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Abstract 

 

The evolution of microstructure and texture during hot deformation was investigated in an equiatomic 

multicomponent CoCrFeMnNi alloy. For this purpose the alloy was obtained in the cast form and 

thermos-mechanically processed to obtain a wrought microstructure with average grain size of ~ 28 µm. 

Hot compression samples were subsequently extracted from this alloy. The hot compression tests were 

carried out at temperatures ranging from 700°C to 1000°C and strain rates varying from 0.001/s to 1/s. 

The flow curves were analyzed for understanding the deformation behavior. The microstructure and 

texture evolution was investigated using electron backscatter diffraction system.  

The analysis of the flow curve yielded an apparent activation energy for deformation ~350 kJ mol
-1

. 

This was found close to the activation energy for the diffusion of the slowest diffusing element Ni. The 

microstructural analysis indicated that the dynamically recrystallized grains nucleated along the shear 

bands and prior grain boundaries resulting in the formation of typical necklace structure. Significant grain 

size refinement was achieved due to dynamic recrystallization. The grain size of dynamically 

recrystallized regions also showed strong dependence on the Zener-Holloman parameter.   

The texture of deformed and dynamically recrystallized grains were found to be similar but rather 

weak. This feature could be attributed to the nucleation of dynamically recrystallized without any 

preferential orientation selection.       
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Nomenclature 

 

HEA- High Entropy Alloy 

DRX- Dynamic Recrystallization 

CA- Compression Axis 

FCC- Face Centered Cube 

BCC- Body Centered Cube 

ECAP- Equi-Channel Angular Pressing 

HPT- High Pressure Torsion 

ARB- Accumulative Roll Bonding 

XRD- X Ray Diffraction 

SEM- Scanning Electron Microscope 

EBSD- Electron Backscatter Diffraction 

GAM- Grain Average Misorientation 

Z- Zener Hollomon parameter 

σ- True Stress (MPa) 

ε- True Strain 

Q- Activation Energy (kJmol
-1

) 

R- Universal Gas constant (JK
-1

mol
-1

) 

IPF- Inverse Pole Figure 

HAGB- High Angle Grain Boundary 

LAGB- Low Angle Grain Boundary 
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Chapter 1: Introduction 

1.1 High entropy alloys 

The classical alloy design concept for developing structural materials is essentially focused on 

using one principal element to which other alloying elements are purposefully added in suitable 

proportion for introducing or improving desired properties. Well known examples of these 

materials are different grades of steels (iron base), aluminum, nickel or copper base alloys. In 

contrast, high entropy alloys (HEAs) are recently developed multicomponent alloys having five 

or more elements in equiatomic or near equiatomic proportion. In spite of the presence of a large 

number of elements the HEAs surprisingly have simple FCC, FCC+BCC or BCC structures. It is 

hypothesized at the present state of knowledge that high configurational entropy associated with 

the mixing of a large number of elements stabilizes phases with simple crystal structures. The 

HEAs have generated tremendous research interest in recent times due to the possibility of 

developing many new alloy systems with unique properties. High entropy, sluggish diffusion, 

severe lattice distortion and cocktail effects are found to be the significant factors in affecting the 

structures and properties of HEAs. 

The majority of the early investigations on HEAs has been carried out on as-cast alloys for 

understanding the phase stability. Although high hardness, wear and abrasion resistance have 

been observed in HEAs even in the as-cast conditions, it is expected that development of HEAs 

with ultrafine (average grain size ≤ 1 µm) to nanostructure (average grain size ≤ 0.1 µm) by 

appropriate thermo-mechanical processing route can greatly enhance the properties and widen 

the possible applications of these alloys. 

The advent of different severe plastic deformation techniques, such as, equi channel angular 

pressing (ECAP), high pressure torsion (HPT) or accumulative roll bonding (ARB) has made it 
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possible to achieve ultrafine to nanocrystalline grain size in a wide variety of materials. Although 

these techniques remain scientifically intriguing, scaling up these techniques for continuous and 

bulk production remains a key challenge. In contrast, hot deformation of materials (i.e. plastic 

deformation of materials above the recrystallization temperature) which is a widely accepted and 

established technique for microstructure refinement can also result in achieving ultrafine grain 

size under suitable processing conditions. Therefore, from the point of view of applications of 

these alloys in of future structural applications of HEAs, hot-deformation approach for 

developing ultrafine HEAs appears to be more attractive than other SPD routes. 

