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Abstract 

 

The use of the phenomenon of magnetism for information processing goes 

back to the end of XIX century. In 1888, Oberlin Smith suggested the use of 

permanent magnetic impressions for the recording of sound. The recording of 

the human voice on a steel piano wire was first carried out in 1898 by a 

Danish inventor Valdemar Poulsen, whose invention gave rise some 30 years 

later to a magnetic tape recording industry. With the creation of the first 

computers, the use of magnetic storage elements such as tapes, cores, and 

later magnetic disks, have become widespread. Early on in the computer era, 

several attempts were made to develop all-magnetic logic, most notably 

using such devices as laddics and transuxors. These devices were magnetic 

ferrite elements of complex shape, interconnected by windings of copper 

wire. For example, the laddic was an element that had the appearance of a 

small ladder cut out of a ferrite with wire windings serving as inputs and 

outputs. By controlling the switching path through the structure, any 

Boolean function could be produced. The switching speeds of a few tenths of 

a microsecond and repetition rates of a few hundred kHz were reported. 

During the infancy of semiconductor processing, these numbers looked rather 

attractive. Moreover, even almost half a century later, all-magnetic logic 

devices are still unsurpassed in terms of their reliability, nonvolatile data 

retention and radiation hardness. 
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Chapter 1 
 

Introduction 

   

 

Cellular Automata involving field interaction for logic computation has been 

the alternative computing paradigm that offers interconnect-free design 

architecture, and hence, provides the scope for realizing low power circuits in 

the nanometer scale regime. The Quantum-dot-cellular automata (QCA), a 

category of Cellular Automata, uses Columbic interaction among electrons to 

realize logic functionality [1], [2], [3], [4]. However, QCA's have been 

fabricated and functionally verified only in the cryogenic temperatures. 

Many interesting observations related to energy dissipation in QCA can be 

found in [5], [6], [7]. For example, energy dissipation increased when the 

tunneling energy through the clock was enhanced. Also, energy dissipation 

was not reduced with scaling. In fact when the cell size was 10 nm, average 

energy dissipation was 12µeV whereas energy dissipation for a 40 nm cell 

was calculated to be 1.8µeV. In spite of such low energy dissipation in the 

computing systems, ITRS roadmap [8], reported reduced interest in 

Electronic-QCA due to power requirements to achieve ultra-low temperature 

circuit operation. 
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Figure 1-1: Representation of Quantum-Dot Cellular Automata 

 

Quantum-dot cellular automata (QCA) is deemed a potential 

candidate to replace or supplement CMOS electronic circuits at the end of 

the roadmap. QCA effects computation through the interaction of fields, and 

requires the transfer of charge only within a small, confined volume, called a 

QCA cell. In most cases the fields are electrical in nature, and electrons 

move within a cell in response to the charge positions of neighboring cells. It 

has been shown in Figure 1-1 theoretically that an array of cells can be used 

to effect complex computations, similar to that of a CMOS processor. 

Molecular Cellular Automata and Atomic Cellular Automata are the 

other two offshoots of Cellular Automata involving field coupled computing. 

While both architectures have displayed good promise for room temperature 

operations, research is still under progress to develop a stable structure of 

the molecules [9], [10], [11], [12]. The neighbor interaction among similar 

cells is also a subject of study. 
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Figure 1-2: Schematic of Quantum Cellular Dot 

 

Magnetic Quantum Cellular Automata (MQCA), the last member of 

this family till date, has been the most extensively researched phenomenon 

that has the ability to operate at room temperature. They have been 

successfully employed to demonstrate various logic elements including basic 

logic gates and horizontal and vertical wires. The two energy minimum 

states by virtue of their shape anisotropy enables them to represent stable 

binary logic. Switching between the states takes place through an external 

phenomenon named Clocking. Interconnect-free low power logic has been 

successfully demonstrated using MQCA.  

