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Abstract

The design of aerospace vehicles requires a detailed knowledge of the interactions

between flight surfaces and the ambient atmosphere through which they pass.

The resulting aerodynamic pressure as well as heating loads are among the crit-

ical parameters inherentto a successful design. Insight into these conditions is

obtained through a mix of analytical, computational and ground based exper-

imental techniques. The recent paradigm shift embraced by the motto faster,

better, cheaper calls for continual improvement in these areas through a greater

understanding of the physical processes involved.

In this thesis We aim to develop a general-purpose and robust compressible

flow solver with implicit MacCormack scheme in finite volume formulation. A sys-

tem of unsteady Euler equations is integrated to a steady state solution utilizing

MacCormack’s implicit numerical scheme. A new implicit boundary treatment

was introduced in the MacCormack implicit scheme. The scheme is uncondi-

tionally stable and does not require solution of large systems of linear equations.

Moreover, the upgrade from explicit MacCormack scheme to implicit one is very

simple and straightforward.

Several computational results for 2D and 3D flows over profiles and wings are

presented for the case of inviscid flows.
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Chapter 1

Introduction

The basic mathematical model of fluid flow takes the form of partial differential

equations which express the laws of conservation of mass, momentum and en-

ergy. While analytical solutions to these equations are possible for a few simple

cases, in most cases, specially for complex geometry, the only alternative is to

obtain approximate numerical solutions. Computational Fluid Dynamics (CFD,

in short) is a powerful bridge between the calculus describing flow physics and

highspeed computing. CFD methodology has matured over the years to an extent

that it has found its way into most fluid flow research applications, notably in

the aerospace industry.

Computational Fluid Dynamics (CFD) methods must satisfy stringent con-

straints because of the wide range of scales and frequencies in the target flows.

To deal with those requirements, higher order, low dispersion and low dissipation

schemes are needed. However, these schemes are also more sensitive to spurious

waves generated by numerical boundary conditions.

In aerodynamics, the compressibility of a fluid is a very important factor. In

nature, all the fluids are detectably compressible, but we define incompressible

fluids for our convenience of study. To understand what compressible fluids is

one must first understand what compressibility is. The compressibility of a fluid

is the reduction of the volume of the fluid due to external pressures acting on

it. A compressible fluid will reduce its volume in the presence of an external

pressure and/or temperature. Compressible flows (in contrast to variable density

flows) are those where dynamics (i.e pressure) is the dominant factor in density

change. Generally, fluid flow is considered to be compressible if the change in

density relative to the stagnation density is greater than 5 %. Significant com-
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pressible effects occur at Mach number of 0.3 and greater. Compressible effects

are observed in practical applications like high speed aerodynamics, missile and

rocket propulsion, high speed turbo compressors, steam and gas turbines, etc.

Compressible flow is divided often into four main flow regimes based on the

local Mach number (M) of the fluid flow

• Subsonic flow regime (M ≤ 0.8)

• Transonic flow regime (0.8 ≤M ≤ 1.2)

• Supersonic flow regime (M > 1)

• Hypersonic flow regime (M > 5)

Compressible flow may be treated as either viscous or inviscid. Viscous flows are

solved by the Navier-Stokes system of equations and inviscid compressible flows

are solved by Euler equations. The physical behavior of compressible fluid flow

is quite different from incompressible fluid flow. The solutions of Euler equation

are different, due to their hyperbolic (wave-like) nature, from the solutions of the

elliptic governing equations of incompressible flows. Compressible flow can have

discontinuities such as shock waves. So for compressible flows special attention is

required for solution methods which will accurately capture these discontinuities.

A major difference between solution methods for compressible flow and incom-

pressible flow lies in the boundary conditions that are imposed. In compressible

flow, boundary conditions are imposed based on the characteristic waves coming

into the domain boundary, which is very different from the Elliptic-type boundary

conditions used for incompressible flows.

For over a dicade our research group has been continuously developing and

modifying a CFD software called IITK-DAE ANUPRAVAHA, a genaral purpose

CFD solver. An compressible finite volume method with structured grid ar-

rangement has been used in the present work to solve unsteady Euler Equations.

However, using an unsteady solver to obtain steady-state solutions by the false

transient method is inefficient, especially if explicit time stepping with time-step

constraints due to numerical stability, is used. To achieve fast convergence to

the steady state, an implicit time marching scheme is much better to solve the

Euler equations. This thesis implements a scheme is based on the MacCormack

implicit scheme [22].
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1.1 IITK-DAE ANUPRAVAHA Compressible

Solver

The ANUPRAVAHA Compressible solver is separated from the original

ANUPRAVAHA incompressible solver to cater to aerospace applications exclu-

sively. In this solver, flow equations have been previously solved using explicit

schemes: the MacCormack scheme and AUSM+ scheme.The explicit MacCor-

mack scheme with artificial viscosity terms proved to have very good accuracy

and efficiency. It has been applied successfully for calculations of subsonic, tran-

sonic and supersonic flows over profiles and wings.

The main drawback of the explicit scheme is its time-step limitation due to the

numerical stability condition. It becomes inefficient for unsteady flows where the

global time-scale (e.g. period of oscillation of a wing) can be much larger than the

time-step, and for the high-Reynolds viscous flows, where the mesh refinement in

boundary layers results in extremely small time-steps. A computation with an

explicit scheme requires substantial computer time.

Some Implicit schemes have the advantage of being unconditionally stable

without CFL restrictions. Since the convergence to steady-state depends on the

propagation speed of the error waves, large CFL numbers accelerate the conver-

gence to steady state. The implicit MacCormack scheme therefore implements in

this thesis to facilitate future studied of unsteady and steady compressible flows.

1.2 Literature review

Hirsch (2007) has discussed the general methodology to analyze the nature of

systems of partial differential equations. This systematic procedure to deter-

mine the nature of equations and the propagation of their solution is key to the

understanding the implementation of boundary conditions. The second volume

of Hirsch (2007) discusses almost all basic numerical schemes. such as central,

upwinding and high-resolution schemes pertaining to Euler and Navier-Stokes

equations. Euler equations are solved in conservative form but require imposi-

tion of boundary condition in primitive form. In Chapter 19 Hirsch discusses

the implementation of boundary conditions (both physical and numerical) from

characteristic extrapolation for conservative and primitive variables, along with
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different extrapolation methods.

Implicit and semi-implicit schemes require a very powerful linear solver since

the jacobians usually lack diagonal dominance at least at high CFL numbers.

This has an adverse effect on the convergence of many iterative solvers. Implicit

solvers are still rarely used for the computation of stationary solutions to the Euler

equations. However, their development has been pursued by several groups [[14],

[15], [12],[22]]. Many existing schemes employ linearizable/differentiable limiters,

and are conditionally stable, and the rate of steady-state convergence deteriorates

if the CFL number exceeds a certain upper bound. The scheme presented here

converges for arbitrary CFL numbers despite oscillatory correction factors and

the rate of steady-state convergence does not deteriorate for large CFL numbers.

In this work the implicit approach circumvents the computationally expensive

nonlinear iterations.

The development of robust and accurate boundary conditions is of primary im-

portance, and sufficient care must be taken in the numerical implementation. The

accuracy, robustness, stability, and convergence of an implicit solver are strongly

influenced by the boundary treatment. Strongly imposed boundary conditions

may inhibit convergence to a steady state. Thus, it is worthwhile to use flux

boundary conditions of Neumann type. The weak type of boundary conditions

turns out to be much more stable and flexible than its strong counterpart.When

boundary conditions are prescribed in a weak sense, only the boundary integral

of the weak formulation is affected by the boundary conditions, while the volume

integrals remain unchanged. This is similar to the boundary treatment, which is

usually implemented in finite volume schemes. In the finite volume framework

the boundary fluxes are directly overwritten by the imposed boundary conditions.

The Neumann type of boundary conditions, based on the weak formulation,

can be treated implicitly and incorporated into the matrix in a physical way. It

improves the convergence rates and does not affect the matrix properties or give

rise to stability restrictions in contrast to the strong type of boundary conditions.

According to [29], [27] a stability restriction of CFL number of 0.6 applies for an

explicit implementation of weak wall boundary conditions, while the stability is

significantly improved for a semi-implicit version up to a CFL number of 100.

This emphasizes the importance of an implicit treatment of boundary conditions

for the numerical performance, which is presented in this study. We recommend
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a boundary Riemann solver to compute the boundary fluxes in the boundary

integrals to avoid unphysical effects particularly at large CFL numbers. To define

a boundary Riemann problem the concept of ghost nodes is introduced. We show

that a suitable treatment of boundary conditions makes it possible to achieve

unconditional stability.

In the following chapters, the design procedure of an unconditionally stable

finite volume schemes for the Euler equations are addressed. In the Euler equa-

tions, the treatment of boundary conditions based on a boundary Riemann solver

is described, and the implicit solver is presented. Furthermor, the design proce-

dure of implicit solver for Eulers equations is described. Finally, the numerical

performance and accuracy of the proposed scheme are analyzed.

1.3 Objective of present work

The objectives of this thesis are threefold:

• To investigate ways of modeling finite volume implicit MacCormack method-

ology in a three dimensional simulation code to solve the system of Euler

equations.

• To develop a new CFD code that implements solution of Euler equations

numerically with significant reduction in computation time.

• To validate this solver for three different regimes of flow i.e. in subsonic,

transonic and in supersonic regime.



Chapter 2

Governing Equations

2.1 The Flow and its Mathematical Description

Fluid dynamics is defined as the investigation of the interactive motion of a large

number of individual particles (molecules or atoms). So, we can assume the

density of the fluid is high enough and it can be approximated as a continuum. It

means, even an infinitesimally small (in the sense of differential calculus) element

of the fluid contains a sufficient number of particles, in terms of molecule or atoms,

for which we can specify mean velocity and mean kinetic energy. In this way, we

are able to define velocity, pressure, temperature, density and other important

quantities at each point of the fluid.

The derivation of the principal equations of fluid dynamics depends upon the

dynamical behaviour of a fluid, is determined by the following conservation laws:

1. The conservation of mass.

2. The conservation of momentum.

3. The conservation of energy.

The conservation of a certain flow quantity is based on the total variation of

flow quantity inside an arbitrary volume and the net effect of the amount of the

quantity being transported across the boundary due to any internal forces and

sources and/or the external forces acting on the volume. The amount of the

quantity crossing the boundary is called Flux. The flux can be divided into two

different parts: one due to the convective transport and the other one due to the

molecular motion present in the fluid at rest.
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Consider a general flow field as represented by streamlines in Fig. 2.1. An

arbitrary finite region of the flow, bounded by the closed surface ∂υ and fixed in

space, defines the control volume υ. We also consider a surface element dS and

its associated, outward pointing unit normal vector ~n of the control surface which

enclose the control volume υ.

Figure 2.1: Definition of a finite control volume (fixed in space)

Let the conservation law applied to an scalar quantity per unit volume φ. Its

variation in time within ∂υ can be written as,

∂

∂t

∫
υ

φ dυ

This is equal to the sum of the contributions due to the convective flux which is

the amount of the quantity φ entering the control volume through the boundary

with the velocity ~u.

−
∮
∂υ

φ(~u.~n)dS

The integral formulation of the conservation law is given by

∂

∂t

∫
υ

φ dυ +

∮
∂υ

φ(~u.~n)dS = 0 (2.1)

2.1.1 Continuity Equation

If we consider only single-phase fluids, the law of mass conservation expresses as:

mass cannot be created in such a fluid system, nor it can disappear. For the

continuity equation, the conserved quantity φ is the density ρ. According to the

general formulation of Eqn. 2.1, we can write the continuity equation as:

∂

∂t

∫
υ

ρ dυ +

∮
∂υ

ρ(~u.~n) dS = 0
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2.1.2 Momentum Equation

The derivation of the momentum equation is based on the particular form of

Newton’s second law which states that the variation of momentum is caused by

the net force acting on an mass element. The momentum of an infinitesimally

small portion of the control volume υ given by ρ~u dυ. The variation in time of

momentum within the control volume equals

∂

∂t

∫
υ

ρ~u dυ

Here ρ~u = [ρu ρv ρw]T , where u, v, w are the x component, y component and z

component velocities respectively.

In the conservation of momentum, the contribution of the convective tensor

is given by

−
∮
∂υ

ρ~u(~u.~n) dS

Two types of forces act on the control volume: external volume or body forces

and surface forces. Surface forces result from only two sources:

a) The pressure distribution, imposed by the outside fluid surrounding the vol-

ume.

b) The shear and normal stresses, resulting from the friction between the fluid

and the surface of the volume.

Now sum up all the above contributions according to the general conservation

law (Eqn. 2.1), and finally obtain the expression for momentum conservation

equation

∂

∂t

∫
υ

ρ~u dυ +

∮
∂υ

ρ~u(~u.~n) dS =

∫
υ

ρ~fe −
∮
∂υ

p~n dS +

∮
∂υ

(~τ .~n) dS

where ~fe body force per unit mass, p is the static pressure, τ is the stress tensor.

2.1.3 Energy Equation

The energy equation is based on the first law of thermodynamics. It states that

the rate of change in the total energy inside the volume is equal to the rate of
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work of forces acting on the volume and by the net heat flux into it. The total

energy per unit mass is defined E and we can write:

E = e+
u2 + v2 + w2

2

where e is internal energy per unit mass.

Similar to the momentum conservation equation we can write a conservative

equation for the heat energy by accordingly for the rate of heat addition by

conduction and volumetric heating and the work done by surface and body forces.

The energy conservation equation according to the general conservation law (Eq.