1.2 Objectives of the present study 

The present work attempts to understand the hot deformation behavior of high entropy alloys 

(HEAs) with particular reference to microstructure and texture formation. Equiatomic 

CoCrFeMnNi with simple FCC structure is studied as the model alloy system. The hot 

deformation has been carried out by varying the processing parameters.  Careful characterization 

at different length scales using X-ray Diffraction (XRD), Scanning Electron Microscopy-

Electron Backscatter Diffraction (SEM-EBSD) techniques. 
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Chapter 2: Literature Review 

2.1 Development of high entropy alloys 

The classical alloy design concept for developing structural materials is essentially focused 

on using one principal element to which other alloying elements are added purposefully in 

suitable amount for introducing or improving desired properties. Well known examples of these 

materials are different grades of steels (iron base), aluminum, nickel or copper base alloys. In 

contrast, recently a new alloy design concept has been introduced for developing novel structural 

materials which are multicomponent alloys having equal to or more than five elements with 

almost equal proportion [1]. These materials have assumed the generic name high entropy alloys 

(HEAs) due to the very high configurational entropy associated with the mixing of a large 

number of elements. These alloys, although, contain a large number of principal elements, but 

the structure remains essentially simple, many times FCC or BCC [2]. The research on HEAs 

has gained considerable attention in recent years and many interesting and unique properties of 

these materials have been reported [3-9]. The unique properties of the HEAs are attributed to the 

core effect of multicomponent solid solution formation, namely distorted lattice structure [3, 4], 

cocktail effect [3, 4], sluggish diffusion [3, 4, 10] and formation of nanoscale deformation twins 

[5, 11]. The potential of these alloys in terms for various engineering applications such as wear 

and abrasion resistant material [12, 13] have already been recognized. Many of the early 

investigations on HEAs are carried out on as-cast materials. However, it is well known that 

thermo-mechanical processing can greatly refine the microstructure and enhance the properties 

of materials. As a result thermo-mechanical processing remains a topic of much interest for 

HEAs.It may be noted that the advent of different severe plastic deformation (SPD) processing 

techniques such as Equi Channel Angular Pressing (ECAP) [14], High Pressure Torsion (HPT) 
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[15] or Accumulative Roll Bonding (ARB) [16] has made it possible to achieve ultrafine to 

nanostructure in a wide range of materials.  However, these processing routes are not amenable 

to continuous production at their present state of development. Therefore, microstructural 

refinement through conventional thermo-mechanical processing routes remains particularly 

important for HEAs. 

2.2 Thermo-mechanical processing of HEAs 

Thermo-mechanical processing involving heavy deformation and annealing has been 

investigated on different HEAs [17-22]. A number of studies have used the equiatomic FCC 

CoCrFeMnNi as a model system for this purpose. It has been recently clarified by the research 

group at IIT Hyderabad that large cold-rolling reduction (≥90% reduction in thickness) followed 

by suitable annealing treatments can yield ultrafine microstructure (Fig.2.1) [23, 24]. The 

evolution of such ultrafine microstructure has been attributed to nucleation inside 

homogeneously deformed matrix, but restricted grain growth due to sluggish diffusion. The HEA 

also shows exceptional resistance against grain growth with rather high activation energy for 

grain growth [25]. It is well-known that significant microstructural refinement can also be 

achieved in a wide range of materials by suitable hot-deformation processing. For low SFE 

alloys microstructural development during hot deformation involve dynamic recrystallization 

leading to the formation of a necklace type structure (Fig.2.2). The hot deformation behavior of 

HEAs has been investigated only to a very limited extent. Although the hot deformation behavior 

of the equiatomic FCC CoCrFeMnNi has been reported very recently, detailed microstructural 

development has not been reported [26]. 
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2.3. Objective and significance of the present study 

It is evident that low SFE of the CoCrFeMnNi and sluggish diffusion in this system make 

this alloy quite suitable for investigating the possibility of achieving ultrafine microstructure 

using conventional hot deformation based thermo-mechanical processing approach. This clearly 

requires appropriate understanding of the flow behavior and microstructure development during 

hot deformation, which essentially constitute the major focus of present research. 
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Fig.2.1: Grain boundary map of equiatomic CoCrFeMnNi after 95% cold-rolling at annealing at 

700°C. The black, gray and red lines are the high angle boundaries and twin boundaries, 

respectively. The average recrystallized grain size is ~ 1µm [23]. 

 

 

 

 

 

Fig. 2.2:  Schematic of the process of microstructural evolution during hot deformation [27]. 