1.1 Motivation 

As mentioned above the magnetic quantum-dot cellular automata concept is 

a version of the field coupled QCA architecture that was first proposed in 

[13]. The original idea was introduced for a quantum dot system, in which 

electrons tunnel between the quantum dots under the influence of repelling 
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Coulomb forces. The basic QCA geometries and their functions are shown in 

Figure 1-2. An elementary building block contains four quantum dots in a 

square arrangement, having one dot in each corner. 



5 

 

 

Chapter 2 
 

Literature survey 

   

The use of magnetism for information storage processing goes back to the 

end of the 19th century [14, 15]. At the beginning of the 21st century, as the 

semiconductor industry faces difficulties for further down-scaling, several 

applications of magnetism for future logic and memory devices are proposed 

and investigated, such as the Magnetic Random Access Memory (MRAM) 

[16], the racetrack memory [17], as well as the magnetic Quantum-Dot 

Cellular Automata (MQCA) [18] recently referred to as nanomagnet logic 

(NML). All-magnetic information processing [19, 20] based on nanomagnets 

may become an attractive alternative to the electronic representation and 

information processing by naturally providing non-volatility, radiation 

hardness, high integration density, and very low power dissipation [21]. 

Energy/performance gains over CMOS are possible as well [22]. 

NML is based on a new computational paradigm (QCA) invented at 

Notre Dame [23], and is built from single-domain nanomagnets (nanodots, 

dots). NML uses stray magnetic fields as a physical coupling mechanism 

between bistable building blocks, which are assembled into arrays, to 

perform binary logic functions. Basic NML structures, such as lines, gates, 



6 

and inverters have been experimentally demonstrated, and function at room 

temperature [24-26]. 

In the NML devices, the magnets are forced to be in a high-energy 

state by a magnetic field referred to as the clocking field. As the clocking 

field is removed, the magnets relax into one of their two stable, low energy 

states. Standalone magnets relax randomly into one of the two states. As the 

nanomagnets are placed several nanometers apart, the emanating field from 

the neighboring magnets defines their final states. The field of the driver 

magnet is referred to as the biasing field. 

2.1 Purpose of MQCA 

 

 

Figure 2-1: Schematic of envisioned structure for NML operation 

 

The main goal is to fabricate a complete NML circuit, such as the one shown 

in Figure 2-1. The underlying copper wires are driven by a driver circuitry 

(not shown in the schematic). Current passing through these wires generates 

the clocking field for the NML structures, which are built on top of the 

wires. Although in this case, the required high current density needed to 

provide the sufficiently strong magnetic fields raises some issues [27]. The 
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clocking is set in such a way that the information propagates from left to 

right in the magnetic circuit. The envisioned biasing field for the 

nanomagnet circuit is provided locally either by a magnetic tunnel junction 

(MTJ) or by a biasing line, which converts an electrical signal to a magnetic 

signal [28]. At the output of the NML circuit, the MTJ converts the 

magnetic signal back to an electrical signal for possible further processing. 

This work focuses mostly on the engineering of the patterned nanomagnet 

layer. 
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Chapter 3 
 

Nanomagnet logic gate design 

   

The basic unit of NML is the nanomagnet. In previous works, identical 

nanomagnets were used to build NML structures with simple shapes, such as 

rectangles and ellipsoids. Some shape studies were performed on standalone 

magnets [29]. In addition to this advantage, shape engineering has other 

benefits as well. In the following sub chapters, we investigate the magnetic 

behavioral properties of nanomagnets with various aspect ratios (Section 3.1) 

and with different shapes (Section 3.2) to show possible programmability for 

NML gates. [30], and it has been shown that different shapes can have 

different sensitivity to fabrication variations. 

3.1 Symmetrically shaped nanomagnets  

A symmetrically shaped magnet has an energy barrier between two stable 

states, as shown in Figure 3-1, with the energy (E) vs. magnetization (H) 

landscape as shown. Consider a symmetric magnet that is subjected to a 

strong hard-axis field (indicated by the thick blue arrow pointing from left 

to right in Figure 3-1). For a large hard-axis external field, referred to as the 

“clocking field,” the magnetization is pointing in the direction of the field, 

and  favors   neither the up or down direction,  a  condition  referred   to  as  
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Figure 3-1: Energy landscape and clocking process of a symmetric, rectangular shape 

nanomagnet. The thick, blue arrow indicates the strong hard-axis clocking field. As the field 

is removed, the symmetric nanomagnet relaxes into one of the two energetically equivalent 

ground state. 

