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Abstract

In the present work, an experimental study is carried out to estimate the mixed-mode
stress intensity factors (SIF) for different cracked specimen configurations using digital image
correlation (DIC) technique. For the estimation of mixed-mode SIFs using DIC, a new
algorithm is proposed for the extraction of crack tip location and coefficients in the multi
parameter displacement field equations. From those estimated coefficients, SIF could be
extracted. The required displacement data surrounding the crack tip has been obtained
using 2D-DIC technique. An open source 2D DIC software Ncorr is used for the displacement
field extraction. The presented methodology has been used to extract mixed-mode SIF’s for
specimen configurations like single edge notch (SEN) specimen and center slant crack (CSC)
specimens made out of Al 2014-T6 alloy. The experimental results have been compared with
the analytical values and they are found to be in good agreement, thereby confirming the
accuracy of the algorithm being proposed.
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1. Introduction

Understanding the failure mechanism in structural components subjected to loading is
very important for design engineers. It is a well known fact that the presence of flaws such
as cracks and sharp notches in the structural components reduce their strength and leads
to initiation of fracture and loss of service life. These cracks arise during manufacturing or
because of the induced stresses during thermo-mechanical processing such as welding, heat
treatment or during service (due to fatigue and/or creep, stress corrosion, thermal loads
etc). The presence of the crack results in the redistribution of stresses and strains around
the crack-tip. In fracture mechanics, stress intensity factor (SIF) is used to characterize
the stress field around the crack tip. The value of SIF will tell whether the crack will
propagate or not under service load. SIF depends on the far field stress (σ), flaw size (a),
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component geometry and mode of loading. SIF can be evaluated analytically, numerically
and experimentally[1]. Analytical solutions are available for finding SIF for various simple
specimen geometries and loading configurations [2]. For complex configurations, SIF need to
be extracted either by experiment or by numerical analysis. Numerical methods like finite
element method (FEM) requires precise knowledge about the boundary conditions.

The experimental methods are particularly well suited for determining SIF for actual
geometry and loading conditions. Also, the techniques of experimental stress analysis can
be used to verify the solutions obtained using the other methods. Many researchers have
developed and applied methodologies for estimating SIF’s involving different experimental
techniques. They include whole field non-contact optical methods such as holographic in-
terferometry [3], electronic-speckle-pattern interferometry (ESPI) [4], Moiré interferometry
[4, 5], coherent gradient sensing [6], method of caustics [7], photoelasticity [8], digital image
correlation [9] etc, as well as contact methods such as measurements using resistance strain
gauges [10]. Ramesh et al. [11] developed a software based on the multi-paramter stress field
equations proposed by Atluri and Kobayashi [12], by implementing the over deterministic
least squares technique towards estimation of mixed mode crack tip stress field parameters
based on photoelastic data. However, photoelasticity is only suitable for transparent bire-
fringent plastics. Methods like holography and other interferometric techniques are very
sensitive to vibration and requires a coherent light source. Interferometric techniques mea-
sure the deformation by recording the phase difference of the scattered light wave from the
specimen surface before and after deformation. The measurement results are often presented
in the form of fringe patterns which requires further processing and phase analysis in order to
extract the basic data. Non-interferometric techniques determine the surface deformation by
comparing the gray intensity changes of the specimen before and after deformation, and gen-
erally have less stringent requirements under actual experimental conditions [13]. Yates et
al. developed techniques for tracking the crack growth and the evaluation of the mixed mode
crack tip stress fields using thermo-elasticity [14]. Recently, Sarangi et al. [15] proposed a
methodology for accurate estimation of SIF’s by optimising the strain gauge locations. They
have suggested a new strain gauge based methodology for the experimental determination
of the mixed mode SIF’s (both KI and KII). Chu et al. developed a computer program
based on DIC to estimate displacement components and deformation gradients of an object
surface subjected to deformation. Several experiments were performed to demonstrate the
viability of this correlation method in experimental mechanics [16].