  

25 µm 
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Chapter 3: Experimental Procedure 

3.1 Starting material 

Equiatomic CoCrFeMnNi HEA was selected for the present investigation. The alloy was 

prepared using a well-developed vacuum arc melting route. Co and Ni were taken in the form of 

small cubes and balls respectively, while the others constituents in the form of chips for the 

melting purpose. The melt was re-melted for three times to improve the homogeneity. A Vacuum 

Arc Melting unit (Make: M/S Vacuum Techniques, Bengaluru, INDIA) was used for the melting 

and remelting purpose. The melt was cast into a pancake shape with dimensions of 20mm 

(thickness) * 80mm (diameter). 

3.2 Processing 

3.2.1 Preparation of the samples for hot compression 

The as cast alloy was homogenized at 1100°C for 6 hours (h). The homogenized alloy was 

subsequently hot forged at 800°C to 30% reduction in thickness. Cylindrical compression 

samples having dimensions 8mm (diameter) x 14 mm (height) were extracted from the hot 

forged material using electro discharge machining (EDM). The procedure for obtaining the 

compression samples could be summarized in Fig.3.1.   
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Fig. 3.1: Flow chart showing preparation of the samples for hot compression. 

 

3.2.2 Hot compression 

Uniaxial hot compression testing was carried out in a thermo-mechanical processing simulator 

(Model: Thermecmastor-Z, Make: Fuji Electronic Industrial Company Ltd., Japan) installed at 

Kyoto University, Japan using various temperatures and strain rates. Mica with glass powder was 

used as insulator and lubricant. A thermocouple was welded to the compression samples at the 

mid-height region for precise temperature measurement. The samples were isothermally held at 

1000°C for 15 minutes and then cooled at the rate of 2°C/s to the deformation temperature. 

Nitrogen jet was used as the cooling medium. 
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Fig.3.2 shows a representative image of the deformation chamber. Deformation was carried at a 

wide range of varying from 700°C to 1000°C in an intervals of 100°C using the strain rates of 

10
-3

, 10
-2

 and 10
0 

s
-1

. Once, the deformation temperature was attained, holding time of 10s was 

given for achieving homogeneity of temperature. For all the deformation conditions mentioned, a 

uniaxial compressive deformation was carried out to 60% reduction in height with an equivalent 

true strain of  ε = 0.916 . As soon as the deformation was completed, the samples were quenched 

using the flowing N2 jet. The experimental procedure and various conditions of the hot-

compression testing could be summarized in Fig.3.3. 

 

 

 

 

 

 

 

Fig.3.2: Deformation chamber of the thermo-mechanical processing simulator showing the 

sample in the red hot state just before the compression. 
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Fig.3.3: Experimental procedure and various conditions of the hot-compression testing. 

 

3.3 Microstructural observations 

The microstructure and texture of the hot compressed samples were characterized by Electron 

Back Scatter Diffraction (EBSD). For EBSD investigation, the hot-compressed samples were 

sectioned vertically through the center along the compression direction (Fig.3.4). The samples 

were carefully mechanically polished prior to electropolishing. The Electrolyte used for the 

electropolishing consisted of 10% perchloric acid and 90% methanol. The electropolishing was 

carried out at -5°C using a constant voltage of 15V applied for 15s. 
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Fig.3.4: Schematic of the sample sectioning procedure for the EBSD measurements (CA = 

compression axis). 

An EBSD system (Oxford Instruments, UK) attached to a Field Emission Scanning Gun type 

Scanning Electron Microscope (FEG-SEM, Make: Carl Zeiss, Germany, Model: SUPRA 40) 

was used in the present work. The EBSD scans were all obtained very close to center shown by 

enclosed square in Fig.4. A scan step size of 0.20 µm was used for all the scans. The AzTec 

HKL software (Oxford Instruments, UK) was used for the data acquisition. The scan data was 

exported in the .ctf format for analysis using the TSL-OIM
TM

 software (EDAX Inc., USA) for 

analysis purpose. The Inverse pole figures (IPFs) were calculated using the series expansion 

method with series rank 22. 