“nulled.” When the field is removed, the nanomagnet relaxes into one of the 

two energetically equivalent ground states, i.e., either pointing up or down. 

Even a small biasing field along the easy axis can influence which magnet 

ground state the magnetization will select. In Figure 3-1, the blue curve 

shows the potential landscape of the nanomagnet immediately after the 

removal of the nulling field. The presence of the energy barrier requires that 

an external field stronger than the nulling field is required to re-evaluate the 

magnet, i.e., set the magnet so that a new logic value, either up or down, 

can be written to it. It relaxes into a newly ordered state in accordance with 

any present biasing field. The magnet retains its new state without an 

externally applied field, since the size of the magnet is assumed to be larger 

than the superparamagnetic limit. 

3.2 Symmetrically shaped nanomagnets  

Shape engineering leads us to exploit the magnetic property of asymmetric 

nanomagnets. Most studies on single-domain magnets focused on symmetric 
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shapes with two, energetically equivalent ground states pointing along the 

easy axis (Figure 3-1). In this section, slanted-edge magnets are investigated. 

 

Figure 3-2: Simulation based on the single-domain model result for the slant nanomagnet 

energy landscape. The energy minima are shifted from the long geometrical axis, i.e., from the 

90 deg and 270 deg magnetization directions. 

 

Figure 3-3: Energy curves of the slant magnets for different slant locations. The external 

magnetic field is applied from left to right shown by horizontal, thick, blue arrows. The thin 

line along the diagonal of the magnet corresponds to the effective easy axis. 

A schematic of the asymmetric magnet having a slanted edge is 

shown in Figure 3-2 on the left side [31]. Simulations based on the single-

domain model show that the asymmetry of the magnet shifts the entire 
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energy landscape of the magnet, whereby the energy minima are shifted as 

well by about 20 deg. The thin line along the diagonal of the magnet in 

Figure 3-2 corresponds to the effective easy axis. The energy maximum is 

perpendicular to this axis. The horizontally applied field is not precisely in 

the direction of the energy maximum, so the resulting energy of the magnet 

is to one side of the maximum, and falls toward the appropriate ground state 

when the field is removed. As a result of the tilted easy axis, the 

nanomagnet takes on a preferred magnetization direction, as summarized in 

Figure 3-3. 

The schematic (Figure 3-3) lists all possible slant orientations and the 

corresponding overlaid energy diagrams, energy (E) vs. magnetization (H). 

The magnets in a) and d) relax into the downward pointing magnetization, 

and in b) and c) relax into the upward pointing direction. This specific shape 

can be exploited to reduce device footprint as shown below. 

3.3 Nanomagnets in NML devices 

 

Figure 3-4: Energy diagram of the magnets in different magnetization states. The magnet has 

low energy while magnetized along its long geometrical axis, and high energy when the 

magnetization is pointing along its short axis. 
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The nanomagnets inside the NML devices are aligned on a rectangular grid 

with their long axis oriented either horizontally or vertically. We apply an 

external field either along the horizontal or the vertical direction to set the 

magnetization state of each magnet; therefore, some magnets experience this 

field along their easy (long geometrical) axis and others along their hard 

(short geometrical) axis. The energies of these states are summarized in 

Figure 3-4. The easy axis magnetization flips the magnet into a stable and 

low energy state, and the hard axis magnetization provides an unstable, 

high-energy state. The energy difference between the two states extends from 

a few to few hundred electronvolts depending on the size and the shape of 

the magnet [32]. 