2.1) is

∂

∂t

∫
υ

ρE dυ +

∮
∂υ

ρE(~u.~n) dS =

∮
∂υ

k(OT.~n) dS +

∫
υ

(ρ~fe.~u+ q̇h)−∮
∂υ

p(~u.~n) dS +

∮
∂υ

(~τ .~u).~n dS

where q̇h is the rate of heat addition per unit volume and k is the thermal con-

duction of the fluid.

2.2 Euler Equations

The most general flow configuration for a non-viscous, non-heat conducting fluid

is described by the set of Euler equations, obtained from the Navier Stokes equa-

tions by neglecting all shear stresses and heat conduction terms. If we collect the

conservation laws of mass, momentum and energy into one system of equations

neglecting the body forces and stress forces, we obtain the Euler Equations. The

time-dependent Euler equations, in conservation form and in an absolute frame

of reference, for the conservative variables U is:

∂

∂t

∫
υ

U dυ +

∮
∂υ

O. ~F dυ = 0 (2.2)

which form a system of first order hyperbolic partial differential equations, where

U is the solution vector

U =


ρ
u
v
w
E


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and the flux vector F has the Cartesian components ( f , g, h) given by equation

2.2

f =


ρu

ρu2 + p
ρuv
ρuw

(e+ p)u

 g =


ρv
ρuv

ρv2 + p
ρvw

(e+ p)v

h =


ρw
ρuw
ρvw

ρw2 + p
(e+ p)w


Assuming the Control Volume (CV) is fixed in space, the governing integral

equation can be written as, ∮
∂υ

(
∂U

∂t
+ O. ~F ) dυ = 0 (2.3)

and further, as the CV is arbitrary, we can write,

∂U

∂t
+ O. ~F = 0 (2.4)

2.3 Discretization Techniques and Grid Gener-

ation

In mathematics, discretization concerns the process of transferring continuous

functions, models and equations into discrete counterparts. This process is usu-

ally carried out as a first step toward making them suitable for numerical evalua-

tion and implementation on digital computers The discretization techniques use

grids in order to discretize the governing equations 2.2, 2.4. Basically, there are

two different types of grids:

• Structured Grids: each grid point (vertex, node) is uniquely identified by the

indices i, j, k and the corresponding Cartesian coordinates xi,j,k, yi,j,k, andzi,j,k.

The grid cells are quadrilaterals in 2D and hexahedral in 3D.

• Unstructured Grids: grid cells as well as grid points have no particular

ordering, i.e., neighbouring cells or grid points cannot be directly identi-

fied by their indices. In the past, the grid cells were triangles in 2D and

tetrahedral in 3D. Nowadays unstructured grids usually consist of a mix of

quadrilaterals and triangles in 2D and of hexahedral, tetrahedral, prisms

and pyramids in 3D.
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Here we use structured grids to solve the governing equations. The main advan-

tage of structured grids is that the indices i, j, k represent a linear address space,

since it directly corresponds to how the flow variables are stored in the computer

memory. This property allows it to access the neighbours of a grid point very

quickly and easily, just by adding or subtracting an integer value to or from the

corresponding index (e.g. (i+1), (j-3), etc . see Fig. 2.2). The evaluation of gra-

dients, fluxes, and also the treatment of boundary conditions is simplified by this

feature. The same holds for the implementation of an implicit scheme, because

of the well-ordered, banded flux Jacobian matrix.

Figure 2.2: Structured, body-fitted grid approach (in two dimensions)

But there is also a disadvantage. The disadvantage is the generation of struc-

tured grids for complex geometries. To overcome this disadvantage we can divide

the physical space into a number of topologically simpler parts or blocks (see

2.3), which can be more easily meshed. This is called the multiblock mesh. In

this thesis we use multiblock approach to generate the mesh. The advantage of

this approach is, the number of grid lines can be chosen separately for each block

as required to be close to rectangular, or orthogonal, which increase numerical

accuracy and convergence. The another advantage of the multiblock methodol-

ogy is that it allows for the possibility of using parallel computation by means of

domain decomposition.

The discretization schemes can be divided into the following three main cate-

gories:

• Finite Difference Method: which can be applied to rectangular/structured

mesh configurations.
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Figure 2.3: Structured, multiblock grid

• Finite Volume Method: which can be applied to both structured and un-

structured mesh configuration.

• Finite Element Method: which is the common method in solid mechanics,

but is also applicable to fluid mechanics, which is applied to unstructured

grid.

2.3.1 Finite Difference Method

The finite difference method was the first approaches applied to the numerical

solution of differential equations. It was first utilized by Leonhard Euler in 1768

[17]. This method is directly applied to the differential form of the governing

equations 2.4.

For a function U(x), the Taylor series expansion of Ux0+∆x in x can be written

as

U(x0+∆x) = U(x0) + ∆x

(
∂U

∂x

)
x0

+
∆x2

2

(
∂2U

∂x2

)
x0

+ .....

From the above equation, the first derivative of U can be approximated as(
∂U

∂x

)
x0

=
Ux0+∆x − Ux0

∆x
+©(∆x) (2.5)

The above approximation is of first order, since the truncation error (abbreviated

as ©(∆x)), which is proportional to the largest term of the remainder, goes to

zero with the first power of ∆x.
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To apply this general definition 2.5, we consider an one-dimensional space,

the x-axis, and the space discretization is done with N discrete mesh points xi,

i = 0,...,N (Figure 2.4). Let Ui is the value of the function Ux0 at the point xi ,

Figure 2.4: One-dimensional uniform FDM grid on the x-axis[17]

i.e. Ui = Uxi and the spacing between the discrete points is constant and equal

to ∆x. Applying the above relation 2.5 at point i, we obtain the following finite

difference approximation

(Ux)i =

(
∂U

∂x

)
i

=
Ui+1 − Ui

∆x
− ∆x

2

(
∂2U

∂x2

)
i

− ∆x2

6

(
∂3U

∂x3

)
i

+ ....︸ ︷︷ ︸
Truncation error

(2.6)

=
Ui+1 − Ui

∆x
+©(∆x) (2.7)

As this formula involves the point (i+1) to the right of point i, it is called the

first order forward difference for the first derivative Uxi .

Now if ∆x is replaced by −∆x, then the finite difference approximation is

(Ux)i =

(
∂U

∂x

)
i

=
Ui − Ui−1

∆x
+

∆x

2

(
∂2U

∂x2

)
i

− ∆x2

6

(
∂3U

∂x3

)
i

+ .....︸ ︷︷ ︸
Truncation error

(2.8)

=
Ui − Ui−1

∆x
+©(∆x) (2.9)

This formula is called the first order backward difference for the derivative Uxi

as it involves the point (i-1) to the left of point i. If we add this two equations

(Equations 2.6 and 2.8), we obtain a second order approximation

(Ux)i =
Ui+1 − Ui−1

2∆x
− ∆x2

6

(
∂3U

∂x3

)
i

+ ... (2.10)

=
Ui+1 − Ui−1

2∆x
+©(∆x2) (2.11)
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Equation 2.10 involves the points to the left and to the right of point i, is therefore

called a central difference formula.

The important advantages of the finite difference methodology are its simplicity

and the possibility to obtain high-order approximations easily and to achieve

high-order accuracy of the spatial discretization. The main disadvantage of this

method is, it requires a structured rectangular grid, so the range of application is

restricted. Furthermore, the finite difference method cannot be directly applied in

body-fitted i.e curvilinear coordinates. So first we have to transform the governing

equations into a rectangular grid system or in other words from the physical to

the computational space. Thus, the finite difference method can be applied only

to rather simple geometries.

2.3.2 Finite Volume Formulation

The finite volume method directly makes use of the conservation laws, the inte-

gral formulation of the Euler equations(Equations 2.2). It was first employed by

McDonald for the simulation of 2-D inviscid flows[17]. The finite volume method

discretizes the governing equations by first dividing the physical space into a

number of arbitrary polyhedral control volumes. The surface integral is Equation

2.2 is then approximated by the sum of the fluxes crossing the individual faces

of the control volume. The accuracy of this spatial discretization depends on the

particular scheme with which the fluxes are evaluated.

Additionally, complicated boundary conditions for complex flow domains can

be implemented in a relatively straight-forward manner. Figure 2.5 shows an

Figure 2.5: 1d (left) and 2d (right) Finite Volume discretization of an expanding
domain



2.3 Discretization Techniques and Grid Generation 15

example of a 1d and 2d finite volume discretization for an expanding flow domain.

Algebraic equations can be obtained for each control volume by approximating

the volume and surface integrals using quadrature formulae. Volume integrals

can be evaluated with second order accuracy by the product of the mean value of

φ, assumed to be at the cell centroid, and the cell volume whilst surface integrals

are calculated by summation over the sides of the cell. The integral on each

face being approximated by the midpoint rule. The semi-discrete form of the

governing equations are written for each cell as

∂Ucell−centered
∂t

= − 1

V

∑
if

FifAif

with A and V being the cell edge interface area and cell volume respectively. The

discretized equations applied to each control volume can be advanced in time

from an initial solution once a technique for determining the interface fluxes is

specified.

There are two basic approaches of defining the shape and position of the

control volume with respect to the grid:

• Cell centered scheme (Fig: 2.6(a)): Here the flow quantities are stored at

the centroids of the grid cells. So, the control volumes are identical to the

grid cells. We use the cell-centered scheme in this thesis.

• Cell vertex scheme (Fig: 2.6(b)): Here the flow variables are stored at the

grid points. The control volume can then either be the union of all cells

sharing the grid point, or some volume centered around the grid point.

The main advantage of the finite volume method is that the spatial discretization

is carried out directly in the physical space. Thus, there are no problems with any

transformation between the physical and the computational coordinate system, as

in the case of the finite difference method. Another advantage of the finite volume

method, compared to the finite difference method is that it is very flexible, and

can be rather easily implemented on structured as well as on unstructured grids.

This makes the finite volume method particularly suitable for the treatment of

flows in complex geometries.

The finite volume method is based on the direct discretization of the con-

servation laws, mass, momentum and energy, which are also conserved by the
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Figure 2.6: Control volume of cell centered (a) and cell vertex (b) scheme

numerical scheme. So it has the ability to compute weak solutions of the gov-

erning equations correctly. This is the another important feature of the method,

However, one additional condition is needed to be fulfilled in the case of the Euler

equations, and this is known as the entropy condition. It is necessary because

of the non-uniqueness of the weak solutions. The entropy condition prevents the

occurrence of unphysical features like expansion shocks, which violate the second

law of thermodynamics (decrease of the entropy).

Under certain conditions, the finite volume method can be shown to be equiv-

alent to the finite difference method, or to a low-order finite element method.

2.4 Time Integration

For a given current flow state, the discretized equations can be advanced in time

by selecting an appropriate numerical integration technique. Schemes are classi-

fied as being either explicit, implicit or a mixture of the two. Explicit integration

uses knowledge of only the current flow state and as such is not very computa-

tionally intensive. The equations are advanced in small time steps governed by

strict stability criteria. For example, a wave starting at a cell interface should not

cross more than half of the cell width during a time step. Implicit integration uses

knowledge of both the (known) current flow state and the (unknown) next time

step state. So each time step is computationally more expensive than an explicit

method because the equations for all cells have to be solved simultaneously. But

implicit methods have advantages in stability.
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Mathematically, if Y (t) is the current system state and Y (t+ ∆t) is the state

at the later time (∆t is a small time step), then, for an explicit method for the

PDE

∂Y

∂t
= F (y)

is

Y (t+ ∆t) = Y (t) + F (Y (t))

while for an implicit method one solves an equation

Y (t+ ∆t) = Y (t) + F (Y (t+ ∆t))

The main drawback of explicit scheme is that the stability requirements can

result in very short time steps and correspondingly long computation times. Im-

plicit methods are used because many problems arising in practice are stiff, for

which the use of an explicit method requires impractically small time steps ∆t

to keep the error in the result bounded. For such problems, to achieve given ac-

curacy, it takes much less computational time if we use an implicit method with

larger time steps.

For the flows considered in this thesis, we use implicit technique for time

integration to reduce the computational time.

2.5 CGNS File Format

CGNS (CFD General Notation System) originated in 1994 as a joint effort be-

tween Boeing and NASA, and has since grown to include many other contribut-

ing organizations worldwide. It is an effort to standardize CFD input and out-

put, include grid (both structured and unstructured), flow solution, connectivity,

boundary conditions (BCs), and auxiliary information. CGNS is also extensi-

ble, and allows for file-stamping and user-inserted-commenting. It employs ADF

(Advanced Data Format), a system which reads a binary files that are portable

across computer platforms. CGNS also includes a second layer of software known

as the midlevel library, or API (Application Programming Interface), which eases

the implementation of CGNS into existing codes.
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CGNS has the capability to replace most of the translator programs now

necessary when working between machines and between CFD codes. Also, it

eventually may allow for the results from one code to be easily restarted using

another code. It will hopefully therefore save a lot of time and money. In partic-

ular, it is hoped that future grid- generation softwares will generate grids with all

connectivity and BC information included as part of a CGNS database, saving

time and avoiding potential costly errors in setting up this information after the

fact.

A CGNS file is an entity that is organized (inside the file itself) into a set of

nodes in a tree-like structure, in much the same way as directories are organized

in the UNIX environment. The top-most node is referred to as the root node.

Each node below the root node is defined by both a name and a label, and may

or may not contain information data. Each node can also be a parent to one or

more child nodes.

CGNS files are binary files and they cannot be viewed by user with standard

UNIX ASCII- editing tools. The utility ADF was created to allow users to easily

view CGNS files. For more detailed information, readers are suggested to see the

CGNS website www.cgns.org (especially the Users Guide Section).