The current study focuses mainly on the evolution of microstructure and texture in 

dynamically recrystallized (DRX) regions. In order to separate the DRX regions, a proper set of 

criteria was felt necessary. Kernel average based misorientation approach which has been used 

for this purpose by various authors was also adopted in this work. In the present study, KAM 

based approach was also used. The KAM was calculated up to 10 nearest neighbors using a cut-

off angle of 5°. The recrystallized regions were defined as those satisfying the criteria of KAM≤ 

0.5°. 
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Chapter 4: Results and Discussion 

4.1 Starting Material 

Fig.3.3 suggests that the material which was annealed at 1000°C for 15 minutes can be 

considered as the starting material for the subsequent hot compression. The microstructure of 

starting materials is shown in Fig.4.1. This microstructure is obtained by quenching the material 

after annealing at 1000°C for 15 minutes. The Y axis of the map is parallel to the compression 

axis (CA). The average grains size of the starting recrystallized material is ~ 25 µm. The twins 

are not considered as separate grains for the calculation of grain size. The grain size distribution 

of the starting materials is shown in Fig.4.1(b) where presence of few large grains may be 

evident. The starting texture appear to be quite weak (Fig.4.1(c)). 
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Fig.4.1: (a) Microstructure and (b) grain size distribution and (c) IPF plot (reference direction is 

the CA direction parallel to the Y axis of the map shown in Fig.4.1(a)) showing texture of the 

starting material i.e. obtained after annealing at 1000°C for 15 minutes. 
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4.2 Flow curves 

Fig.4.2 shows flow curves for constant strain rate and different deformation temperatures. For 

any given strain rate, the flow stress is decreased with an increase in the deformation 

temperature. This is equivalent so saying that with decreasing Zener-Hollomon parameter 

(𝑧 = 𝜀̇ exp (
𝑄

𝑅𝑇
)), the flow stress is reduced. This is indicative of the occurrence of dynamic 

recrystallization (DRX). This behavior is clearly summarized in Fig.4.3 which shows that the 

maximum peak stress decreases consistently with decreasing Z (i.e. with decreasing strain rate 

for a constant temperature or increasing temperature for a constant strain rate). However, the 

flow curves in Fig.4.2 indicate that even when the DRX is expected, the difference between the 

peak stress and steady state stress is rather small. 
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4.3 Calculation of hot deformation parameters: 

The flow stress (𝜎) is affected by deformation temperature (T), strain rate (𝜖)̇ and strain 

during hot deformation. The interdependence of these parameters can be expressed by using 

appropriate constitutive equations. The Arrhenius type of equation is employed for expressing 

the relationship between 𝜖̇, T and 𝜎 while the Zener-Holloman parameter [28] is used to correlate 

T and 𝜖̇. The two relevant equation are given by: 

                                                   𝑍 = 𝜖̇ 𝑒𝑥𝑝 (
𝑄

𝑅𝑇
)                          𝐸𝑞. 4. 1          

 

                                                            And 

 

                                                        𝜖̇ = 𝐴𝑓(𝜎)𝑒𝑥 𝑝 (−
𝑄

𝑅𝑇
)                   𝐸𝑞. 4. 2       

 

𝑓(𝜎) is a function which varies depending up on the stress level as summarized below: 

𝑓(𝜎) = 𝜎𝑛1  𝑖𝑓 𝛼𝜎 ≤ 0.8 

= exp(𝛽𝜎)  𝑖𝑓 𝛼𝜎 ≥ 1.2 

                                                          = [𝑠𝑖𝑛ℎ(𝛼𝜎)]𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼                         𝐸𝑞. 4. 3        

 

Q: activation energy of deformation (Jmol
-1

), R: universal gas constant (8.314 Jmol
-1

K
-1

), T: 

deformation temperature, σ: Flow stress (MPa), 𝜖̇: strain rate (s
-1

). A, α, β (=αn1), n and n1 are 

constants. 

The true stress-strain curves can be used to determine the constants. Substituting the Eq.4.3 in 

Eq.4.2, 

𝜖̇ = 𝐵𝜎𝑛1                              Eq. 4. 1 

and 

𝜀̇ = 𝐶𝑒𝑥𝑝(𝛽𝜎)                      Eq. 4. 2 
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In the above equations B and C are constants. 

It can be easily derived from Eq.4.4 and Eq.4.5 that: 

𝑙𝑛𝜖̇ = 𝑙𝑛𝐵 + 𝑛1𝑙𝑛𝜎                 Eq. 4. 3 

𝑙𝑛𝜀̇ = 𝑙𝑛𝐶 + 𝛽𝜎                      Eq. 4. 4 

 

Therefore, the slope of the 𝑙𝑛𝜀̇ 𝑣𝑠 𝑙𝑛𝜎 plot (Fig.4.2(a)) will supply the constant n1 while the 

slope of 𝑙𝑛𝜀̇ 𝑣𝑠 𝜎 (Fig.4.2(b)) will supply the constant β. It is clearly observed that slope of the 

straight lines in Fig.4.2 vary considerably with temperature. For instance the value of n1 varies 

from 5.5 to 29.  The estimated values of n1 and β are 13 and 0.045. From these values α (=

𝛽

𝑛1
) may be determined as 0.0035. 