3.4 Nanomagnet Wire 

 

Figure 3-5: a) SEM image of a 5-nanomagnet-long vertical wire with a horizontally aligned 

driver magnet. b) MFM image of the same wire for one magnetization state of the driver 

magnet and c) for the other. The information propagates from the driver magnet toward the 

bottom of the wire by ferromagnetic coupling. 

The nanomagnet wire is the basic structure of the NML circuit library; 

therefore, the most often used building block of devices. Nanomagnets 

comprising NML wires can be coupled in one of two ways. One of these is 

the vertically aligned wire with ferromagnetically coupled (FC) magnets, and 
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the other is the horizontally aligned wire built from antiferromagnetically 

coupled (AFC) magnets. The orientation of the wire can be either horizontal 

(AFC) or vertical (FC). The FC wires can be as long as it is necessary to 

fulfill other design requirements, but in the AFC wire, every other magnet 

inverts the carried information, i.e., the wire length has to be an odd number 

to have the same bit value at the beginning and at the end of the wire. 

The vertical wire is shown in the SEM image in Figure 3-5. The one 

horizontally aligned magnet on the top is the driver magnet; it initializes the 

entire wire through FC. Its dimensions are 60 nm X 240 nm. All magnets are 

30 nm thick, and are separated by 25 nm. The wire is magnetized first by a 

horizontal pumping field pointing into the positive direction followed by a 

reverse field. MFM scan is performed after each magnetization to show the 

magnetization state of the vertical wire (Figure 3-5b and Figure 3-5c). The 

nanomagnets perform correctly and pass the information from the driver 

magnet through the wire according to the magnetization state of the driver 

magnet. 

 

Figure 3-6: a) SEM image of a 5-nanomagnet-long horizontal wire with a horizontally aligned 

driver magnet. b) MFM image of the same wire for one magnetization state of the driver 

magnet and c) for the other.  The information propagates from left to right, that is, from the 

region of strongest to weakest influence. 
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One horizontally aligned, five-magnet-long wire is shown in Figure 3-

6a. Here, the information propagates from the horizontal driver magnet 

through the antiferromagnetically coupled magnets, i.e., from left to right. 

Two MFM images (Figure 3-6b and Figure 3-6c) show the magnetization of 

the same wire for two possible states of the driver magnet. The same 

external field is applied here as for the vertical wires. 
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Chapter 4 
 

Nanomagnet Fabrication Techniques 

   

The technology for fabricating arrays of nanomagnets is currently under 

development in the HDD and MRAM industrial research. 

The patterned media development is still at an early stage. 

Fabrication techniques involve electron-beam lithography (EBL), X-ray and 

interference lithography, nanoimprinting, magnetic material deposition and 

pattern transfer. The deposition of the magnetic material is usually done by 

electroplating, sputtering or evaporation; the pattern transfer applies 

reactive ion etching (RIE) or low-energy ion irradiation. Focused ion beam 

(FIB) techniques are also under consideration [33,34]. 

There is a significant effort directed toward fabricating nanomagnets 

with an easy axis perpendicular instead of parallel to the surface, and many 

papers present fabrication of nanopillars [35], or patterning of metallic 

multilayers [36-38], which both provide out of plane domain orientation. 

Figure 4-1 illustrates the steps of the fabrication process for both 

single layer and double layer samples. 
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Figure 4-1: Electron-beam lithography and lift-off technology process steps.                         

(a) Exposure, (b) metal deposition and (c) lift-off. 

The EBL was carried out on an AMRAY 1400 converted scanning electron 

microscope driven by the Nanometer Pattern Generator System by J. C. Nabity. 