Amongst these experimental techniques, DIC has become popular for SIF determination
because of its relatively simple specimen preparation, ease of use and requirement of less
complicated optics. Also it is truly a whole field technique and could be employed for any
class of material. It requires specimen surface to be coated with artificial speckle pattern for
estimation of displacement and strain fields. It provides information about the displacements
and strains by comparing the digital images of the specimen surface coated with artificial
speckle pattern in the un-deformed and deformed states respectively. In case of a 2D DIC
setup, only one camera is used for the measurement of in-plane surface displacements and
strains. Sutton et al. [17] employed 2D-DIC to study the three-dimensional effects near the
crack-tip. In order to reduce the experimental noise, they used smoothened u-displacement
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and v -displacement field obtained over single edge notch specimen to predict the presence of
three-dimensional and/or non-linear zone near the crack-tip. In 2009, Poissant and Barthelat
[18] introduced a subset splitting algorithm for the effective application of DIC on discon-
tinuous displacement fields. They proposed a novel approach which enables the subset to
split into two sections when a discontinuity is detected. Recently Ronghua Zhu et al. [19]
investigated the registration accuracies of several subset shapes and control point locations
used in DIC technique. They found that the varying the subset shapes affect the registration
accuracy while varying the control points have little impact. With the help of these findings,
they developed a non-central algorithm for whole field deformation measurement. Jinlong
Chen et al. [20] presented an improved extended DIC technique to measure discontinuous
deformation across the crack. They proposed a non rectangular subset to eliminate the effect
of crack width on measurement accuracy. Reng-cai Yang [21] developed a regularized finite-
element digital image correlation technique to solve the displacement field with fine and
irregular structure. He proposed an algorithm which is capable of resolving displacement
field with very fine structure at reasonable accuracy. Ge Yang et al. [22] experimentally
investigated the damage mechanisms in granites under uniaxial tension. They used DIC for
displacement and surface strain measurement. Eskandari et al. [23] studied the effect of
deformation temperature on the strain localization during tensile loading of micro alloyed
steel using an adaptive DIC technique.

However, most of these studies were limited to mode-I crack problems. In 2008, Lopez-
Crespo [24] et al. developed a generalised approach for determining KI and KII for a
specimen having any mode mixity, directly from displacement fields obtained using DIC for
crack growth problem under fatigue loading. The methodologies described in the literature
either neglect the error introduced due to ambiguous location of the crack-tip or use non-
linear iterative algorithm to locate the crack-tip [25, 26]. Using the whole field displacement
data (ux and uy) obtained from 2D-DIC, Yoneyama et al. [9, 27] extended the non-linear least
square algorithm which considered ux and uy displacement components in a combined way.
They proposed new convergence criteria based on the correlation coefficient and the sum
of absolute values of error between experimentally obtained and theoretically reconstructed
displacement fields.

The problem of finding the crack tip stress field parameters and crack tip location can be
posed as an optimization problem. The objective function to be minimized is the square of
the error between the experimental displacements and curve fitted displacements using multi-
parameter displacement field equation. The unknowns to be determined are the parameters
in the multi-parameter displacement field equations as well as crack tip location. It is to be
noted that the objective function is not quadratic when we consider the crack tip location
as an unknown. Using non-linear least square algorithm to minimize the objective function
one often finds the local minimum leading to a bad curve fit to the experimental data. In
this work, we convert the non-linear least square problem into a sequence of linear least
square problems. Therefore, we obtain the global minimum of the objective function.

A 2D-DIC technique is employed to get the whole field displacements over the cracked
specimens surrounding the crack tip. The cracked specimen is under tensile loading. An
open source 2D DIC software Ncorr is used for displacement extraction. From the whole
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field displacement data, SIFs are estimated by solving multi parameter displacement field
equations. The proposed method also predicts the position of crack tip with respect to the
image coordinate system. Along with the crack tip coordinates, rigid body translations and
rotations are also determined. We have studied different specimen configurations like single
edge notch specimen (SEN) and center slant crack (CSC) made of 2014-T6 aluminium panel.

2. Test procedure and Specimen fabrication

The cracked panels are made of Al 2014-T6 aluminium alloy plate with a dimension of
40 x 160 x 3 mm3. The material properties of Al 2014-T6 alloy is given in Table 1 and is
taken from the Ref. [28].