In the present work, CGNS version 2.4 file-format is used to store grids and

flow solution. Post processing is done by Tecplot 360, which is also a CGNS 2.4

compatible software.

2.6 Closure

In this chapter we discussed the basic nature of the governing equations for the

flow problems and different discretization techniques of solving these governing

equations. We also discussed the way of time integration and CGNS file format .



Chapter 3

Mathematical Nature Of
Equations And Boundary
Conditions

Let us consider the system of governing differential equations for inviscid com-

pressible flow in primitive variable form, also known as the Euler equations, de-

scribing the conservation of mass, momentum and energy:

u
∂ρ

∂x
+ v

∂ρ

∂y
+ ρ

∂u

∂x
+ ρ

∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y

(3.1)

However, for the special case of irrotational compressible flow we can equiva-

lently write the potential flow equation as:(
1− u2

c2

)
∂2φ

∂x2
− 2uv

c2

∂2φ

∂x∂y
+

(
1 +

u2

c2

)
∂2φ

∂y2
= 0 (3.2)

where φ is the potential function defined by,

u =
∂φ

∂x
; v =

∂φ

∂y

These two sets of PDEs describe exactly the same physics for steady irrotational

flow. But looking at the forms of the equations, they appear to be quite different,

with the first set of equations 3.1 seeming to be convection dominated, whereas

the second equation 3.2 seemingly diffusion dominated. Convection and diffusion
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are two im- portant phenomena in Fluid Mechanics, and relate to very different

physical behavior. But, as we know, both 3.1 and 3.2 describe the same physics.

So it is clear from the above discussion that one cannot predict the behavior

of the solutions of differential equation by just looking at the form of the equa-

tions. It is not the form of the governing equation which decides the behavior of

solutions; rather, it is the eigenvalue matrix (discussed in the next section) which

determines this, and provides a tool to analyze the nature of governing equations,

independent their of physical form, to tell us something about the nature of their

solutions.

3.1 Domain of dependance and zone of influence

3.1.1 Single Conservation Law

To understand the propagation of information in the solutions of governing equa-

tions, consider a single equation describing a conservation law:

∂w

∂t
+

∂F

∂x
= 0 w (x, 0) = w0 (x) (3.3)

∂w

∂t
+

∂F

∂w

∂w

∂x
= 0 (3.4)

Introducing wave speed as, dF
dx

= λ in the above equation 3.4 can also be written

as,
∂w

∂t
+ λ

∂w

∂x
= 0 (3.5)

An analytical solution to above equation exists and can be found using the

method of separation of variables, and can be written as,

w (x, t) = w0 (x− λt)

The analytical solution of this equations for a constant and positive wave-speed

shows that solution is constant along the line satisfying satisfying the condition
dx
dt

= λ, this line is called the characteristic. For linear PDEs the solution is

constant along the characteristic, while for non-linear PDEs the solution may vary

along characteristic but it will be purely a function of the curvilinear co-ordinate

describing the characteristic. Now we can see that, for a single equation, the

solution at a point is dependent on the previous solutions at points lying on the

same characteristic, and ultimately on the initial condition at that characteristic
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at t=0. So for a single first-order hyperbolic equation all the points on a particular

characteristic line form the domain of dependance and zone of influence of any

point on that characteristic.

3.1.2 System of PDEs

Now, moving one step forward, consider a general 1-D unsteady system of first-

order PDEs,
∂wi
∂t

+
∂Fi
∂x

= 0 (3.6)

where wi is a vector containing conservative variables, Fi is a vector containing

flux associted with wi.

The equation 3.6 can be written as,

∂wi
∂t

+ [A]
∂wi
∂x

= 0 (3.7)

where [A] is called the Jacobian (matrix). The Jacobian in equation 3.7 deter-

mines the behavior of the solutions, based on nature of its eigenvalues. Diagno-

lizing the Jacobian in equation 3.7, we can rewrite the equation as:

∂wi
∂t

+ [Qr] [λi] [Ql]
∂wi
∂x

= 0 (3.8)

where Qr, Ql are the left and right eigenvector matrices that satisfy.
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For any diagonalizable matrix A we can write,

[λ] = [Ql] [A] [Qr]

[Ql] = [Qr]
−1

As mentioned earlier, the nature of λi determines the behavior of the solution.

If a full set of real non-zero eigenvalues exists then the system of equations is

called Hyperbolic, if a full set of real eigenvalues does not exist then the system is

called Parabolic and if some of eigenvalues are complex then the system is called

Elliptic.

Let us now consider a hyperbolic system. By multiplying equation 3.8 by [Ql]

and rewriting equation 3.8 we get

[Ql]
∂wi
∂t

+ [Ql] [Qr] [λi] [Ql]
∂wi
∂x

= 0 (3.9)

As we know,

[Ql] = [Qr]
−1 (3.10)

[Ql]
∂wi
∂t

+ [λi] [Ql]
∂wi
∂x

= 0 (3.11)

Introducing new set of variables as,

δvi = [Ql] δwi (3.12)

equation 3.11 can be written as,

∂vi
∂t

+ [λi]
∂vi
∂x

= 0

Now, note the simplicity of equation 3.1.2 in comparison to equation 3.6; un-

like in the latter equation, the equations in system 3.1.2 are decoupled, i.e., the

solution of any one of them is independent of the solution of others. Thus the

component equations of 3.1.2 can thus be solved separately and easily. Then,

by inverting equation 3.12 we can obtain the solution to system of equation 3.6.

As shown in the figure 3.1 for a system of 3 equations, the information flowing

along corresponding characteristic lines passing through a point P determine the

solution at P by the superposition of the characteristic information. From this,

it is not difficult to show that solution at point P depends only on the solution

in region APCBA and it has nothing to do with the solution outside this region.
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Figure 3.1: Characteristics in 3 equation system

Hence this region is termed as the domain of dependance. By extending the char-

acteristic lines beyond point P, we can say that solution at this point is going

to affect the solution in the region FPDE, hence this region is termed the zone

of influence. The point to note here is that a numerical scheme determining the

solution (for a time-step) at point P must include only points from the domain

of dependance to capture the solution correctly failing to do this causes serious

issues, mostly resulting in the blowing up of the solution. This condition is called

Courant-Friedrichs-Lewy condition and will be discussed in the next chapter.

Depending upon the nature (positive or negative valued) of the eigenvalues,

charac- teristic information may flow from left to right or right to left (from

figure 3.1). So the problem to well-posed boundary conditions must be handled

carefully. We will discuss this in the next few sections.

3.2 Characteristics and Characteristic Waves

3.2.1 What are characteristics?

The concept of characteristics may be introduced from several points of views

[25]

• From the physical point of view, a characteristic curve is defined as the path

of propagation of physical disturbances.(e.g. in supersonic field disturbances
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are propagated along the mach lines in flow). It is been shown that mach

lines are characteristics for supersonic flows.

• From the heuristic point of view, a characteristic is defined as a curve along

which the governing partial differential equation can be converted to an

ordinary differential equation.

• From a more rigorous mathematical point of view, a characteristic is a curve

across which derivatives of physical properties may be discontinuous, while

its property remains itself continuous.

Thus regions of flow having continuous properties and derivatives within

each region but discontinuities in derivatives at the interface, may be joined

together along characteristic lines. For example, the Prandtl mayer expan-

sion fan is joined to uniform upstream and downstream flow regions along

mach lines.

• From the most rigorous point of view, a characteristic is defined as a curve

along which governing PDE reduces to an interior operator, the interior

operator known as a compatibility equation. Accordingly, along a charac-

teristic the dependent variable may not be specified arbitrarily, because it

must satisfy the compatibility condition.

These concepts are employed for developing numerical procedures for solving

hyperbolic partial differential equations.

3.2.2 Characteristic in a single governing PDE

For simplicity, first we will show how a single governing partial differential equa-

tion reduces to a ordinary differential equation along a characteristic line, and

show that real information gets propagated along these characteristic lines.

Any first order partial differential equation in two dimensions can be written

as

a
∂f

∂x
+ b

∂f

∂y
+ c = 0 (3.13)
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where a, b, c may be constant or function of x, y. The equation 3.13 can be

written as,

a

(
∂f

∂x
+

b

a

∂f

∂y
+

c

a

)
= 0 (3.14)

while the total differential of f can be written as,

df =
∂f

∂x
dx +

∂f

∂y
dy (3.15)

and thus

df

dx
=

∂f

∂x
+

∂f

∂y

dy

dx
(3.16)

∂f

∂x
=

df

dx
− ∂f

∂y

dy

dx
(3.17)

Substituting this 3.17 value in equation 3.14 we get,

df

dx
− ∂f

∂y

dy

dx
+

b

a

∂f

∂y
+

c

a
= 0 (3.18)

df

dx
+

(
b

a
− dy

dx

)
∂f

∂x
+

c

a
= 0 (3.19)

Equation 3.19 can be written as the ODE

df

dx
+

c

a
= 0 (3.20)

if
dy

dx
=

b

a
(3.21)

So we can conclude that along this curve (i.e., characteristic) satisfying the con-

dition dy
dx

= b
a

the PDE 3.19 will become the ODE 3.20

Now consider a case of

f = u a = 2x b = −3x2

Then the equation 3.13 becomes,

∂u

∂x
+ 2x

∂u

∂x
− 3x2 = 0 (3.22)

and equation 3.19 reduces to,

du

dx
+

(
2x− dy

dx

)
∂u

∂y
− 3x2 = 0 (3.23)
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and can be written as

du =

((
2x− dy

dx

)
∂u

∂y
− 3x2

)
dx (3.24)

Carrying-out integration along lines

y = x2

y = x2 + 4

Note that these curves satisfies the condition (3.21)

Case 1:

y = x2

dy

dx
= 2x

and

du = −
(
0− 3x2

)
dx∫ ux

u0

du =

∫ x

0

3x2dx

ux − u0 = x3

and,

ux = u0 + 3x2
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and thus along line A,

uA = uA0 + 3x2

and along line B,

uB = uB0 + 3x2

These expressions show the simplest picture of propagation of initial conditions

and boundary conditions into the domain in a hyperbolic system.

3.3 System of partial differential equation in multi-

dimensions

By direct matrix manipulation we can find out the nature of governing equa-

tion for 1-D case. We discuss here the general method to find out the nature

of governing equations applicable for all the cases. Governing equations defining

conservation laws in multi-dimensions can be written as:

Steady state:

[A]
∂wi
∂x

+ [B]
∂wi
∂y

+ [C]
∂wi
∂z

= 0 (3.25)

Unsteady state:

[I]
∂wi
∂t

+ [A]
∂wi
∂x

+ [B]
∂wi
∂y

+ [C]
∂wi
∂z

= 0 (3.26)

Diagonalizing the Jacobian matrices, we get:

I
∂wi
∂t

+ [Qa][λa][Qa]
−1∂wi
∂x

+ [Qb][λb][Qb]
−1∂wi

∂y
+ [Qc][λc][Qc]

−1∂wi
∂z

= 0 (3.27)

Since, [Qa] 6= [Qb] 6= [Qc] we cannot replace, as before the conservative variables

with another set such that the equations in the system (3.25) or (3.26) gets

decoupled. Therefore a deeper analysis needs to be done to get eigenvalues and

characteristic variables.
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3.3.1 System of First Order Steady-State PDEs

The following steps define the procedure to identify the nature of a mathematical

system. These are taken from [6]:

Step 1: Write the system of PDEs describing the mathematical

model as a system of first order PDEs

Suppose we have n unknown variables wj, in (m + 1)-dimensional space xJ ,

we can group all the variables wj in an (n × 1) vector column w and write the

system of first order PDEs under the general form:

ΣjAj
∂w

∂xj
= T j = 1, 2, 3....m+ 1

w =



w1

w2

w3

.

.

.
wn


(3.28)

where Aj are (n× n) matrices and T is a column vector of the non-homogeneous

source terms. The matrices Aj and T can depend on xj and w, but not on the

derivatives of w.

Step 2: Consider a plane wave solution of amplitude Û in the space

of the independent variables x with components xj(j = 1, ...,m + 1),

defined by

w = Ûei(
−→n ·−→x ) (3.29)

where i =
√
−1, ~n is a vector in the m-dimensional space of the independent

variables xj and Û is an (n× 1) column vector.

Step 3: Introduce this solution in the homogeneous part of the sys-

tem (3.28) and find the values of n satisfying the resulting equation.
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The homogenous part of Eq. (3.28) is written as

ΣjAj
∂w

∂xj
= 0 j = 1, 2, 3....m+ 1 (3.30)

and the function (3.29) is a solution of this system of equations if the homogeneous

algebraic system of equations:

[ΣjAjnj] Û = 0 (3.31)

has non-vanishing solutions for the amplitude Û . This will be the case if and only

if the determinant of the matrix ΣjAjnj vanishes.

Step 4: Find the n solutions of the equation

det [ΣjAjnj] (3.32)

Eq. (3.32) defines a condition on the normals ~n. This equation can have at

most n solutions, and for each of these normals ni , the system (3.32) has a non-

trivial solution.

The system is said to be hyperbolic if all the n characteristic normals ni are

real and if the solutions of the n associated systems of equations (3.32) are lin-

early independent. If all the characteristics are complex, the system is said to be

elliptic. If some are real and other complex the system is classed as hybrid. If

the matrix Σj[Ajnj] is not of rank n, i.e. there are less than n real characteristic

normals then the system is said to be parabolic.

The last case will occur, for instance, when at least one of the variables, say

w1 has derivatives with respect to one coordinate, say x1 , missing. This implies

that the components A1 = 0 for all equations i.