Using a thermal emission tungsten cathode in the gun with 50 kV acceleration 

voltage, we have a lithography resolution of about 15-20 nm, a minimum line width 

of 30-35 nm and a minimum of 60-80 nm pitch. To develop the exposed image, we 

use a solution of methyl-isobuthyl ketone (MIBK), isopropanol (IPA) and methyl-

ethyl ketone (MEK), 1:3:1.5% respectively, which has been identified as a high 

contrast developer by Bernstein et al. In Figure 4-1(b) the difference between the 

single layer and the double layer resist is shown by the larger undercut in the co-

polymer. On the one hand, this can prevent the formation of thin, walls along the 

border of the dots as seen in Figure 4-2(a). On the other hand, the patterns are 

less defined in the presence of the co-polymer because of its larger shadow angle. As 

a result, the evaporated material that does not arrive perfectly perpendicular to the 

surface of the substrate most of the time, spreads out. Another property of the 

double layer resists is the development of PMMA bridges. These bridges appear to 

be quite elastic, and can cause pattern deformation if they stick together before 

evaporation as Figure 4-2(b) reveals. We evaporated cobalt or permalloy as 
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magnetic material in an Airco Temescal FC1800 e-beam evaporator. Both 

ferromagnetic materials have a melting point of around 1750 K. After evaporation, 

the lift-off is done in a mixture of methylene chloride (MC) and acetone (ACE) at a 

ratio of 8:1 respectively, at room temperature. 

 

Figure 4-2: Top view SEM micrographs after lift-off. The elongated and flat, identically 

defined cobalt dots in the chains were fabricated (a) on single layer and (b) on double layer 

resist. In case of single-layer resist, there is material accumulation of the edges of the 

elements. In case of using double-layer resist, the pattern can get deformed as the PMMA 

bridges stick together. 
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Chapter 5 
 

Results and Discussion 

   

5.1 Maxwell Simulation Results 

Below shown are the result of the simulation which has been performed in 

Ansys Maxwell 3D software. The environment chosen here is vacuum and all 

the simulations were done considering the vacuum only. 

 

Figure 5-1: Maxwell 3D simulation result for the current density vector associated with the 

current flowing though the underlying conductor. The dimension of the wire chosen here is 

1µm×1 µm  

Given in Figure 5-1 is Maxwell simulation result simulated for the 

under lying conductor. The material here is chosen to be the copper wire the 

dimension of the cross section of which is taken as the 1µm×1 µm. 

Figure 5-2 shows the 3D view of the field associated with the current 

flowing through the wire and the Figure 5-3 shows the side view of the field. 
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Figure 5-2: This is the 3D view of the field associated with the current flowing in the 

conductor. The maximum and the minimum value of the field associated with the given 

current density value are 336mT and 3.83mT respectively. 

 

 

 

Figure 5-3: This is the 3D view of the field associated with the current flowing in the 

conductor. The maximum and the minimum value of the field associated with the given 

current density value are 336mT and 3.83mT respectively. 

The current density as shown in the over is found to be maximum of 

5.36×1011 A/m2 and the field associated with is found to maximum of 

336mT with placing any nanomagnetic dot over it. 
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Figure 5-4: Insulation shown for the copper conductor over it before placing the nanomagnet 

dots so that there should be no electrical contact between dot and conductor. 

 

 

Figure 5-5: The Nanomagnetic dots are now placed over the copper conductor. The material 

chosen for the nanomagnetic dots was Fe with the relative permeability of 8000. 

Figure 5-4 shows the insulation placed over the conductor before 

placing the nanomagnetic dots. Figure 5-5 shows the same copper conductor 

but with the nanomagnetic dots placed over it. The dimension of the 

nanomagnetic dots are chosen to be 110nm×50nm×30nm. Each of which 

were placed 20nm apart. They are placed in ferromagnetically coupled way. 

Figure 5-6 shows the simulated result for the same. 
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Figure 5-6: Simulation results shown with the Nanomagnetic dots placed over it. The 

simulation was ran for t = 1sec and the maximum and the minimum values of field associated 

with it are 95.87T and 1.04T respectively. 

  

Below Table 5-1 shows the comparison result for the field associated 

in the conductor with and without the nanomagnetic dots placed over it.  