Table 1: Material properties of 2014-T6 aluminium alloy obtained from the Ref. [28]

Yield Strength Young’s Modulus Poisson’s ratio

433.34 MPa 71.16 GPa 0.332

The straight edge crack of 8 mm was introduced into the specimen using an electro-
discharge machining (EDM) wire cut machine. For creating a center crack, initially a 2 mm
hole was drilled at the center of the specimen. This hole serves as the passage for the metallic
wire of the EDM machine, which was then used to create a 45 degree inclined crack of length
10 mm at the center. Pre-cracking was done by applying fatigue load in order to generate
an initial natural crack with a sharp tip from the notch. During the pre-cracking process,
the specimen was monitored closely with a magnifying glass. Liquid dye-penetrant NDT-19
was used to detect any fatigue crack initiation. Using an optical microscope,the lengths
of the cracks on both sides of the specimen were measured and the total crack-length was
obtained by averaging the two values. The surface of the specimens were then coated with
a thin layer of white acrylic paint and sprayed with Carbon black paint using an airbrush to
obtain random black-and-white artificial speckle pattern. Figure. 1(a) shows the DIC setup
and the loading equipment being used in the present study. The 2D DIC system comprises
of a Grasshopper R© CCD camera (POINTGREY- GRAS-50S5M-C) of 2448x2048 spatial
resolution with a frame rate of 15 fps. A Tamron R© zoom lens of 185 mm focal length was
mounted on the CCD camera and the camera was connected to a portable computer system
with image acquisition card. Light emitting diode (LED) lighting was employed to ensure
adequate image contrast. The specimens were loaded using a computer-controlled MTS
Landmark R© servo-hydraulic cyclic testing machine of 100 kN capacity. Load value for every
image being captured was recorded using a separate data acquisition system synchronised
with the MTS load cell. In order to estimate the SIF at the crack-tip, the camera was
aligned with the test specimens such that the crack faces coincide with horizontal axis of
the image co-ordinate system. For SEN specimen, the camera axis was kept horizontal at
0◦ and for the CSC specimen, the camera axis was kept inclined at 45◦. Figure. 1(b) and
1(c) depict the specimen geometry being considered.

4



(a) (b) (c)

Figure 1: Experimental setup for SIF estimation involving 2D DIC technique along with specimen geometry
(a) Experimental setup (b) SEN specimen dimensions in mm (c) CSC specimen dimensions in mm

3. Experimental estimation of SIF

The images obtained from the camera were processed using an open source, MATLAB R©

[29] based 2D DIC software Ncorr [30] developed at Georgia Institute of Technology, USA.
This software is used for estimating whole field displacement and strain fields. For SIF
estimation, an additional SIF estimation module has been developed by the authors for
automated data collection and processing. It involves initial calibration window to map
physical real world length scale in terms of pixels. The initial crack tip location can be
selected using the graphical user interface (GUI). Data is collected from an annular region
surrounding the crack-tip, the inner radius of which is chosen more than half of the specimen
thickness to avoid the three-dimensional effects at crack tip and also to avoid non-linear zone
in the immediate vicinity of the crack tip (Refs. [31, 32]). The region of K dominance is
taken at the end of the plastic zone in accordance with the Dugdale [33] and Barenblatt [34]
strip yield model. This is a standard practice in linear elastic fracture mechanics (LEFM)
based analysis. The outer radius of the annular data collection region is limited such that
r/a ≤ 1.5, where a is the crack length and r is the radius [31] from the crack tip. The
inner and outer radii, ri and ro of the annular zone for data collection can be specified in
the graphical user interface (GUI) as shown in the Fig. 2(a). Here, the pixel data across the
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crack faces are omitted during data collection. An Over-deterministic least square algorithm,
proposed by Yoneyama et al. [9, 27] is employed in modified form for the estimation of
mixed-mode SIFs from the whole field displacement field. The execution of these algorithm
is explained in detail in the following sub-sections.

3.1. Multi-parameter displacement field equations

Atluri and Kobayashi [12] represented the two-dimensional displacement field equations
for the general mixed mode crack tip displacement field in a concise form as given below:

ux =
∞∑
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where ux and uy are the displacements along x and y directions respectively, r and θ are
the polar coordinates of the data points collected with respect to the crack tip, n is the
number of parameters and G is the shear modulus. The parameter k = (3− ν)/(1 + ν) for
plane stress condition, here ν is the Poisson’s ratio. The other parameters are defined as
AI1 = KI/

√
2π , AII1 = KII/

√
2π and AI2 = −σ0x

4
. The parameter σ0x is the T- stress and

is also used for crack tip stress field characterization.

3.2. Solution Procedure

After accounting for rigid body motion, Eq. (1) and Eq. (2) can be recast in the following
form

ux =
∞∑
n=1

AInfI(r, θ)−
∞∑
n=1

AIInfII(r, θ) + Tx + x(cos(R)− 1)− y sin(R) (3)

uy =
∞∑
n=1

AIngI(r, θ)−
∞∑
n=1

AIIngII(r, θ) + Ty + y(cos(R)− 1) + x sin(R) (4)

In the above equations (Eq. (3) and Eq. (4)), Tx and Ty are the rigid body translations
in x and y directions and R is the rigid body rotation. The terms fI , fII , gI and gII are
trigonometric functions in terms of co-ordinates r and θ.