3.3.2 Characteristic and Characteristic Surface in Multi-
dimensions

Parabolic and hyperbolic equations play an important role in CFD, due to their

association to diffusion and convection phenomena. They are recognized by the
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existence of real characteristic normals, solutions of Eq. (3.32). Each of these nor-

mals ni defines therefore normal to the surface, which is called the characteristic

surface. We will show here the very important consequences of these properties,

as they have a significant effect on the whole process of discretization in CFD.

If we define a surface S(xj) = 0, in the (m + 1)-dimensional space of the

independent variables xj , the normal to this surface is defined by the gradient

of the function S(xj), as

−→n =
∇S
‖∇S‖

(3.33)

(Henceforth, the normalizing ‖∇S‖ is to be absorbed into the function S).

What is the significance of this characteristic surface in terms of wave propa-

gation, referring to the plane wave solution Eq. (3.29)?

If Eq. (3.33) is introduced in the plane wave Eq. (3.29), a general representa-

tion is defined as,

w = Ûei(
−→x ·∇S) = Ûei(xjSj) with Sj ≡

∂S

∂xj
(3.34)

If we consider the tangent plane to the surface S(xj) = 0, defined by

S(xj) = S(0) +−→x · ∇S = S(0) + xj
∂S

∂xj
= S(0) + xjnj (3.35)

we observe that along the constant values of the phase of the wave φ = −→x · ∇S,

the quantity w is constant.

Hence, we can consider that, the quantity U is propagating at a constant value

in the direction of the normal −→n .

The surface S is called a wave-front surface, defined as the surface separating

the space domain already influenced by the propagating quantity w from the

points not yet reached by the wave.

Observe that in the general case of n unknown flow quantities ui , we have n

characteristic surfaces, for a pure hyperbolic problem.

In a two-dimensional space the characteristic surface reduces to a character-

istic line. The properties w are transported along the line S(x, y) = 0 and the
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vectors tangent to the characteristic line are obtained by expressing that along

the wavefront:

dS = ∇S · dx =
∂S

∂x
dx+

∂S

∂y
dy = 0 (3.36)

Hence, the direction of the characteristic line in two dimensions is given by

dy

dx
= −Sx

Sy
= −nx

ny
(3.37)

In two dimensions, there are two characteristic directions for a hyperbolic

equation. Hence out of each point in the (x, y) domain, two characteristics can be

defined, along which two quantities propagate. As we have as many unknowns, at

each point the solution can be obtained from the characteristic-related quantities

that have propagated from the boundary or initial condition to that point.

To get a physical understanding of the discussion so far we can consider un-

steady inviscid flow. The unsteady inviscid flow equation or the unsteady Euler

Equation in non-conservation form is written as

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z

∂E

∂t
+ u

∂E

∂x
+ v

∂E

∂y
+ w

∂E

∂z
= −1

ρ

(
∂pu

∂x
+
∂pv

∂y
+
∂pw

∂z

)
(3.38)

By following the analysis given in Sec. 3.3, we can find that the above gov-

erning equations is hyperbolic, no matter whether the flow is locally subsonic or

supersonic. More precisely, we say the flows are hyperbolic with respect to time.

This implies that in such unsteady flows, no matter whether we have one, two,

or three spatial directions, the marching direction is always the time direction.

Let us examine this more closely to understand the marching behavior discussed

before for hyperbolic partial differential equations. For one dimensional flow,

consider a point P in the xt plane shown in Fig. 3.2. The region influenced by

P is the shaded area between the two advancing characteristics through P. The
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x-axis (t = 0) is the initial data line. The interval ab is the only portion of the

initial data along the x axis which the solution at P depends. Extending these

thoughts for two-dimensional unsteady flow, consider point P in the xyt space as

shown in Fig. 3.1. The region influenced by P and the portion of the boundary

in the xy plane upon which the solution at P depends are shown in this figure.

Starting with known initial data in the xy plane, the solution “marches”forward

in time. The same extension can be applied to the 3D case.

Figure 3.2: Domain and boundaries for the solution of hyperbolic equations. One
dimensional unsteady flow. [18]

3.4 Advantage of Conservation form over the

non-conservation form

The conservation and non-conservation form of the continuity equation is shown

below.

Conservation form:

∂ρ

∂t
+ ~∇ · (ρ~V ) = 0
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Non-Conservation form:

Dρ

Dt
+ ρ~∇ · (~V ) = 0 with

D

Dt
≡ ∂

∂t
+ ~V · ~∇

The labelling of the governing equations as either conservation or non-conservation

form grew out of modern CFD, as well as concern for which method has to be

preferred for a given CFD applications. We shall state here the two perspectives

for the advantage of conservation form over the non-conservation form. The detail

understanding of these can be found in [18].

1. The conservation form of the governing equations allows to write the sys-

tem of equation in a general form. Thus, it provides an ease and better

organization for numerical and computer programming.

2. Experience has shown that the conservation form of equation is better for

shock-capturing method (used in this thesis). For the non-conservation

form, the computed flow-field has unsatisfactory results. The reason for

this is, the conservation form uses flux variables as the dependent variable

and because the changes in these flux variables are either zero or small

across a shock wave, the numerical quality of the shock-capturing method

will be enhanced. Whereas, the non-conservation form uses the primitive

variables as dependent variable, and one would see a large discontinuity in

them.

3.5 Boundary Condition Specification in Hyper-

bolic System

Boundary condition specification is an important part of any CFD problem state-

ment and has to be compatible with physical and numerical properties of problem.

We have already seen that information in a hyperbolic problem propagates in

a specific characteristic direction, the eigenvalue spectrum of the Jacobian matrix

defines how information is going to propagate. Hence for a hyperbolic problem to

be well-posed we cannot specify general boundary conditions on all boundaries.

Rather, the following questions have to be answered:

1. How many boundary conditions have to be imposed at a given boundary?
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2. What are the boundary conditions that have to be imposed at the bound-

ary?

3. How are the remaining variables (i.e., those without BCs) to be handled at

the boundary?

In this section we will discuss only the answer to the first question pertaining

to the Euler problem.The five eigenvlaues of the system, which correspond to the

speed of propagation of five characteristic quantities, are given by,

−→u ·
−→
k

k
,

−→u ·
−→
k

k
,

−→u ·
−→
k

k
,

−→u ·
−→
k

k
+ c,

−→u ·
−→
k

k
− c

where c is the local sonic speed. [6]

The derivation for the above eigenvalues can be found in the Section of 11.2.1

of [18].

Since, the transport properties at a surface are determined by the normal com-

ponents of the fluxes, the number and type of conditions at a boundary of a

multi-dimensional domain will be determined by the propagation of waves with

the following speeds:

λ1 = −→u · ên = vn

λ2 = −→u · ên = vn

λ3 = −→u · ên = vn

λ4 = −→u · ên + c = vn + c

λ5 = −→u · ên − c = vn − c

where vn is the inward normal velocity component at the considered surface, com-

ing into the computational domain. The first three eigenvalues correspond to the

entropy and vorticity waves, while the two remaining eigenvalues, are associated

with acoustic waves. This defines a locally quasi-one-dimensional propagation
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of information and we can therefore look at how the propagation behaves at a

boundary, from the the sign of these eigenvalues at the boundary.

The key to the understanding of the issue of the number of boundary condi-

tions that are needed at the boundary is that characteristics convey information

in the (n− t) space formed by the local normal direction and time. When infor-

mation is propagated from outside into the computational domain, it means that

this information has to obtained by a boundary condition; this occurs when the

eigenvalue λ is positive, and a physical boundary condition has to be imposed.

On the other hand, when the eigenvalue λ is negative and the propagation occurs

from the interior of the domain towards the boundary, this means that a bound-

ary condition cannot be imposed from the outside. Such variable will be handled

through “numerical boundary conditions”, by extrapolating interior information

to the boundary.

In summary, the number of physical conditions to be imposed at a boundary

with inward normal vector −→n , pointing into the computational domain, is defined

by the number of characteristics entering the domain.

3.6 Closure

In this chapter we saw very basic properties of system of partial differential equa-

tions with emphasis on the hyperbolic type. These properties must be understood

before implementing boundary conditions, to avoid ill-posedness of system.

We saw how information flows along characteristic in hyperbolic systems and

we used this information to determine the number of variables to be assigned at

the boundary, based on direction of characteristic waves, i.e. whether the char-

acteristic is flowing into the domain or out of the domain. Also, we saw the ad-

vantage of the conservation form of governing equation over the non-conservation

form for hyperbolic systems.



Chapter 4

Numerical Methodology

Real flow includes rotational, non-isentropic, and non-isothermal effects. Com-

pressible inviscid flow including such effects requires simultaneous solution of

continuity, momentum, and energy equations. Special computational schemes

are required to resolve the shock discontinuities encountered in transonic flow.

Another basic requirement for the solution of the Euler equations is to ensure

that solution schemes provide an adequate amount of artificial viscosity required

for correct and rapid convergence towards a solution. In the present work, the

Implicit MacCormack scheme has been chosen to solve the Euler equations, since

it is a very robust and tested scheme.

4.1 Governing Equations

The Euler equations which describes the inviscid compressible fluid motion can

be presented in conservation form as,

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0

∂(ρu)

∂t
+
∂(ρu2 + P )

∂x
+
∂(ρuv)

∂y
+
∂(ρuw)

∂z
= 0

∂(ρv)

∂t
+
∂(ρvu)

∂x
+
∂(ρv2 + P )

∂y
+
∂(ρvw)

∂z
= 0

∂(ρw)

∂t
+
∂(ρwu)

∂x
+
∂(ρwv)

∂y
+
∂(ρw2 + P )

∂z
= 0

∂(ρE)

∂t
+
∂(ρuH)

∂x
+
∂(ρvH)

∂y
+
∂(ρwH)

∂z
= 0

(4.1)

where P = ρRT , E = CvT + u2+v2+w2

2
, H = E + P

ρ
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4.2 Discretization of Governing Equation

The equations can be written in compact form as

∂ {Wi}
∂t

+
∂ {Fxi}
∂x

+
∂ {Fyi}
∂y

+
∂ {Fzi}
∂z

= 0 (4.2)

W ≡


ρ
ρu
ρv
ρw
ρE



Fx ≡


ρu

ρu2 + P
ρuv
ρuw
ρuH

 , Fy ≡


ρv
ρuv

ρv2 + P
ρvw
ρvH

 , Fz ≡


ρw
ρuw
ρvw

ρw2 + P
ρwH


Note that the Fx, Fy, Fz column vectors are used just for notational convenience.

Now assuming that F is an arbitrary vector whose x,y,z components are Fx, Fy, Fz

we can write
∂Wi

∂t
+∇ · Fi = 0 (4.3)

where each row i respectively represents the governing continuity, momentum,

energy equation equations. The finite volume method uses the integral form

of the equations while the governing equation above is in differential form. The

corresponding integral form of the equation can be obtained by taking the integral

of the equation over a control volume.∮
V

(
∂Wi

∂t
+∇ · Fi

)
dV = 0

where V is the fluid domain under analysis. Using the divergence theorem,
∮
V
∇·

−→v dV =
∮
S
−→v · d

−→
S we get∮

V

∂Wi

∂t
dV +

∮
S

Fi · d
−→
S = 0

Assuming the control volume is not changing with time, the equation can be

written as,

∂

∂t

∮
V

WidV +

∮
S

Fi · d
−→
S = 0
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The equation can be divided into the temporal and convective parts, as shown,

and we will now do the finite volume discretization of each part to get the full

discretized equation.

∂

∂t

∮
V

WidV︸ ︷︷ ︸
Temporal Part

+

∮
S

Fi · d
−→
S︸ ︷︷ ︸

Convective part

= 0

Temporal term:

The volume averaged value of conservative variable can be written for the pth

cell as:
1

Vp

∮
Vp

WdV = Wp

thus, ∮
Vp

WdV = VpWp

where, Vp is the volume of the pth cell, and Wp is the value of its cell center.

Using this volume averaged value we can get the discretized form of the tem-

poral term as:

∂Wi

∂t
= Vp

W n+1
p −W n

p

∆t

Convective term:

There are two methods to calculate the value of convective part at new time level

depending upon time value of flux as,

1. Implicit: where the flux variable are taken to be at the new (unknown)

time-level.

2. Explicit: where the flux variable are taken to be at the old (known) time-

level.

In this study the implicit method is applied to discretize the convective part.

Equation 4.3 is integrated in time by using implicit method and written as,

V
W n+1 −W n

∆t
+ O.(F n+1) = 0 (4.4)
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with a time step of size ∆t. The superscript n refers to current time level and

the result is a nonlinear system of algebraic equations, which calls for nonlinear

iterations in each time step. But nonlinear iterations are computationally expen-

sive and have poor convergence. To overcome this problem, we assumes sufficient

smoothness and linearizes the equations around the current solution W n by a

Taylor series expansion of the fluxes

F n+1 = F n +

(
∂F

∂W

)n
(W n+1 −W n) + ©(

∥∥W n+1 −W n
∥∥2

) (4.5)

Substitution of equation 4.5 into the nonlinear equations 4.4 leads to a linear

algebraic system

V
W n+1 −W n

∆t
+ O.

(
F n +

(
∂F

∂W

)n (
W n+1 −W n

))
= 0

or V
W n+1 −W n

∆t
+ O.

(
∂F

∂W

)n (
W n+1 −W n

)
= −O.F n

Consider

δW n+1 ≡ W n+1 −W n

Substituting δW n+1 in main equation,

V
δW n+1

∆t
+ O.

(
∂F

∂W

)n
δW n+1 = −O.F n[

I +
∆t

V
O.

(
∂F

∂W

)n]
δW n+1 = −∆t

V
O.F n

where ∂F
∂W

is the Jacobian of flux F.