 

Table 5-1: Comparison table for conductor with and without Nanomagnetic Dots placed over 

it for the same current density, J = 5.36×1011 A/m2 

Field Value Without Nanomagnetic Dots With Nanomagnetic Dots 

Maximum 336mT 95.87T 

Minimum 3.83mT 1.04T 

 

5.2  OOMMF Simulation Results 

The simulations predict that the nanomagnets with various aspect ratios 

have different switching field values. Also the problems associated with the 

nanomagnet wires is that the signal propagation. As the simulation shown 

below the following are the problems associated with the propagation of the 

signals. 
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Figure 5-7: Driver magnet here is given 130mT in the positive y-direction of magnetic field is 

used to drive the circular nanomagnet wires and pass the signal but the signal does not passes 

after certain distance and it dies off. 

 

Figure 5-8: Same Driver magnet here is given 130mT in the negative y-direction of magnetic 

field is used to drive the circular nanomagnet wires and pass the signal but here also the 

signal does not passes after certain distance and it dies off. 

As discussed in Chapter 3, the shape anisotropy can help for the 

above associated problem. The idea comes from the work of Varga et.al 

which is shown below. Given in Figure 5-9 is the structure of an unoptimized 

one-bit full adder built from 53 nanomagnets. Using shape anisotropy as 

discussed in Chapter 3, Varga et.al and his team has reduced the number of 

nanomagnets required to make the same adder as shown in Figure 5-10 the 

problems associated with the propagation of the signals. 

The footprint can be reduced further by using asymmetric, slant 

magnets as inputs to the adder. The inputs are provided by the 7 slant 

magnets, and the number of the rounded edge magnets is only 14 (total of 

21 magnets). 
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Figure 5-9: Schematic of the full adder including three, three-input majority gates, and 

several high aspect ratio magnets to act as drivers providing the input data (A, B, and Ci) for 

the circuit. The majority gates are the intersections of horizontal and vertical wires at which 

the center magnet is influenced by three input magnets (top, left and bottom neighbors) and 

influence an output magnet (right neighbor). The output is the sum (Sum) and the carry bit 

(Co). 

 

Figure 5-10: Reduced footprint design of the full adder. The inputs are provided by the slant 

magnets. 
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Using the idea as proposed by Varga .et.al and his team, this paper 

proposes the different ideas for the problems associated in the propagation of 

the signal by the nanomagnets, results of which has been discussed below. 

The idea was to explore the phenomenal advantages of the shape 

anisotropy of the nanomagnet wires to solve the problems associated with 

the signal propagation. Using the shape anisotropy one can orient the easy 

axis in the direction he wishes. Shown in the Figure 5-11 is the one of the 

proposed methodology using the advantage of the shape anisotropy referring 

to what Varga .et.al has done in Figure 5-9 and Figure 5-10. Here, the driver 

magnet has the dimensions as 140nm×70nm×30nm. The dimensions of the 

wire shown is 1µm×70nm×30nm. 

 

Figure 5-11: Driver magnet shown has the dimensions as 140nm×70nm×30nm. This driver is 

able to drive the wire of dimension 1µm×70nm×30nm. 

The Domain Wall Conductor along with the standalone nanomagnets 

Figure 5-12 shows the fabricated structure of Domain Wall Conductor. 

Domain Wall Conductor are terminated with a pointed end to prevent the 

nucleation of a Domain Wall at this end. The Domain Wall injector is a 

2.5µm diameter disk, which, when exposed to low magnitude magnetic fields, 

easily splits into multiple domains and can inject a wall into the Domain 

Wall Conductor. Referring to what Varga .et.al has done in Figure 5-12, this 

paper proposes another idea to possibly transmit the signal from one end to 

the other.  



25 

Figure 5-13 and Figure 5-14 shows the idea referring to what the 

Varga .et.al has done using Domain Wall Conductor in Figure 5-12. 

 

Figure 5-12: The domain wall conductor on the left has an expanded injector end 

 

 

Figure 5-13: Removing the Domain wall and inserting the slant NanoMagnet Dot driver with 

injection 

 

 

Figure 5-14: Along with the injection the and driver the NanoMagnet Dots to be driven are 

also added 

Micro-magnetic simulations using NIST’s OOMMF suite were 

performed to predict the behavior of the slant shaped wires and slant shaped 

drivers. Here are the results discussed below. 