The hyperbolic sine form of 𝑓(𝜎)(= [𝑠𝑖𝑛ℎ(𝛼𝜎)]𝑛) is suitable for both low and high stress 

levels. It may be easily shown that, 

𝜀̇ = 𝐴[𝑠𝑖𝑛ℎ(𝛼𝜎)]𝑛𝑒𝑥𝑝 (−
𝑄

𝑅𝑇
)                                       Eq. 4. 8 

 

𝑙𝑛[𝑠𝑖𝑛ℎ(𝛼𝜎)] =
𝑙𝑛 (�̇�)

𝑛
+

𝑄

𝑛𝑅𝑇
−

𝑙𝑛𝐴

𝑛
                                Eq. 4. 9 

 

The plot of ln[sinh(𝛼𝜎)]  𝑣𝑠 ln 𝜀̇ for a particular temperature may be used to determine the value 

of n. A series of plots is shown in Fig.4.3(a). The average value of n determined from the plot is 

~9.3. 

Differentiation of the Eq.4.8 shows that 

𝑄 = 𝑅𝑛
𝑑{𝑙𝑛 [𝑠𝑖𝑛ℎ 𝛼𝜎)]

𝑑(
1

𝑇
)

                                                 Eq. 4. 10 
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Therefore, the slope of the curve ln [sinh 𝛼𝜎)]  𝑣𝑠 1/𝑇 is necessary for determining the 

activation energy (Fig.4.3(b)). Substituting the average slope in the Eq.4.10, the calculated 

activation energy at a strain of 0.6 was found to be 495 k J mol
-1

. Similar analysis was carried 

out to estimate activation energy at strains 0.4, 0.6, 0.8 and 0.9 as well. The effect of strain on 

activation energy is shown in the Fig.4.4. 
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Fig.4.2: Determination of (a) n and (b) β at a constant strain ε = 0.6. 
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Fig.4.3: The plot of (a) ln 𝜀 ̇ 𝑣𝑠 ln [sinh 𝛼𝜎)]  and (b) ln [sinh 𝛼𝜎)]  𝑣𝑠 1/𝑇 (at a constant strain ε 

= 0.6) for the determination of (a) n and (b) activation energy. 

  

-1.6 -1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8

-7

-6

-5

-4

-3

-2

-1

0

1

 

 

 700C

 800C

 900C

 1000C

ln
 (

s
tr

a
in

 r
a

te
),

 s
-1

ln [sinh()]

18.38.15.55.2

9.3

0.75 0.80 0.85 0.90 0.95 1.00 1.05

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

 

 

 10
0
 s

-1

 10
-2
 s

-1

 10
-3
 s

-1

ln
 [

s
in

h
(


)]

(10
3
/T), K

-1

4.1

6.9

8.3

6.4

a 

b 



21 
 

It may be noted that fitting of the data for 700°C/1 condition is particularly different than 

other conditions. The flow curve for 700°C/1 appears distinctly different. The curve shows a 

typical strain hardening behavior up to a strain of ε=0.5 and does not extend up to ε=0.9 unlike 

other flow curves. This may particularly affect the fitting of the data leading to abnormally high 

value of n. The exclusion of the data will evidently result in the elimination of other deformation 

conditions at 700°C (since a perfect fit can be obtained for two data points). Therefore, the plots 

are recalculated excluding the 700°C condition. The calculated n value excluding the 700°C data 

is 7.5. Similarly, the value of β excluding the 700°C data is 0.036. The value of α (=β/n) is 

0.0047. The modified Q can be calculated from the equation Eq. 4.10. Fig.4.4(a) and Fig.4.4(b) 

shows the  ln 𝜀̇  𝑣𝑠 ln[sinh(𝛼𝜎)]  and ln [sinh 𝛼𝜎)]  𝑣𝑠 1/𝑇  plots, respectively sans the 700°C 

data at the strain value of ε=0.6. The n values at 800°C, 900°C and 1000°C are found to be 