In the convective term, the explicit term 5.F n the integral is carried out

over the full surface of the control volume, without any approximation it can be

divided into six parts over the east(e), west(w), north(n), south(s), top(t) and

bottom(b) faces as follows:

∮
S

−→
Fi · d

−→
S =

∮
e

−→
Fi · d

−→
S e +

∮
w

−→
Fi · d

−→
S w +

∮
n

−→
Fi · d

−→
S n +

∮
s

−→
Fi · d

−→
S s+∮

t

−→
Fi · d

−→
S t +

∮
b

−→
Fi · d

−→
S b

where each face integral can be divided, without approximation, into 3 scalar

parts:
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∮
Sf

−→
Fi · d

−→
S f =

∮
S

FixdSx +

∮
S

FiydSy +

∮
S

FizdSz

The value of flux variable may change over the surface. For each scalar com-

ponent, we now approximate the surface averaged value of the variable by its

face-centroid value Fif :
1

Sf

∮
Sf

Fid
−→
S f = Fif

Therefore we can write,∮
Sf

−→
Fi · d

−→
S f = FixSfx + FiySfy + FizSfz

where Sfi is the ith component of face vector
−→
S f . Repeating the procedure for

each of the faces we can write

∮
Sf

−→
F · d

−→
S f = FexSex + FeySey + FezSez + FwxSwx + FwySwy + FwzSwz

+ FnxSnx + FnySny + FnzSnz + FsxSsx + FsySsy + FszSsz

+ FtxStx + FtySty + FtzStz + FbxSbx + FbySby + FbzSbz

Now, putting the discretized convective terms together, the Explicit term can

be written in discretized form as:

∆F n = −
∑
f

(FfxSfx + FfySfy + FfzSfz) (4.6)

MacCormack [22] proposed a two-step approach to solve the wave equation,

with a finite-difference method. It is known to be a robust scheme that gives

stable results with good accuracy when provided with some artificial dissipation.

As the scheme is a finite-difference method, we need to modify it for the finite-

volume method, which shall be done below. First, however, we will introduce the

MacCormack finite-difference scheme for the wave equation, and then extend it

to the finite-volume method for Euler equations in the later sections.

4.3 MacCormack Finite Difference Scheme

MacCormack′s scheme solves hyperbolic problems in two steps, popularly known

as the predictor-corrector approach. It falls in the category of multi-step central
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schemes.

Consider a simple one dimensional model initial value problem in 1D:

∂u

∂t
+ c

∂u

∂x
= 0 (4.7)

with an initial condition u(x,0) = u0(x) The explicit MacCormack scheme is

Figure 4.1: Finite-difference grid

realized in two steps:

Predictor:

4uni = − c4t
4x

(
uni+1 − uni

)
un+1
i = uni + 4uni

(4.8)

where un+1
i is the so-called predicted value of the solution at the n + 1 time-

level, obtained explicitly in step 1 and 4uni ≡ un+1
i − uni ,

Corrector:

4un+1
i = − c4t

4x

(
un+1
i − un+1

i−1

)
un+1
i =

1

2

(
uni + un+1

i + 4un+1
i

) (4.9)

The explicit scheme is stable under the iCFL condition:

4t ≤ 1

(c/4x)
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The implicit scheme is obtained by replacing one-sided differences in convec-

tive terms in predictor by:

(1− α)
c4t
4x

(
uni+1 − uni

)
+ α

c4t
4x

(
un+1
i+1 − un+1

i

)
or (

1 +
λ4t
4x

)
δun+1

i+1 +
λ4t
4x

δun+1
i

where

δun+1
i ≡ un+1

i − uni , δun+1
i+1 ≡ un+1

i+1 − uni+1, λ = α |c|

and similarly for corrector

(1− α)
c4t
4x

(
un+1
i+1 − un+1

i

)
+ α

c4t
4x

(
un+1
i+1 − un+1

i

)
or (

1 +
λ4t
4x

)
δun+1

i+1 +
λ4t
4x

δun+1
i

where

δun+1
i ≡ un+1

i − un+1
i , δun+1

i+1 ≡ un+1
i+1 − un+1

i+1 , λ = α |c|

The final implicit finite-difference scheme is

Predictor:

4uni = − a4t
4x

(
uni+1 − uni

)
(

1 + λ
4t
4x

)
δun+1

i = 4uni + λ
4t
4x

δun+1
i+1

un+1
i = uni + δun+1

i

(4.10)

Corrector:

4un+1
i = − a4t

4x

(
un+1
i − un+1

i−1

)
(

1 + λ
4t
4x

)
δun+1

i = 4un+1
i + λ

4t
4x

δun+1
i−1

un+1
i =

1

2

(
uni + un+1

i + δun+1
i

) (4.11)

The predictor step is evaluated starting at the greatest index i using an ap-

propriate boundary condition and going to lowest index. The corrector step is
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evaluated in the similar manner starting with boundary condition for lowest index

and going to greatest one.

The linear scheme is unconditionally stable provided that the implicit blend-

ing parameter λ is chosen such that

λ ≥ 1

2
max

(
|c| − 4x

4t
, 0

)
(4.12)

All three steps in predictor can be evaluated together during one backward sweep

through the mesh, i.e. it is not necessary to solve any system of linear equations.

The same is valid for the corrector, which can be again realized by one forward

sweep.

4.4 Implicit MacCormack scheme in FVM

In this section we will see how to apply the MacCormack scheme in the finite

volume methodology. Since the MacCormack scheme is second order accurate in

space and time, oscillations are observed in solution having abrupt step-changes

in value.

Figure 4.2: Finite-difference grid

The implicit MacCormack scheme in finite volume formulation is
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Predictor:

4W n
i,j,k = −∆t

(
∆+F

n
xi,j,k

∆x
+

∆+F
n
yi,j,k

∆y
+

∆+F
n
zi,j,k

∆z

)
(4.13)

[
I − 4t
4x

D+
I |A|

n
i,j,k

] [
I − 4t
4y

D+
J |B|

n
i,j,k

] [
I − 4t
4z

D+
K |C|

n
i,j,k

]
δW n

i,j,k = 4W n
i,j,k

(4.14)

W n+1
i,j,k = W n

i,j,k + δW n+1
i,j,k (4.15)

Corrector:

4W n+1
i,j,k = −∆t

(
∆−F

n+1
xi,j,k

∆x
+

∆−F
n+1
yi,j,k

∆y
+

∆−F
n+1
zi,j,k

∆z

)
(4.16)

[
I +
4t
4x

D−I |A|
n+1
i,j,k

] [
I +
4t
4x

D−J |B|
n+1
i,j,k

] [
I +
4t
4z

D−K |C|
n+1
i,j,k

]
δW n+1

i,j,k = 4W n+1
i,j,k

(4.17)

W n+1
i,j,k = (W n

i,j,k +W n+1
i,j,k + δW n+1

i,j,k )/2 (4.18)

Where the operators δ and ∆ denote the implicit and explicit temporal differ-

ence operators, respectively. Operators D+
I , D

−
I , DJ+, D−J , D

+
K , D

−
K are one-sided

forward and backward differences in each index dimension. |A| , |B| and |C| are

diagonalized jacobian matrices. All these operators are explained later.

The values of ∆+

∆x
, ∆−

∆x
, ∆+

∆y
, ∆−

∆y
, ∆+

∆z
, ∆−

∆z
operators are:

∆+Fxi,j,k
∆x

=
Fxi+1,j,k

− Fxi,j,k
∆x

∆−Fxi,j,k
∆x

=
Fxi,j,k − Fxi−1,j,k

∆x
∆+Fyi,j,k

∆y
=

Fyi,j+1,k
− Fyi,j,k

∆y
∆−Fyi,j,k

∆y
=

Fyi,j,k − Fxi,j−1,k

∆y
∆+Fxi,j,k

∆z
=

Fzi,j,k+1
− Fzi,j,k

∆z
∆−Fxi,j,k

∆z
=

Fzi,j,k − Fzi,j,k−1

∆z
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The values of D+
I , D

−
I , DJ+, D−J , D

+
K , D

−
K operators are:

D+
I Zi,j,k =

|A|i+1,j,k − |A|i,j,k
∆x

D−I Zi,j,k =
|A|i,j,k − |A|i−1,j,k

∆x

D+
J Zi,j,k =

|B|i,j+1,k − |B|i,j,k
∆y

D−J Zi,j,k =
|B|i,j,k − |B|i,j−1,k

∆y

D+
KZi,j,k =

|C|i,j,k+1 − |C|i,j,k
∆z

D−KZi,j,k =
|C|i,j,k − |C|i,j,k−1

∆z

Here the Jacobians of flux F is written as matrices A, B, C so that

∂Fx
∂W

= A
∂Fy
∂W

= B
∂Fz
∂W

= C

Matrices |A| , |B| and |C| have positive eigenvalues and are related to the

Jacobians A, B and C.

The inviscid jacobians A, B and C can be diagonalize by Sx, Sy, Sz. The

matrices A, B, C can be witten as,

A = S−1
x ΛASx B = S−1

y ΛBSy C = S−1
z ΛCSz

The matrices Sx, Sy and Sz are each expressed as the product of two matrices.
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They can be written as,

Sx =


1 0 0 0 −1

c2

0 ρc 0 0 1
0 0 1 0 0
0 0 0 1 0
0 −ρc 0 0 1




1 0 0 0 0
−u
ρ

1
ρ

0 0 0
−v
ρ

0 1
ρ

0 0
−w
ρ

0 1
ρ

0 0

αβ −uβ −vβ −wβ β

 (4.19)

Sy =


1 0 0 0 −1

c2

0 1 0 0 1
0 0 ρc 0 0
0 0 0 1 0
0 0 −ρc 0 1




1 0 0 0 0
−u
ρ

1
ρ

0 0 0
−v
ρ

0 1
ρ

0 0
−w
ρ

0 1
ρ

0 0

αβ −uβ −vβ −wβ β

 (4.20)

Sz =


1 0 0 0 −1

c2

0 1 0 0 1
0 0 1 0 0
0 0 0 ρc 0
0 0 0 −ρc 1




1 0 0 0 0
−u
ρ

1
ρ

0 0 0
−v
ρ

0 1
ρ

0 0
−w
ρ

0 1
ρ

0 0

αβ −uβ −vβ −wβ β

 (4.21)

ΛA =


u 0 0 0 0
0 u+ c 0 0 0
0 0 u 0 0
0 0 0 u 0
0 0 0 0 u− c

 , ΛB =


v 0 0 0 0
0 u 0 0 0
0 0 v + c 0 0
0 0 0 v 0
0 0 0 0 v − c

 (4.22)

ΛC =


w 0 0 0 0
0 w 0 0 0
0 0 w 0 0
0 0 0 w + c 0
0 0 0 0 w − c

 (4.23)

and where c =
√
γp/ρ is the speed of sound, α = 1

2
(u2 + v2 + w2) andβ = γ−1.

The inverses S−1
x , S−1

y and S−1
z are simply the inverse matrix of Sx, Sy and Sz

respectively.

The matrices |A| and |B| are defined by

|A| = S−1
x DASx |B| = S−1

y DBSy |C| = S−1
z DCSz
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where DA, DB and DC are diagonal matrices defined by

DA =


λA1 0 0 0 0
0 λA2 0 0 0
0 0 λA3 0 0
0 0 0 λA4 0
0 0 0 0 λA5

 (4.24)

DB =


λB1 0 0 0 0
0 λB2 0 0 0
0 0 λB3 0 0
0 0 0 λB4 0
0 0 0 0 λB5

 (4.25)

DC =


λC1 0 0 0 0
0 λC2 0 0 0
0 0 λC3 0 0
0 0 0 λC4 0
0 0 0 0 λC5

 (4.26)

and

λA1 = max

{
|u| − 1

2

∆x

∆t
, 0

}
λA2 = max

{
|u+ c| − 1

2

∆x

∆t
, 0

}
λA3 = max

{
|u| − 1

2

∆x

∆t
, 0

}
λA4 = max

{
|u| − 1

2

∆x

∆t
, 0

}
λA5 = max

{
|u− c| − 1

2

∆x

∆t
, 0

}

λB1 = max

{
|v| − 1

2

∆y

∆t
, 0

}
λB2 = max

{
|v| − 1

2

∆y

∆t
, 0

}
λB3 = max

{
|v + c| − 1

2

∆y

∆t
, 0

}
λB4 = max

{
|v| − 1

2

∆y

∆t
, 0

}
λB5 = max

{
|v − c| − 1

2

∆y

∆t
, 0

}
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λC1 = max

{
|w| − 1

2

∆z

∆t
, 0

}
λC2 = max

{
|w| − 1

2

∆z

∆t
, 0

}
λC3 = max

{
|w| − 1

2

∆z

∆t
, 0

}
λC4 = max

{
|w + c| − 1

2

∆z

∆t
, 0

}
λC5 = max

{
|w − c| − 1

2

∆z

∆t
, 0

}
The Jacobian matrix formulation is explained in Appendix A.

For regions of the flow in which ∆t satisfies the following explicit stability

conditions

∆t ≤ 1

2

∆x

(|u|+ c)
∆t ≤ 1

2

∆y

(|v|+ c)
∆t ≤ 1

2

∆z

(|w|+ c)
(4.27)

all λA, λB and λC vanish and the set of Implicit equations reduces to the explicit

equations with simple solution. For other regions in which neither relation is sat-

isfied, the resulting difference equations are either upper or lower block bidiagonal

equations with fairly straightforward solutions.

4.4.1 Artificial Viscosity

The MacCormack method operates satisfactorily in the regions where the vari-

ations of properties is smooth. But there is oscillations occurring around dis-

continuities, i.e. around a shock wave or in the boundary layer. So, artificial

smoothing terms must be introduced, to damp these oscillations.