Here, the size of the driver magnet was given to be 

140nm×70nm×30nm and the wire dimensions were 1µm×70nm×30nm. 

Figure 5-15 shows the simulation result for the driver magnet driving the 
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wire with the field strength of 130mT. The direction of the magnetic field in 

the driver in shown in the positive y-direction, thus the associated field in 

the wire is towards the right hand side. Similarly, Figure 5-16 shows the 

simulation result for the driver magnet driving the wire with the field 

strength of 130mT. The direction of the magnetic field in the driver here is 

in the negative y-direction, thus the associated field in the wire is towards 

the left hand side. 

 

Figure 5-15: Driver driving the wire has the field strength of 130mT in the positive y-

direction 

 

Figure 5-16: Driver driving the wire has the field strength of 130mT in the negative y-

direction 

 

For Figure 5-15 the simulation time came out to be 4.216ns and that 

for Figure 5-16 it came out to be 2.5462ns. Results have been compared in 

Table 5-2. 

Table 5-2: Comparison Table 

For Positive y input Negative y input 

Demagnetization Energy 14240.6 J/m3 14240.6 J/m3 

Exchange Energy 891.801 J/m3 891.801 J/m3 

Simulation Time 4.216ns 2.5462ns 



27 

As discussed earlier about Domain Wall Conductor having diameter 

of 2.5µm and the injection of length of approximately 5µm as shown in 

Figure 5-12. Figure 5-17 and Figure 5-18 shows the simulation results when 

the applied in field is 100mT in either direction. Over this injection there are 

30 nanomagnet dots each of which has the dimension 150nm×90nm×30nm. 

 

Figure 5-17: Domain Wall Conductor driving the dots has the field strength of 100mT in the 

positive x-direction 

 

 

Figure 5-18: Domain Wall Conductor driving the dots has the field strength of 100mT in the 

negative x-direction 

 

 

Figure 5-19: Driver driving the injection has the field strength of 130mT in the positive x-

direction with no Nanomagnet dots 
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Figure 5-20: Driver driving the injection has the field strength of 500mT in the positive x-

direction with 10 Nanomagnet Dots able to drive 4 Nanomagnet dots 

 

Figure 5-21: Driver driving the injection has the field strength of 650mT in the positive x-

direction with 10 Nanomagnet Dots able to drive 5 Nanomagnet dots 

Using their method, we have proposed an idea as shown in the Figure 

5-13 and Figure 5-14 simulation results of which are are shown in the Figure 

5-19, Figure 5-20 and Figure 5-21 and Table 5-3 and Table 5-4. 

 

Table 5-3: Comparison Table for Existing and Proposed Idea 

Parameter Their Idea Our Idea 

Input Applied 100mT 650mT (Figure 5-21) 

Simulation Time 13.533ns 6.9743ns 

 

Table 5-4: Comparison Table for Our Proposed Idea 

For Our Idea Input Applied Simulation Time Dots Driven 

Figure 5-19 130mT 5.788ns NA 

Figure 5-20 500mT 6.7243ns 4 

Figure 5-21 650mT 6.9743ns 5 
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Chapter 6 
 

Conclusion and Future work 

   

This work introduces new methodologies to solve the issues related to 

propagation of the signal through Nanomagnet Logic Wires.  The simulation 

using Maxwell 3D was done to verify the magnetic field associated with the 

current carrying conductor. The proposed idea is able to solve the problem 

associated with the propagation of the signal and has been verified using 

Micro Magnetic NIST's proposed OOMMF software and the results have 

been verified. 

6.1 Future Scope 

Future scope includes the problems associated with the speed. Still, the 

problem associated with the MQCA is the transition frequency cannot be 

beyond certain 100’s of MHz, but the silicon transistors runs on GHz clock 

frequency.  

Along with the frequency the current carrying conductor is also an 

issue because the resistance dominates when the cross section of metallic 

conductor is small. Also, the entire IC can be made out of the MQCA or not 

is still a question. 
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