~4.90, 5.02 and 6.89, respectively (Fig.4.4(a)). On the other hand, the average value of the slope 

obtained from the ln [sinh 𝛼𝜎)]  𝑣𝑠 1/𝑇 plot is 8.26 (Fig.4.4(b)). The product of these two 

quantities gives the activation energy at the specified strain level. In a similar manner, the 

activation energy is calculated at other strain levels. The variation of activation energy with 

temperature is shown in Fig.4.4(c). The activation energy decreases with increasing strain. A 

particularly high value is observed for ε=0.4 (415 kJmol
-1

). For ε>0.4, the activation energy 

drops from 375 kJmol
-1

 to 350 kJmol
-1

. 
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Fig.4.4: The plot of (a) ln 𝜀 ̇ 𝑣𝑠 ln [sinh 𝛼𝜎)]  and (b) ln [sinh 𝛼𝜎)]  𝑣𝑠 1/𝑇 (at a constant strain ε 

= 0.6) for the determination of (a) n and (b) activation energy sans the 700°C data; (c) shows the 

variation of activation energy with imposed strain. 

 

 

 

-1.5 -1.0 -0.5 0.0 0.5 1.0

-7

-6

-5

-4

-3

-2

-1

0

1

 

 

 800C

 900C

 1000C

ln
(s

tr
a
in

 r
a
te

),
 s

-1

ln[sinh()]

6.895.024.90

Average=5.60

(a) 

0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94

-1.5

-1.0

-0.5

0.0

0.5

1.0

 

 

 10
0
 s

-1

 10
-2
 s

-1

 10
-3
 s

-1
  

ln
[s

in
h

(


)]

(1/T)10
3
, K

-1

6.36

9.08

9.36

Average=8.26

(b) 

0.4 0.5 0.6 0.7 0.8 0.9

340

350

360

370

380

390

400

410

420

 

 

A
c

ti
v

a
ti

o
n

 E
n

e
rg

y
, 

k
J
m

o
l-1

True Strain

(c) 



23 
 

The interdependence of temperature and strain rate can be shown in a single parameter Z, 

which was proposed by Zener and Hollomon can be given as 

                                                                                           Eq.(4.8) 

Upon, comparing with eq.(4.1), eq.(4.8) can also be written as 

                                                                                            Eq.(4.9) 

 

Taking log function on both sides, eq.(4.9) results in,  

                                                                                             Eq.(4.10) 

The linear fit with ln Z versus ln [sinh(ασ)], gives the slope as ‘n’ and y-intercept as ln A, this is 

shown in Fig.4.5. 

  

Z = ε̇ exp(
𝑄

𝑅𝑇
) 

𝑍 = 𝜀̇ exp (
𝑄

𝑅𝑇
) = 𝐴[sinh(𝛼𝜎)]𝑛 

ln 𝑍 = ln 𝐴 + 𝑛 ln [sinh (𝛼𝜎)] 
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Fig.4.5: The linear dependence of Z on hyperbolic sine function of flow stress at ε=0.6. 

Based on the above analysis, a constitutive equation eq.(4.1) can be developed which describes 

the flow stress as a function of temperature and strain rate at ε=0.6 as, 
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4.4 Evolution of microstructure and texture 

The evolution of microstructure during hot deformation under different processing conditions 

is shown in Fig.4.6. The microstructures shown in Fig.4.6 are basically the image quality (IQ) 

maps overlaid with grain boundaries (GBs). The low angle grain boundaries (LAGBs defined by 

2° ≤ misorientation angle (θ) ≤ 15°) and high angle grain boundaries (HAGBs defined by θ ≥ 

15°) are shown by red and blue lines, respectively.  The contrast visible in the IQ maps are based 

on contrast of the acquired kikuchi diffraction patterns. The IQ maps, therefore, correlate with 

the defect density. It may be noticed that the maps in Fig.4.5 has been arranged in the decreasing 
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Fig.4.6. Image Quality + Grain Boundary Maps showing the evolution of Microstructure during 

deformation at various deformation parameters. 
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Fig.4.7. IPF Maps for the DRX regions during deformation at various conditions.  
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order of the Zener-Hollomon parameter (𝑧 = 𝜀̇ exp (
𝑄

𝑘𝑇
)) along the vertical direction and along 

the horizontal direction. This is also clearly indicated in the figure. 