From the basic CFD we know that modified equation of a PDE gives us

some information on the behaviour to be expected of the numerical solution of

the difference equation. The modified equation for the one-dimensional wave

equation given by
∂u

∂t
+ a

∂u

∂x
= 0 (4.28)

is shown below

∂u

∂t
+ a

∂u

∂x
=
a∆x

2
(1− ν)

∂2u

∂x2
+
a(∆x)2

6
(3ν − 2ν2 − 1)

∂3u

∂x3

+O[(∆t)3, (∆t)2(∆x), (∆t)(∆x)2, (∆x)3]
(4.29)
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The dissipative term in the above equation, i.e., even-order derivative terms ∂2u
∂x2

is

actually the artificial viscosity term implicitly embedded in the numerical scheme.

It prevents the solution from going unstable due to the oscillations caused by the

dispersive terms i.e. odd-order derivative terms ∂3u
∂x3

. But for variable velocity

problems, the MacCormack scheme often does not have enough artificial viscosity

implicitly in the algorithm, and the solution will become unstable unless more

artificial viscosity is added explicitly to the calculation, which makes the solution

more inaccurate. Therefore, there is a trade off involved. The artificial viscosity

formulation is explained in Appendix B.

4.5 Solution Procedure

Predictor: Let us solve first the predictor step of Eqs. 4.13 and 4.14 assuming

At satisfies neither of Eqs. 4.27.

4W n
i,j,k value can be found explicitly using 4.6.

4W n
i,j,k = F n

exSex + F n
eySey + F n

ezSez + F n
wxSwx + F n

wySwy + F n
wzSwz

+ F n
nxSnx + F n

nySny + F n
nzSnz + F n

sxSsx + F n
sySsy + F n

szSsz

+ F n
txStx + F n

tySty + F n
tzStz + F n

bxSbx + F n
bySby + F n

bzSbz

To solve the equation 4.14 consider

δW ∗
i,j,k =

(
I − ∆t

∆y
D+
J |B|i,j,k

) (
I − ∆t

∆z
D+
K |C|i,j,k

)
δW n+1

i,j,k (4.30)

Substituting eqn. 4.30 value to 4.14 we get,[
I − 4t
4x

D+
I |A|

n
i,j,k

]
δW ∗

i,j,k = 4W n
i,j,k (4.31)

Now substituting D+
I value in this equation we get[

I − 4t
4x

(
|A|ni+1,j,k − |A|ni,j,k

)]
δW ∗

i,j,k = 4W n
i,j,k (4.32)

Rearranging equation 4.32 we can write(
I +
4t
4x
|A|ni,j,k

)
δW ∗

i,j,k = 4W n
i,j,k + +

4t
4x
|A|ni+1,j,k δW

∗
i+1,j,k (4.33)

It is an upper bidiagonal equation. The solution for δW ∗
i,j,k can be obtained for

each j and k by sweeping in the decreasing i direction.
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After obtaining δW ∗
i,j,k for all i, j, k then substituting this value in Eqn. 4.30

and we get(
I − ∆t

∆y
D+
J |B|i,j,k

) (
I − ∆t

∆z
D+
K |C|i,j,k

)
δW n+1

i,j,k = δW ∗
i,j,k (4.34)

Let us consider

δW ∗∗
i,j,k =

(
I − ∆t

∆z
D+
K |C|i,j,k

)
δW n+1

i,j,k (4.35)

Substituting this value into Eqn. 4.34 we get,(
I − ∆t

∆y
D+
J |B|i,j,k

)
δW ∗∗

i,j,k = δW ∗
i,j,k (4.36)

Substituting D+
J value in this equation we get[
I − 4t
4y

(
|B|ni,j+1,k − |B|ni,j,k

)]
δW ∗∗

i,j,k = 4W ∗
i,j,k (4.37)

Rearranging equation 4.37 we can write(
I +
4t
4y
|B|ni,j,k

)
δW ∗∗

i,j,k = 4W ∗
i,j,k + +

4t
4y
|B|ni,j+1,k δW

∗∗
i,j+1,k (4.38)

We can get the solution for δW ∗∗
i,j,k for each i and k by sweeping in the decreasing

j direction.

After obtaining δW ∗∗
i,j,k for all i, j, k then substituting this value in Eqn. 4.35

and we get (
I − ∆t

∆z
D+
K |C|i,j,k

)
δW n+1

i,j,k = δW ∗∗
i,j,k (4.39)

Substituting D+
K value in this equation we get[
I − 4t
4z

(
|C|ni,j,k+1 − |C|ni,j,k

)]
δW n+1

i,j,k = 4W ∗∗
i,j,k (4.40)

Rearranging equation 4.40 we can write(
I +
4t
4z
|C|ni,j,k

)
δW n+1

i,j,k = 4W ∗∗
i,j,k + +

4t
4z
|C|ni,j,k+1 δW

n+1
i,j,k+1 (4.41)

We can get the solution for δW n+1
i,j,k for each i and j by sweeping in the decreasing

k direction.

Then we can go to the third setp and calculate

W n+1
i,j = W n

i,j + δW n+1
i,j
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In the above procedure, the solution of the block bidiagonal system is carried

out making use of the known decomposition of |A|, |B|, |C| which reduces the

computation in the inversion of the block matrices. For example, to solve Eq.

4.33 in the predictor, the equation is rewritten as

Sx−1
i,j,k

(
I +
4t
4x
|DA|ni,j,k

)
Sxi,j,k δW

∗
i,j,k = 4W n

i,j,k +
4t
4x
|A|ni+1,j,k δW

∗
i+1,j,k

and can be easily solved as

δW ∗
i,j,k = Sx−1

i,j,k

(
I +
4t
4x
|DA|ni,j,k

)−1

Sxi,j,k

[
4W n

i,j,k +
4t
4x
|A|ni+1,j,k δW

∗
i+1,j,k

]
Note that the block matrix inversion is trivial because Sx−1

i,j,kandSxi,j,k are known

and
(
I + 4t

4x |DA|ni,j,k
)

is diagonal. This in fact means that a block bidiagonal

matrix inversion is reduced to a scalar bidiagonal matrix inversion.

The procedure to solve this equation 4.33 is as follows:

For each j, k and for i = I, I-1, I-2..... 2, 1

1. W = 4W n
i,j,k + 4t

4x |A|
n
i+1,j,k δW

∗
i+1,j,k

2. X = SxW

3. DA is calculated using 4.24

4. Y =
(
I + 4t

4x |DA|ni,j,k
)−1

X

5. δW ∗
i,j,k = Sx−1 Y

6. Z = DA Y

7. |A|i,j,kδW ∗
i,j,k = Sx−1 Z

Each of the above seven steps requires to calculate δW ∗
i,j,k for each i, j, k. The

matrix inversion of step 4 is trivial because the matrix is diagonal. So we use the

inversion of a diagonal matrix formula. Let D is a diagonal matrix and

D =


a11 0 0 0 0
0 a22 0 0 0
0 0 a33 0 0
0 0 0 a44 0
0 0 0 0 a55


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Then according to this formula its inverse is given by:

D−1 =


1
a11

0 0 0 0

0 1
a22

0 0 0

0 0 1
a33

0 0

0 0 0 1
a44

0

0 0 0 0 1
a55


Note that the solution δW ∗

i,j,k at grid point i,j,k is obtained at step 5. The

flux |A|i,j,kδW ∗
i,j,k to be used in the calculation at grid point i-1, j, k is obtained

at step 7.

To start the above procedure, the value of |AI,j,k|n δW ∗
I,j,k has to be known. So

in addition to the conventional boundary conditions, boundary conditions are also

required for the implicit operator δW ∗
I,j,k. It is called Implicit operator boundary

condition and discussed in the next chapter.

4.6 Closure

In this chapter we have seen the detailed formulation of the implicit MacCormack

scheme which can be used for the study of compressible flows.



Chapter 5

Boundary Conditions

5.1 Boundary condition treatment in terms of

primitive variables

In the preceding chapter we have seen how boundary condition specification is

different for hyperbolic problems compared to that of parabolic and elliptic prob-

lems, and have seen how the flow of characteristics into or out of the computa-

tional domain affects the specification of the boundary conditions.

Extending the thoughts developed in Sec. 3.5 and referring the literature [6]

we can present the following table and implementation of boundary condition

for Euler equations. This way we answer all the three questions required for the

specification of boundary conditions. Namely,

1. How many boundary conditions should be specified.

2. What boundary conditions should be specified.

3. What boundary conditions will have numerical boundary condition.

The answer to the first question depends upon on the number of character-

istics that enter into domain at a boundary. Following table summarises the no

of physical/numerical B.C. specification in 3-D Euler flows.

The second question would be answered in the following subsection.

5.1.1 Implementation of Boundary Conditions

For implementing the boundary condition for the structured grid arrangement, we

use the fictitious cell with zero-volume approach. The value of the fictitious cell
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Type Sub-sonic
No of +ve Eigen values No of physical BC No of Numerical B.C

Inflow Four Four One
Outflow One One Four

Super-sonic
No of +ve Eigen values No of physical BC No of Numerical B.C

Inflow Five Five Zero
Outflow Zero Zero Five

Wall
No of +ve Eigen values No of physical BC No of Numerical B.C

One One Four

Table 5.1: No of boundary condition to be fixed on boundary in Euler system of
equation

is updated using the value calculated at the boundary directly. But this, method

has to be reviewed, for inhomogeneous Neumann conditions at the boundary. Un-

der such condition, for non-orthogonal grid, taking fictitious cell-center at the face

center will lead to complexity. One has to take into account the cross-diffusion

terms also.

The characteristic variables has to be defined in terms of the primitive vari-

ables and using them we have to specify the boundary conditions. The detail is

very interesting and can be found in [8]. The boundary condition used in this

thesis is based on these concepts.

The two basic flow situations at the boundary is sketched in the Fig. 5.1.

Figure 5.1: Flow Situation at boundary: inflow (a) and outflow (b) situation.
Position a is outside, b on the boundary, and the position d is inside the physical
domain. The unit normal vector ~n = [nx, ny, nz]

T points out of the domain.[17]
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5.1.2 Inflow BC

Subsonic Inflow

For subsonic inflow, we have four physical boundary condition and one numerical

boundary condition. All combinations of conservative and primitive variables can

be selected as physical boundary conditions, with the exception of the pair (u,p)

([6], Pg. 353). The combination of (u,p) is not well posed as the problem is over-

specified. It allows for specifying the outgoing characteristic variables, which is

already specified by the interior domain.The combinations such as (ρ, p) or (ρ, u)

are well-posed boundary conditions. The former is called the pressure-driven

inlet condition useful for internal flows and later is called the velocity-driven inlet

condition is useful for the external flow problems. Here, u refers to inlet velocity.

The remaining variable will have the “numerical BC”.

Following are the numerical formulation for subsonic inflow/inlet boundary

conditions.

Velocity-Driven Flows: These are more suitable for external flow problems,

which are velocity driven [17].

pb =
1

2
{pa + pd − ρoco[nx(ua − ud) + ny(va − vd) + nz(wa − wd)]}

ρb = ρa +
(pb − pa)

c2
o

ub = ua − nx
(pa − pb)
ρoco

vb = va − ny
(pa − pb)
ρoco

wb = wa − nz
(pa − pb)
ρoco

(5.1)

where ρo and co represent a reference state. The reference state is normally set

equal to the state at the interior point (point d in Fig. 5.1). The values at point

a are determined from the freestream state.

Pressure-Driven Flows: A common procedure consists of the specification

of the total pressure, total temperature, and of two flow angles. We unsuccessfully

attempted to implement the boundary condition based on the outgoing Riemann

invariant, as given in [17]. This could be tried in future again. However, based

on the basic of compressible fluid flow we came up with a simpler formulation. It
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requires specification of total pressure, total temperature and velocity in y and

z direction for flow having dominance in x-direction. The value of velocity in x

direction is numerically extrapolated from inside the domain. The following are

the isentropic relations used for determining the static pressure (p), density (ρ)

and temperature (T ), which are used in the governing equations.

po = p(1 +
γ − 1

2
M2)

γ
γ−1

ρo = ρ(1 +
γ − 1

2
M2)

1
γ−1

(5.2)

The imposed isentropic static-to-stagnation pressure ratio implies the inlet

Mach number. Thus, this boundary condition can also be defined in terms of

inlet Mach number and the flow angle.This can be incorporated in the future

versions of the solver.

Supersonic Inflow

When the flow is supersonic, all boundary conditions are physical. The conserva-

tive variables on the boundary (point b in Fig. 5.1) are determined by freestream

values only.

5.1.3 Outflow BC

Subsonic Outflow

It requires only one physical boundary conditions, the others have to be numer-

ical boundary conditions. The most appropriate physical condition, particularly

for internal flows and corresponding to most experimental situations, consists in

fixing the downstream static pressure. This can also be applied for external flow
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Figure 5.2: Speed regimes and characteristic variables entering and leaving do-
main [1]

problems. The following numerical formulation is used:

pb = pa

ρb = ρd +
(pb − pa)

c2
o

ub = ud + nx
(pd − pb)
ρoco

vb = vd + ny
(pd − pb)
ρoco

wb = wd + nz
(pd − pb)
ρoco

(5.3)

with pa being the prescribed static pressure.

A point to be considered is that when imposing a constant pressure at a

subsonic exit section, one actually allows perturbation waves to be reflected at the

boundaries. The non-reflecting boundary condition [4], [11] expresses the physical
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boundary condition as the requirement that the local perturbations propagated

along incoming characteristics be made to vanish. We use the work of Rudy [7]

to implement the non-reflecting boundary condition. It has the following form.