In many cases, it is difficult to find the exact location of the crack-tip due to low spatial
resolution of the images being captured. The crack tip location (xc, yc) can be treated
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as unknown parameters along with the coefficients of Eq. (3) and Eq. (4). The crack tip
location is related to r and θ as follows:

r =
√

(x− xc)2 + (y − yc)2 (5)

θ = tan−1
(
y − yc
x− xc

)
(6)

where, xc and yc are the locations of the crack tip relative to an arbitrary cartesian co-
ordinate frame whose x and y axes are parallel to that of crack tip co-ordinate system.

For practical computational reasons the number of terms in Eq. (3) and Eq. (4) are
truncated to a finite number. For a single point p, the n parameter Eq. (3) and Eq. (4) can
be rewritten in matrix form as
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Here, we introduced barycentric parameters, γ1 = cos(R)− 1 and γ2 = sin(R). There by
allowing us to write Eq. (7) in the following form.

up = QT
p a (8)

Such an approach is commonly used in parameter identification problems in multibody
dynamics [35]. For a set of m collected data points surrounding crack tip, the assembled set
of matrices for n parameter solution can be written as

u = C (xc, yc)a (9)

where u = [uT
1 uT

2 . . . uT
m]T and C = [QT

1 QT
2 . . . QT

m]T. Here, u is the vector con-
sisting of displacements obtained from the experimental data. C is a rectangular matrix of
the order 2m × (2n + 4) which is dependent on xc and yc and a is the vector consisting of
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unknown mode I and mode II parameters along with the translation and rotation terms.
We will find the values of xc, yc and a by minimizing the following objective function:

J(xc, yc,a) =
1

2
(u−C (xc, yc)a)T(u−C (xc, yc)a) (10)

It should be noted that J is not a quadratic function due to its dependency on the unknown
crack tip coordinates xc and yc. However, for every known xc and yc, the objective function
becomes quadratic in parameters and the following closed form solution exists for the un-
known parameters (a) at which the objective function (Eq. (10)) attains a global minimum
and is given by:

a = (CTC)−1CTu (11)

where (CTC)−1CT is the pseudo inverse of C.
We select multiple (xci, ycj), i = 1, 2, .., p, j = 1, 2, ..., p locations around the crack tip

as shown in Fig. 2(b) and for each of these location we obtain the unknown parameters
aij using Eq. (11). For every (xci, ycj), having known ai we calculate Jij. Out of all the
grid points (see Fig. 2(b)) we select the crack tip location (x∗c , y

∗
c ) = (xci, ycj) and unknown

parameters a∗ = aij corresponding to the location (xci, ycj) at which Jij attains the lowest
value. Mathematically our idea to find the optimal parameters and crack tip location can
be represented as follows:

[a∗T x∗c y∗c ]
T = arg min [min (Jij, i = 1, 2, ..., p, j = 1, 2, ..., p)] (12)

(a) (b)

Figure 2: Data collection zone and corresponding square grid (a) Schematic diagram of the annular region
used in data collection for SIF estimation in case of SEN specimen along with the speckle image (b) Schematic
representation of the square grid used for obtaining optimal crack tip location

The procedure for obtaining optimal values of a and crack tip coordinates (xc, yc) pre-
sented in this section can be summarized in the algorithmic form as shown below:
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Algorithm 1 Algorithm

Minimise the error J(xc, yc, r, n,a)
for xc from xc1 to xcp do
for yc from yc1 to ycp do
for r from ri to ro do
for n from ns to ne do

a = (CTC)−1CTu

J(xc, yc,a) =
1

2
(u−C (xc, yc)a)T(u−C (xc, yc)a)

end for
end for

end for
end for

[a∗T x∗c y∗c ]
T = arg minmin [Jij, i = 1, 2, ..., p, j = 1, 2, ..., p]

where xc and yc are the crack tip coordinates, xc1 and xcp are the minimum and maximum
x coordinate values of the square grid as shown in Fig. 2(b), yc1 and ycp are the minimum
and maximum y coordinate values of the square grid as shown in Fig. 2(b), ri and ro are the
inner and outer radii of data collection as shown in Fig. 2(a), ns and ne are the minimum
and maximum number of unknown parameters (see Eq. (7)).