The main observations from the IQ maps can now be summarized. It may be very clearly 

observed that the volume fraction of the DRX grains increase systematically with decreasing Z 

i.e. for constant temperature with decreasing strain rate or for constant strain rate with increasing 

temperature. The IQ maps of materials deformed at 700°C and higher strain rates show rather 

small fraction of DRX (for strain rates of 1 and 0.1, corresponding to Fig.4.5(a) and Fig.4.5(b), 

respectively). Formation of profuse micro shear bands and their propagation is a remarkable 

feature. Sometimes the shear bands converge into the GBs and split the microstructure 

remarkably. The width of the bands may go up to 30 µm. Remarkably, these small fraction of 

DRX grains are observed to nucleate preferentially along the micro shear bands which 

sometimes coincide with the grain boundaries. For processing condition 700°C/0.001 

(Fig.4.6(c)), DRX is clearly evidenced by nucleation of ultrafine grains (average grain size ~ 

0.80µm) at the shear bands and at the prior grain boundaries. These DRX grains are bounded by 

HAGBs so that their nucleation is accompanied with high concentration of HAGBs at the prior 

GBs and shear bands. On the other hand, at deformation temperature of 1000°C and for various 

strain rates, high fraction of DRX grains are observed in all the IQ maps (Fig.4.6(j)-Fig.4.6(l)). 

Almost completely DRXed microstructure is obtained at the processing condition of 

1000°C/0.001 (Fig.4.6(l)). The DRXed grains in this condition (Fig.4.6(l)) also show presence of 

clear annealing twin boundaries (highlighted by the green lines). The microstructures at other 

combination of temperature/strain rate show varying fraction of DRXed grains. It may be noticed 

that at higher temperatures and lower strain rates (for lower Z) prior grain boundaries emerge as 

the preferred nucleation sites for dynamic recrystallization. In order to further understand the 

microstructural development, the DRXed fraction is separated from the IQ maps. The 

corresponding maps are shown in Fig.4.7 in the form of IPF maps. The reference direction in the 

IPF maps is the CA. The DRX grain size is estimated from these maps while the DRX fraction is 

directly obtained from the fraction of points which belong to the portioned dataset. Table 4.1 

summarizes the grain size and DRX fraction for different processing conditions, quantitatively. It 

is clearly observed that DRXed grain size and fraction DRXed decreases with increasing Z. In 

order to understand the texture evolution during hot compression, the CA-IPFs are calculated 

from the deformed (Fig.4.8) and recrystallized (Fig.4.9) fractions. It is clearly observed from the 
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IPF maps that the texture of both deformed and recrystallized regions are quite weak. In case of 

deformed regions weak alignment of the CA parallel to the <100> or <111> pole is observed. It 

is clearly observed from the IPF maps that the dynamically recrystallized grains show rather 

random and scattered orientations (Fig.4.7). In good agreement the IPF plots show very weak 

intensities (Fig.4.9). In most cases the ODF intensity is close to the random level (~1). Rather 

weak alignment of the CA parallel to the <100> or <111> pole is observed. 
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Fig.4.8. IPF plots showing the crystallographic poles in the deformed regions that are oriented 

parallel to the compression axis.  
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Fig.4.9. IPF plots showing the crystallographic poles in the DRX regions that are oriented 

parallel to the compression axis.  
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Table.4.1. Summary of DRX fraction and DRX grain size at various deformation conditions. 

 

 

 

 

 

 

 

 

 

Temperature 

(°C) 

 

DRX fraction (%) 

 

DRX grain size(µm) 

Strain rate, s
-1

 10
0
 10

-2
 10

-3
 10

0
 10

-2
 10

-3
 

700 0.8 2.3 6 - 0.80 0.87 

800 3 8.1 18.5 0.7      0.87 1.2 

900 8      23 27    1.04 1.5 2.58 

1000 9 48     73    1.32 1.57 5 
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5. Discussion 

5.1 Flow curve and hot deformation behavior 

The flow curve analysis shows that the activation energy in the steady state varies from ~380 

kJ mol
-1

 to 350 kJmol
-1

. This activation energy is somewhat higher than that reported by 

Stepanov et al [29] ~291 kJ mol
-1

. These authors have shown reasonable correlation of this 

activation energy with that of the slowest moving diffusion species i.e. Ni ~317.5 kJ mol
-1

. On 

the other hand, the activation energy during tensile testing of the same alloy during tensile testing 

at temperatures ≥ 750°C  and at a strain rate of 10
-5

 s
-1

 is found to be ~330 kJ mol
-1

. This 

activation energy is clearly in good agreement with the lower bound value of the activation 

energy in the present research ~350 kJ mol
-1

. This apparent similarities indicate similar diffusion 

controlled mechanism for hot deformation in the present system. The apparent differences in the 

activation energy with that reported by Stepanov et al [29] may also originate from the initial 

microstructure. In the present case the microstructure before hot compression is wrought 

processed with relatively fine microstructure ~28 µm. The initial microstructure has not been 

reported by Stepanov et al [29]. 

