mar 2022 05:29
URI: http://raiith.iith.ac.in/id/eprint/1899
Publisher URL: https://doi.org/10.1115/1.4030153
OA policy: http://www.sherpa.ac.uk/romeo/issn/1555-1415/
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 1899 Statistics for this ePrint Item