4. Results and Discussions

The displacement data is extracted using an open source 2D DIC software Ncorr which
has been found to generate accurate displacement data from input speckle images [36]. The
displacement field data for SEN and CSC specimens obtained from Ncorr is used as the
input for the SIF estimation algorithm to determine the mixed mode SIFs.

4.1. Experimental determination of SIF for SEN specimen

Using the automated data collection interface incorporated in the SIF estimation soft-
ware, both ux and uy displacement data are collected within an annular region specified
around the crack tip along with the corresponding pixel coordinates obtained for SEN spec-
imen being subjected to a tensile load of 8 kN (66.6 MPa). An approximate location of the
crack tip is selected using the crack tip selection interface. With the selected crack tip as
center, a square with 0.2mm side length and a grid size of 0.02mm is created. For each of
these grid points, the value of a is computed. The value of a corresponding to the lowest
J value is used to compute KI . Figure. 3 shows the normalized error plot with respect to
x and y crack tip coordinates selected from the grid. The red circle along with an arrow
shows the zone of least error which corresponds to exact crack tip location.
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Figure 3: Normalized error plot for experimental estimation of SIFs for SEN specimen

The experimentally estimated KI determined from the relation AI1 = KI/
√

2π is found
to be 449.8741 MPa

√
mm. The analytical expression of the SIF for SEN specimen [2] is as

follows

KI = σ
√
πaF (α) (13)

where σ is the far-field stress and a is the crack length. F (α) can be expanded as

F (α) = 1.12− 0.231α + 10.55α2 − 21.72α3 + 30.39α4

where α is crack length to width ratio a/W whose value is 0.2.
Along with the SIF value, the crack tip coordinates, Tx, Ty and R are also estimated.

The values of Tx, Ty and R for the 7 parameter solution are found to be -0.03982, 0.1467 and
0.0000457 respectively. The reason for choosing 7 parameters is based on the convergence
of KI value. It is to be noted that the co-ordinates of the crack-tip are with respect to the
image co-ordinate system. The coordinates of the location of the crack tip through manual
selection are found to be 13.728mm and 10.061mm. After the solution search, the crack tip
coordinates corresponding to the least error zone is returned. The x and y coordinates of the
predicted crack tip coordinates are found to be 13.768mm and 10.041mm. The analytical
SIF is calculated using Eq. (13) and is found to be 458.0994 MPa

√
mm. The experimentally

estimated SIF value is found to be close to the analytical value with an error of 1.8%.
The values of different parameters for 2, 4 and 7 parameter solution for SEN specimen

are summarized in Table 2. As an additional check, the reconstructed and experimental
(red markers) displacements fields for 7 parameter solution are superposed on each other in
case of SEN specimen and is shown in Fig. 4. Here, one could visually reconfirm that the 7
parameter solution aptly predicts the experimental displacement fields.
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Table 2: Crack tip fracture parameters for SEN specimen

2-parameter 4-parameter 7-parameter

KI (MPa
√
mm) 282.4899 380.8687 449.8741

AI1 (MPa(mm)1/2) 108.4066 150.8950 175.3587
AI2 (MPa) -13.3757 -22.1636 -29.0510
AI3 (MPa(mm)−1/2) 7.8054 8.6279
AI4 (MPa(mm)−1) -0.5936 0.05096
AI5 (MPa(mm)−3/2) -0.6144
AI6 (MPa(mm)−2) 0.1012
AI7 (MPa(mm)−5/2) -0.0148
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Figure 4: Experimental (red markers) and reconstructed displacements fields obtained for 7 parameter
solution superposed over each other in case of SEN specimen (a) ux displacement field (in mm)(b) uy

displacement field (in mm)

4.2. Experimental determination of SIF for CSC specimen

The same procedure of data collection used for the SIF estimation in the case of SEN
specimen as explained in section 4.1 is followed for CSC specimen as well. Fig. 5 shows the
normalized error plot with respect to x and y crack tip coordinates selected from the grid
for CSC specimen at a tensile load of 4 kN (33.33 MPa). The red circle and arrow shows
the zone of least error which corresponds to exact crack tip location. The analytical values
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of KI and KII for the CSC specimen are estimated from the expressions taken from Ref. [2]

KI = σ
√
πaFI(α), KII = σ

√
πaFII(α) (14)

The FI and FII values are found to be 0.5181 and 0.5072 for a 45◦ center inclined crack re-
spectively [2]. The analytical values of KI and KII for the given loading condition are found
to be 68.4467 MPa