5.2 Evolution of microstructure and texture 

The recrystallization behavior during hot compression can be categorized in two broad classes 

depending up on the nucleation mechanism, namely continuous and discontinuous dynamic 

recrystallization (CDRX and DDRX, respectively) [30]. In case of CDRX, the evolution of a 

recrystallized microstructure connected by HAGB network is through the process of conversion 

of LAGBs to HAGBs with increasing strain. In contrast, the DDRX mechanism involve 

nucleation and growth of new strain free grains. The IQ maps shown in Fig.4.5 clearly reveal the 

process of DDRX during hot compression. Even in case of the 700°C/1 (Fig.4.6(a)) and 

700°C/0.01 (Fig.4.6(b))  deformation conditions, nucleation of grains at the shear bands are 

evidenced although the DRX fraction is rather small in these conditions. In general shear bands 

are regions of large orientation gradient which is favorable for easy nucleation during static or 

dynamic recrystallization. In contrast, conditions which involve high temperature and low strain 

rates GBs are preferential sites for nucleation. This may be expected due to the fact that higher 

temperature and low strain rate decreases the propensity for shear band formation and also 

reduce the volume of material involved in shear deformation. It may be noted that the flow 
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curves at 700°C/1 and 700°C/0.01 shows visible serrations which indicates the propensity for 

extensive shear band formation. The process of DDRX in the present system has also been 

confirmed over a wide temperature range by Stepanov et al [29]. Extensive bulging of the initial 

grain boundaries could be observed at the initial stages in the process of formation of the 

recrystallization nuclei. The mechanism suggested by Stepanov et al [29] could not be confirmed 

in the present work due to the unavailability of very high resolution maps. The uniaxial 

compression texture of medium to low SFE materials are described by the development of 

CA//<110> fiber texture. However, in the present HEA the compression texture appears 

significantly different. The main characteristics are presence of very elongated deformed grains 

having orientations CA//<001> or CA//<111> axis along with few grains having the typical 

CA//<110> orientation. As a result, the deformed regions in the HEA shows weak and diffuse 

texture. The DRXed grains show rather weak and diffuse texture. In case of nucleation at shear 

bands this is consistent with the fact that shear bands contain random orientations with large 

orientation spread [27]. Therefore, nucleation and growth of the grains from the shear bands at 

the expense of the deformed matrix should result in the development of a very weak texture. 

However, even in case of grain boundary nucleation, the texture is found to be very weak. In the 

present case the weak compression texture also contributes to weak and diffuse texture after 

complete recrystallization. This behavior is found to be quite consistent with texture weakening 

as many grains rotate out from the compression texture components during DRX [30]. In the 

present case if nucleation happens along the grain boundaries without any preferential orientation 

selection features of the deformed regions should be reproduced. Since the deformed regions 

show very weak <100> and <111> fibers, this is also displayed by the DRX fraction. 
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Chapter 6: Summary and conclusions 

The hot deformation behaviour of equiatomic CoCrFeMnNi is studied in the present work. The 

following major conclusions may be drawn from the present study: 

(i) The flow curve at temperatures ≥ 800°C shows dynamic recrystallization behaviour. 

(ii) The difference between peak stress and steady state stress is not found to be 

significant. 

(iii) The activation energy varies from 350 kJ mol
-1

 to 375 kJ mol
-1

 at strain levels ranging 

from ε=0.5 to ε=0.9. 

(iv) The dynamically recrystallized microstructure shows evidence of nucleation at shear 

bands and at the grain boundaries. 

(v) Significant grain refinement is achieved due to dynamic recrystallization. In the case 

of 1000°C/0.001 condition, the average grain size is ~ 5 µm which indicates 

significant grain refinement as compared to the starting material with average grain 

size ~ 28 µm. 

(vi) The texture of dynamically recrystallized materials are found to be generally weak. 

The deformed regions show rather weak <001> and <111> fiber and very similar 

texture is observed in the dynamically recrystallized regions. 

(vii) The evolution of texture in the alloy indicates nucleation of dynamically 

recrystallized grains without any preferential orientation selection. 
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