∂u

∂t
− 1

ρbab

pn+1
b − pnb

∆t
− α

ρa
(pn+1
b − p∗b) = 0 (5.4)

where,

α =


0.25 for M ≥ 0.7

0.6 for 0.5 ≤M ≤ 0.7

1 otherwise
,

p∗b is the constant pressure imposed at the subsonic exit section and ab is the

sonic speed.

Supersonic Outflow

When the flow is supersonic at outflow, all the conservative variables at the

boundary must be determined from the solution inside the boundary.

5.1.4 Wall (or Solid) Boundary

Since the Euler equation system describes inviscid flow, we cannot assign a no-slip

BC at the wall. Only one physical BC can be imposed.

~v · n̂ = 0 at the solid boundary

where n̂ denotes unit normal vector at the solid boundary.

In numerical calculation with finite volume methodology we are interested in

the flux at the surface of a cell than the values of the variable at the wall. Fluxes

in the Euler equation can be written as,

Fx =


ρu

ρu2 + p
ρvu
ρuw
ρuH

 Fy =


ρv
ρvu

ρv2 + p
ρvw
ρvH

 Fz =


ρw
ρwu
ρwu

ρw2 + p
ρwH

 (5.5)
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Multiplying with the respective area components at the wall surface segment of

the cell, the net flux crossing a surface can be written as,

(FxSfwx + FySfwy + FzSfwz)wall =


ρuSfwx + ρvSfwy + ρwSfwz

uw (ρuSfwx + ρvSfwy + ρwSfwz)w + pwSfwx
vw (ρuSfwx + ρvSfwy + ρwSfwz)w + pSfwy
ww (ρuSfwx + ρvSfwy + ρwSfwz)w + pSfwz

Hw (ρuSfwx + ρvSfwy + ρwSfwz)w


(5.6)

Since at the wall

ρuSfwx + ρvSfwy + ρwSfwz = 0

FxSfx + FySfy + FzSfz =


0
p
0
0
0

Sfx +


0
0
p
0
0

Sfy +


0
0
0
p
0

Sfz (5.7)

The general discretized Euler equation (which we will derive in next chapter)

is given as,

Vp
wn+1
p − wnp

∆t
= −

∑
f

FfxSfx + FfySfy + FfzSfz (5.8)

so whenever for cell p surface f corresponds to the solid boundary, then flux will

be calculated from Eq. (5.7). Thus, using this method we are actually using at

wall the physical Boundary condition as vn = 0 and the remaining variables will

have numerical boundary conditions.

5.1.5 Symmetry Boundary Conditions

We apply the Neumann boundary condition on characteristic variables to update

value of the boundary slabs corresponding to symmetry boundaries. While for

flux calculation we follow the same procedure as for wall described by Eq. (5.7).

Since, at symmetry we also have vn = 0.

Numerical boundary conditions: We end this section with the discussion

on how to implement the numerical boundary conditions. This is particularly
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important for solid walls, where we want to determine the pressure variations.

The simplest way is to take the value at the cell center of the associated cell.

This is a zero-order extrapolations. We apply the volume extrapolation using the

inside two cells. This is second-order and thus supposedly more accurate. Through

numerical experiments we have found that the second order extrapolation esp. at

wall and symmetry plane can lead to divergence in the solution.

5.2 Implicit Operator Boundary Condition

Design of implicit operator boundary treatment is typically guided by character-

istic theory. We can write the implicit operator as PDE with respect to time

i.e

δWi,j,k =
∂W

∂t

5.2.1 Inflow BC

Subsonic Inflow

For subsonic inflow, two characteristic entering into domain i.e u, u+ c and one

characteristic leaving domain u − c (see Fig. 5.2). We can get δW values by

interpolating between the inflow plane and the first interior points.

δWboundary = δWdomain (5.9)

Velocity-Driven Flows:

For velocity driven flows the velocities remains same with respect to time i.e

δui,j,k =
∂u

∂t
= 0

δvi,j,k =
∂v

∂t
= 0

δwi,j,k =
∂w

∂t
= 0

So this velocity condition is updated in Eqn. 5.9.

Pressure-Driven Flows:

For velocity driven flows pressure is always remains same with respect to time i.e

δpi,j,k =
∂p

∂t
= 0
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So this pressure condition is updated in Eqn. 5.9.

Supersonic Inflow

For supersonic outflow all eigenvalues are positive and all the characteristic en-

tering the domain (see Fig 5.2). So we set δW values to zero.

5.2.2 Outflow BC

Subsonic Outflow

For subsonic inflow, one characteristic entering into domain i.e u − c and one

characteristic leaving domain u, u + c (see Fig. 5.2). We can get δW values by

interpolating between the outflow plane and the first interior points.

δWboundary = δWdomain

But subsonic outflow pressure we need to specify as conventional boundary

condition. So this pressure value is constant with respect to time i.e

δpi,j,k =
∂p

∂t
= 0

We add this pressure condition in the calculation of δWi,j,k.

Supersonic Outflow

For supersonic outflow all eigenvalues are positive and all the characteristic leav-

ing the domain (see Fig 5.2). So we set δW values to zero.

5.2.3 Wall Boundary

The eigenvalues of the Jacobian matrix for the full Euler system are

un, un, , un, , un + c, un − c

For wall boundary only one characteristic enters the domain i.e un + c, because

normal velocity is zero at a non-permeable wall. But for wall boundary no net

mass or energy fluxes should transmitted across the wall.

So, the implicit operator is active at the wall in the normal direction. When

the operator passes information away from the wall, incoming values of δW are

set equal to zero. When the operator passes information toward the wall, the
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outgoing flux is mirrored about the wall plane and propagated back into the flow

using the inward operator. Reflections are used at centerlines.

For example, at the YZ plane the predictor step boundary condition is δW ∗
I,j,k =

0.

For the corrector step the computed end flux terms from predictor step δW ∗
I,j,k

are saved to be used as a boundary condition for the corrector step that sweeps

away from this boundary in the increasing j direction. According to the usual

rules of reflection, the starting flux of the corrector step is given by

δW n+1
I,j,k = E δW n

I−1,j,k

where

E =


1 0 0 0 0
0 −1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Similarly the boundary conditions can be found for XZ and XY planes.

For XZ plane the value of E is

E =


1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 1


For XY plane the value of E is

E =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1


5.2.4 Symmetry Boundary

For symmetry boundary also only one characteristic enters the domain i.e un + c.

Symmetry boundary condition can also be treated more approximately by taking

δW n+1
I,j,k = E δW n

I,j,k

E is same as in the wall boundary condition.
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5.3 Closure

In this chapter the boundary conditions described and have been implemented.



Chapter 6

Results and Discussion

In this section we will discuss the results for four different test cases for all the

models selected in this work. The test cases are:

• Shocktube Problem

• Supersonic flow over a wedge

• Subsonic flow over a circular bump

• Subsonic flow over a airfoil

• Flow over re-entry capsule

The results are all compared with standard benchmark and/or analytical results.

The explicit MacCormack scheme with artificial viscosity ( specify as MacCor-

mack ), with TVD implementation and Implicit MacCormack scheme (specify as

ImpMacCormack) have been tested. The aim is to study the performance of these

schemes and validate the compressible flow solver module of Anupravaha. Since,

the solver is 3D-based, for all the 2D test-cases we have given a minimum of 4

cells thickness in the z-direction and symmetry boundary conditions are applied

on the two boundaries normal to the z-direction.

6.1 Shock-tube Problem

This problem ( [5], (pg-352),) comprises of a tube initially containing two regions

of a stationary gas at different pressures, separated by a diaphragm. At t = 0, the

diaphragm is removed instantaneously so that the pressure imbalance causes a
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unsteady flow containing a moving expansion fan, shock and contact discontinuity.

The problem can be solved analytically as a 1-D case [25]. However, we solve the

computational problem as a 2-D case, and compare it with the 1-D analytical

solution.The computational results were obtained on a uniform grid of ∆x= 0.1m

. A Courant number of 1.1 has been used.

Figure 6.1: Shocktube

It contains two zones, first zone supports high pressure fluid and second zone

supports low pressure fluid. The details of the geometry are:

• four slip walls

• two symmetric boundary surface

Initial Condition

IC Part 1 Part 2
Pressure 100000 Pa 10000 Pa

Temperature 300K 300K
u velocity 0 0
v velocity 0 0
w velocity 0 0

Boundary Conditions

All boundaries are (slip) walls, while symmetry boundary condition are imple-

mented on surfaces on the z-plane.
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The calculation was done to compare with analytical results previously derived

for the shocktube problem [25]. The analytical solution to the shock-tube prob-

lem at t = 0.0061s is compared to the computational result at the centerline of

the tube (see Fig. 6.1). The explicit and Implicit MacCormack schemes are com-

pared. The advantage of using an implicit scheme compared to a explicit scheme

is the computation time. The expansion shock occurring on the left has been cap-

tured accurately as in explicit one with less computation time. The results from

Implicit MacCormack and Explicit MacCormack scheme (with artificial viscosity)

are presented.

Results

Figure 6.2: Density Contour at 6.1 ms with pressure ratio of 10 with constant
Courant No = 1.1

Figure 6.3: Velocity Contour at 6.1 ms with pressure ratio of 10 with constant
Courant No = 1.1
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Figure 6.4: Density Plot at 6.1 ms
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Figure 6.5: U Velocity Plot at 6.1 ms
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Computational Time:

Method CFL Toatl CPU Time Time Steps Time step size
Explicit MacCormack 0.75 23.5 s 121 0.00005
Implicit MacCormack 1.1 16.28 s 83 0.0001

Table 6.1: Computational time comparison

6.2 Supersonic Flow Over a Wedge

We now consider the supersonic flow over a 2-D wedge with wedge angle 15◦ , as

shown in Fig. 6.6. The inflow conditions are summarized in Table 6.2 and the

present results have been compared with the analytical solution obtained from

the standard (θ − β − M) chart and the analytical oblique shock relationships

(Ch. 3 of [25]). Courant number of 0.3 and 1.1 are used for Explicit and Implicit

MacCormack, respectively.

Figure 6.6: Computational domain

Boundary Conditions

*Note: The solver explicitly asks for an outflow pressure but imposes this condi-

tion if and only if the flow is subsonic there.
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Quantity Inflow Outflow
Pressure 101353 Pa 101353 Pa*

Temperature 288.9 K -
U velocity 2.5 Mach -
V velocity 0 -
W velocity 0 -

Table 6.2: Boundary conditions for supersonic wedge

The steady-state contours of Mach number and static pressure using Implicit

MacCormack Scheme shown in Fig. 6.7 and 6.9. Under the same flow condition

the contours obtained by numerical computation done in Hirschs book [6] is also

shown in Fig. 5.4. The results downstream of the shock has been tabulated in

Table 6.3 where, P2/P1 corresponds to the downstream and upstream pressure

ratio. Point P refers to the point (1.495, 0.3) on the outflow plane. The analyt-

ical results are also presented. Pressure, density, mach and temperature values

are extracted along x = 1.2 line for both the schemes and plotted along Y axis.

The plots are compared for explicit and implicit MacCormack schemes in figures

6.12, 6.2, 6.14, 6.15. Both the Explicit MacCorMack and Implicit MacCormack

gives similar results and both have high accuracy, corresponding with the ana-

lytical results. Implicit MacCormack scheme however gives a solution within less

computational time.
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Figure 6.7: Pressure Contour with Implicit MacCormack Scheme

Figure 6.8: Pressure Contour with Explicit MacCormack Scheme
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Figure 6.9: Mach Contour with Implicit MacCormack Scheme

Figure 6.10: Mach Contour with Explicit MacCormack Scheme
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Figure 6.11: Mach Contour from Reference Hirsch [6]
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Figure 6.12: Variation of pressure along Y co-ordinate
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Figure 6.13: Variation of Mach Number along Y co-ordinate
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Figure 6.14: Variation of Density along Y co-ordinate
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Figure 6.15: Variation of Temperature along Y co-ordinate

Validation:

Ratio’s Analytical Implicit Explicit
MacCormack MacCormack

P2/P1 2.468 2.477 2.468
T2/T1 1.322 1.325 1.322
ρ2/ρ1 1.867 1.869 1.866
Mach 1.874 1.864 1.873

Shock angle(in degree) 36.945 37.954 38.66

Table 6.3: Validation with analytical solution
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Computational Time:

Method CFL Toatl CPU Time Time Steps
Explicit MacCormack 0.3 551274 s 632573

(154 hrs)
Implicit MacCormack 1.1 997.3 s 1075

(17 min)

Table 6.4: Computational time comparison

Once again the figures show the results of the Implicit scheme are close to

that of the explicit scheme, where table 6.4 shows the Implicit scheme taken only
1

500
th the computational time.

6.3 Internal flow in a channel with a circular

Bump

We now take a case considering internal flow. It consists of a channel of height L

and length 3L, with a circular arc of length L and thickness equal to 0.1L, along

the bottom wall, as shown in Fig. 6.19. For the subsonic case we use a pressure-

driven inlet boundary condition. For initializing the flow-field, we have used free-

stream conditions. The inlet x-velocity is calculated by numerical-extrapolation

from the interior domain. Its specification in the problem below is indicative for

Mach Number of the flow at the inlet and is used in the numerical algorithm.

We used a Courant number of 1.1 for cases below. The implicit MacCormack has

convergence difficulty for the subsonic case if we want to use residual which is

less than 10−8. So we are using the convergence criteria upto 10−6.