√
mm and 67.0067 MPa

√
mm respectively [2]. The experimentally es-

timated KI and KII values are found to be 62.9468 MPa
√
mm and 62.5198 MPa

√
mm

respectively. Here too, the 7 parameter solution is found to be accurate as the reconstructed
displacement field coincides accurately with the experimental data (See Fig. 6). The per-
centage deviation in experimentally determined KI and KII values from the analytical values
are 8.035%and 6.69% respectively. The values of Tx, Ty and R for the 7 parameter solution
is found to be 0.07193, 0.0731 and 0.000568 respectively. The coordinates of the location of
the crack tip through manual selection are found to be 12.8314 and 15.7639 (in mm). The
x and y coordinates of the predicted location of the crack tip are found to be 12.618 and
15.783 (in mm). The values of various fracture parameters for 2, 4 and 7 parameter solution
estimated in case of CSC specimen are summarised in Table 3.
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Figure 5: Normalized error plot for experimental estimation of SIFs for CSC specimen
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Table 3: Crack tip fracture parameters for CSC specimen

2-parameter 4-parameter 7-parameter

KI (MPa
√
mm) 33.9822 94.5614 62.9468

KII (MPa
√
mm) 78.8870 70.8966 62.5198

AI1 (MPa(mm)1/2) 13.5569 37.7245 25.1121
AI2 (MPa) 0.2298 -6.6442 2.1702
AI3 (MPa(mm)−1/2) 8.4157 5.9959
AI4 (MPa(mm)−1) -0.6307 -0.5789
AI5 (MPa(mm)−3/2) 0.9902
AI6 (MPa(mm)−2) -0.1906
AI7 (MPa(mm)−5/2) 0.1403

AII1 (MPa(mm)1/2) 31.4713 28.2836 24.9418
AII2 (MPa) 0.0000 0.0000 0.0000
AII3 (MPa(mm)−1/2) 4.6796 4.3665
AII4 (MPa(mm)−1) -0.5292 -1.3957
AII5 (MPa(mm)−3/2) 0.6901
AII6 (MPa(mm)−2) -0.3779
AII7 (MPa(mm)−5/2) 0.07116

(a) (b)

Figure 6: Experimental (red markers) and reconstructed displacements fields obtained for 7 parameter
solution superposed over each other in case of CSC specimen (a) ux displacement field (in mm)(b) uy

displacement field (in mm)
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The SIF values for SEN and CSC specimens determined above are obtained using 7
parameters in the series solution for ux and uy in the multi-parameter displacement field
equation (see Eq. (1) and Eq. (2)). In order to decide upon the number of parameters
required for the accurate estimate, a convergence study has been carried out. It has been
found that J (see Eq. (10)) attains a constant value after iteratively increasing the number
of parameters to 7 for both SEN and CSC specimens as shown in Fig. 7(a) and Fig. 7(b)
respectively.
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Figure 7: J variation with increasing number of parameters (a) SEN specimen (b) CSC specimen

With the increase in number of parameters, the SIF values converge. With further
increase in parameter values after 7, no significant change in SIF value is observed. This is
true for both SEN and CSC specimens as shown in Figs. 8(a),8(b) and 8(c).
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Figure 8: Variation of mixed mode SIFs for SEN and CSC specimens with n (a) Variation of KI for SEN
specimen (b) Variation of KI for CSC specimen (c) Variation of KII for CSC specimen

5. Conclusions

In this work, an experimental study is carried out to estimate the fracture parameters in
cracked aluminium panels. Here, both SEN and CSC specimen configurations are studied.
Full field crack tip displacement field over the surface of the panel is estimated using 2D-DIC
technique. An over deterministic linear least square technique is successfully implemented
for SIF estimation involving multi-parameter displacement field equation. By introducing
the barycentric parameters and by exploiting the fact that crack tip location has to be
present in a certain closed domain, the nonlinear parameter identification problem has been
converted into a sequence of linear quadratic optimisation problems. This approach is much
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faster than the conventional iterative scheme existing in the literature [8, 9]. Apart from
SIF extraction, a new optimisation based approach is also integrated for exact crack tip
coordinate location. Further, we have included rigid body rotation terms in the study for
accurate estimation of SIFs. The estimated SIF values for both the specimen configurations
are found to be in close match with the analytical estimates, thereby confirming the accuracy
of the developed methodology.
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