6.3.1 Subsonic Case

The inlet Mach number is chosen equal to 0.5. We provide total pressure and

total temperature at inlet with respect to the static condition, so as to get inlet

Mach Number equal to 0.5. This is as per our boundary condition discussion is

Sec. 5.1.2 under pressure-driven flow section. At outflow we use the free-stream

condition (static condition). The boundary conditions are summarized in Table
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6.5 and the solver results have been compared with the study done by Rincon

and Elder et al. [20].

L

3L

Inflow

Wall

Wall

Outflow

0.1 L

Figure 6.16: Computational domain [2]

Boundary Conditions

Quantity Inflow Outflow
Pressure 120141.8 Pa 101300 Pa

Temperature 302.4 K 288 K
U velocity 174.287 -
V velocity 0 -
W velocity 0 -

Table 6.5: Boundary Condition for subsonic bump

The comparison for Mach contours for Explicit MacCormack, Implicit Mac-

Cormack and the reference is shown in Fig. 6.17. Fig. 6.18 shows the variation

in Mach number along the upper and lower walls. Comparison of computational

times are shown in Table 6.6.
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(a) Isomach lines from [20]

(b) Implicit MacCormack Scheme (AnuPravaha)

(c) Explicit MacCormack Scheme (AnuPravaha)

Figure 6.17: Mach Contour for M = 0.5
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Figure 6.18: Variation of Mach number along lower and upper wall (M = 0.5)

Computational Time:

Method CFL Toatl Time Time Steps Residual
Explicit MacCormack 0.4 313308 s 396418 3.3368e−6

(87.03 hrs)
Implicit MacCormack 1.1 16750.75 s 31518 3.3368e−6

(4.6 hrs)

Table 6.6: Computational time comparison

The figures show the results of the Implicit scheme for bump case are close

to that of the explicit scheme, where Table 6.6 shows the Implicit scheme taken
1
21

th the computational time.

6.4 External Flow over NACA0012 Airfoil

To validate the code for complex geometry, we have taken the case of NACA 0012

airfoil. We study the external flow at Mach Number of 0.5. The computational

domain for the NACA Aerofoil considered is shown below.
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Figure 6.19: Computational domain [2]

6.4.1 Subsonic Case:Mach 0.5, Angle of Attack (α = 0◦ )

This is a subsonic case involving external flow. We have used velocity-driven

boundary condition for inlet and far-field. The boundary conditions are tabulated

in Table 6.7

Boundary Conditions

Quantity Inflow Outflow
Pressure 100000 Pa 100000 Pa

Temperature 300 K 288 K
U velocity 173.594 -
V velocity 0 -
W velocity 0 -

Table 6.7: Boundary conditions for NACA 0012 M = 0.5, α = 0◦

The comparison for Mach and pressure contours for Explicit MacCormack,

Implicit MacCormack and the reference is shown in Fig. 6.20 and 6.21 respec-

tively.



6.4 External Flow over NACA0012 Airfoil 80

CoordinateX

C
o
o
r
d
in
a
te
Y

0 0.5 1

­0.6

­0.4

­0.2

0

0.2

0.4

0.6

Mach

0.59

0.562

0.533

0.505

0.476

0.448

0.419

0.391

0.363

0.334

0.306

0.277

0.249

0.221

0.192

0.164

0.135

0.107

0.078

0.05

(a) Implicit MacCormack

CoordinateX

C
o
o
r
d
in
a
te
Y

0 0.5 1

­0.5

0

0.5 Mach

0.59

0.562

0.533

0.505

0.476

0.448

0.419

0.391

0.363

0.334

0.306

0.277

0.249

0.221

0.192

0.164

0.135

0.107

0.078

0.05

(b) Explicit MacCormack

Figure 6.20: Mach Contour for M=0.5
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Figure 6.21: Pressure Contour for M=0.5
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Figure 6.22: Variation of Mach number along airfoil wall (M = 0.5)
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Figure 6.23: Variation of coefficient of pressure along airfoil wall (M = 0.5)
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Figure 6.25: Variation of temperature number along airfoil wall (M = 0.5)
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Computational Time:

Method CFL Toatl Time Time Steps
Explicit MacCormack 0.3 413815 s 597819

(114.9 hrs)
Implicit MacCormack 1.1 21522.67 s 41728

(5.7 hrs)

Table 6.8: Computational time comparison

The figures show the results of the Implicit scheme for bump case are close

to that of the explicit scheme, where table 6.6 shows the Implicit scheme taken
1
20

th the computational time.

6.5 3D Case: Flow over Re-entry Capsule

A ballistic reentry capsule has been considered to validate the solver for a complex

geometry. The vehicle consists of a blunt bicone with 20/25 degree cone angles.

All the dimensions are shown in Fig. 6.26. The mesh and the computational

domain are shown in Fig 6.27. Inlet, outlet and inviscid wall has been shown

through red, green and blue colour respectively. The free-stream pressure and

temperature are 833Pa and 63K, respectively. Free-stream Mach number is taken

as 5.0 with angle of attack of 4.66. We specify free-stream pressure at outflow,

which actually has no role to play for a supersonic exit. The boundary conditions

based on these are summarized in Table 6.9. We validate the result with the

study done by [30]. In this study, the wind tunnel data [28] has been used for

validation. We have also compare the two MacCormak scheme results.
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Figure 6.26: Re-entry vehicle model dimensions

Y

Z

X

Inflow

Outflow

Inviscid Wall

Figure 6.27: Computational domain and mesh [2]
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Boundary Conditions

Quantity Inflow Outflow
Pressure 833 Pa 833 Pa

Temperature 63 K -
U velocity 792.88 -
V velocity 64.63 -
W velocity 0 -

Table 6.9: Boundary Condition

Figs. 6.33 and 6.29 show the density contours and mach countours respec-

tively. We can see from the contours the presence of bow shock. On the windward

side the formation of second shock is more pronounced in comparison to leeward

side. The plot of Cp distribution along the capsule wall is shown in Fig. 6.30.

The x-axis is the Coordinate X of the flow domain along the capsule wall. We

can observe the higher pressure plot corresponds to the windward side. At stag-

nation point, we get the maximum pressure and pressure remains constant along

the surface of capsule till the second shock. The plot of density, mach and distri-

bution along the capsule wall is shown in figures with respect to x-axis. The two

MacCormack schemes are compared in these plots.
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(a) (b)

Figure 6.28: Density Contours using (a) Implicit MacCormack (b) Explicit Mac-
Cormack

(a) (b)

Figure 6.29: Mach Contours using (a) Implicit MacCormack (b) Explicit Mac-
Cormack
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Figure 6.30: Variation of coefficient of pressure along the capsule wall
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Figure 6.31: Variation of density along the capsule wall
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Figure 6.32: Variation of mach number along the capsule wall

   

Windward side   
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Figure 6.33: Variation of temperature along the capsule wall
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Computational Time:

Method CFL Toatl Time Time Steps End Time
Explicit MacCormack 0.4 313408 s 396418 1 s

(87 hrs)
Implicit MacCormack 1.1 10038.25 s 26617 0.003934 s

(2.8 hrs)

Table 6.10: Computational time comparison

The results show that the implicit scheme gives solution that are accurate as

those of the explicit scheme, while taking just 1
30

th of the computational time.



Chapter 7

Conclusions and future work

Building on the earlier work of Nikhil Kalkote [21] and Ashwani Assam [2], we

have created a stand-alone version of the AnuPravaha Solver for computational

flows using implicit schemes. An compressible flow module was created for the

general-purpose CFD solver ANUPRAVHA, which uses the Implicit MacCormack

scheme with artificial viscosity in finite-volume form to solve the Euler system

(continuity, momentum and energy) of equations on a structured non-orthogonal

multi-block grid.

The above method is unconditionally stable, and is second order accurate in

both space and time.

In addition to this, the following features of this scheme should be pointed

out.

a) For regions of the flow satisfying explicit stability criteria, the implicit method

reduces to the corresponding explicit method and therefore no more com-

puting time than the explicit scheme is needed in these regions. Due to this

feature, the implicit MacCormack scheme is also called explicit-implicit or

hybrid in some literature.

b) Viscous effects are included in the implicit operator in an approximate and

very simple way to enhance the stability for viscous flows. Therefore the

computation of the implicit operator and its inversion can be done with

the help of the knowledge of the inviscid Jacobians. Two block bidiagonal

matrix inversions are reduced to two scalar bidiagonal matrix inversions, a

fact which greatly reduces the computation.
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c) Although the scheme is unconditionally stable in von Neumann’s sense, 4t is

still limited in practical computation, which is considered to be mainly due

to the error created by approximate factorization taken in the procedure

and the approximate linearization.

d) An intrinsic property of the two- step MacCormack type schemes, explicit or

implicit, is the time step dependence of the steady state solution. Thus,

convergent steady state solutions may only be reliable with sufficiently small

4t. Therefore one measure to achieve spatial accuracy is to reduce time

step towards the end of the marching until variation of the solution with

this reduction diminishes. This is obviously a disadvantage of the scheme

for steady state solutions.

Future work can be in the direction of

1. Further validation of the present code can be made for more complex ge-

ometries and for subsonic and transonic flow regimes.

2. Naiver-Stokes version of compressible flow with Turbulence models should

be implemented.



Appendix A

Jacobian Matrix Formulation

The inviscid Jacobians |A|, |B| and |C| can be diagonized by Sx, Sy and Sz

respectively. i.e.

A = S−1
x DASx B = S−1

y DBSy C = S−1
z DCSz

Sx =


1 0 0 0 −1

c2

0 ρc 0 0 1
0 0 1 0 0
0 0 0 1 0
0 −ρc 0 0 1




1 0 0 0 0
−u
ρ

1
ρ

0 0 0
−v
ρ

0 1
ρ

0 0
−w
ρ

0 1
ρ

0 0

αβ −uβ −vβ −wβ β


We use Mathematica to calculate the multiplication and inverse of the matricies.

So,

Sx =


(
1− αβ

c2

)
uβ
c2

vβ
c2

wβ
c2

−β
c2

−uc+ αβ c− uβ −vβ −wβ β
−v
ρ

0 1
ρ

0 0
−w
ρ

0 0 1
ρ

0

uc+ αβ −c− uβ −vβ −wβ β


and

S−1
x =


1 1

2c2
0 0 1

2c2

u c+u
2c2

0 0 u−c
2c2

v v
2c2

0 0 v
2c2

w w
2c2

0 ρ w
2c2

a51 a52 vρ wρ a55


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where

a51 = u2 + v2 + w2 − α,

a52 =
1

2β
+

u

2c
+

u2 + v2 + w2 − α

2c2

a55 =
1

2β
− u

2c
+

u2 + v2 + w2 − α

2c2

Sy =


1 0 0 0 −1

c2

0 1 0 0 1
0 0 ρc 0 0
0 0 0 1 0
0 0 −ρc 0 1


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ρ

1
ρ
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0 1
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0 0
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

=
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)
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ρ

1
ρ

0 0 0
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ρ

0 0 1
ρ

0
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
and

S−1
y =


1 0 1

2c2
0 1

2c2

u ρ u
2c2

0 u
2c2
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2c2
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2c2

w 0 w
2c2

ρ w
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where
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2β
+

v
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+
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2c2

a55 =
1

2β
− v

2c
+

u2 + v2 + w2 − α

2c2
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Sz =


1 0 0 0 −1

c2

0 1 0 0 1
0 0 1 0 0
0 0 0 ρc 0
0 0 0 −ρc 1
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+
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+
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Appendix B

Artificial Viscosity Formulation

The following explains the artificial viscosity formulation which has been fre-

quently used in connection with the MacCormack technique. We show here the

formulation for an unsteady, two-dimensional equation.

∂U

∂t
= −∂U

∂x
− G

y
+ J (B.1)

where U is the solution vector, U =
[
ρ ρu ρv ρ(e+ V 2/2)

]
.

At each step of the time-marching solution, a small amount of artificial vis-

cosity can be added in the following form:

Sti,j = Cx

∣∣pti+1,j − 2pti,j + pti−1,j

∣∣
pti+1,j − 2pti,j + pti−1,j

(U t
i+1,j − 2U t

i,j + U t
i−1,j)

+Cy

∣∣pti,j+1 − 2pti,j + pti,j−1

∣∣
pti,j+1 − 2pti,j + pti,j−1

(U t
i,j+1 − 2U t

i,j + U t
i,j−1)

(B.2)

where we have taken, Cx = Cy = Cz = 0.12

Eq. B.2 is a fourth order numerical dissipation expression. On the predictor

step Sti,j is evaluated based on the known quantities at time t. On the corrector

step, the corresponding value of Sti,j is obtained by using the predicted (barred)

quantities as S̄ti,j.

S̄ti,j = Cx

∣∣p̄ti+1,j − 2p̄ti,j + p̄ti−1,j

∣∣
p̄ti+1,j − 2p̄ti,j + p̄ti−1,j

(Ū t
i+1,j − 2Ū t

i,j + Ū t
i−1,j)

+Cy

∣∣p̄ti,j+1 − 2p̄ti,j + p̄ti,j−1

∣∣
p̄ti,j+1 − 2p̄ti,j + pti,j−1

(Ū t
i,j+1 − 2Ū t

i,j + Ū t
i,j−1)

(B.3)
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where we have taken, Cx = Cy = Cz = 0.12

The value of Sti,j and S̄ti,j are added at various stages of MacCormack scheme as

shown below with the help of calculation of density from the continuity equation.

For this U = ρ.

On the predictor step,

ρ̄t+∆t
i,j = ρti,j +

(
∂ρ

∂t

)t
i,j

∆t+ Sti,j (B.4)

On the corrector step,

ρt+∆t
i,j = ρti,j +

(
∂ρ

∂t

)
a

v∆t+ S̄t+∆t
i,j (B.5)
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