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Abstract

Sarasvati Veena is an ancient musical instrument present in South India. A good amount of literature

is available on musical studies and practices but very limited knowledge on construction and system-

atic mechanical analysis with modern computational tools. Veena is a complex mechanical system

and very good example of structural-acoustic coupled problem. The present work is an attempt

to understand dynamical behaviour of Veena with advanced computational tools and experimental

methods. Dynamic behaviour formulated by natural frequencies, mode shapes and damping fac-

tor. And it is determined by its components like wooden resonator, acoustic cavity, top-plate with

the bridge and strings with twenty four fret supports placed in the logarithmic manner over the fret

board. Along with the direct sound radiated by plucked string, energy gets transfer through a bridge

to a top-plate to acoustical cavity and wooden resonator. Acoustic cavity and wooden resonator

plays an important role in the sound radiation which makes it two significant entities to study and

analyse as a whole structural-acoustic coupled problem. Veena covers the overall frequency range of

90 to 6000 Hz. This research aimed to establish a methodology to study and analyse the structural-

acoustic coupled problem in Veena. Methodology includes experimental and numerical analysis of

vibration behaviour.

Modal analysis is considered as a first step in any vibration analysis of the system. It is a process

of determining the dynamic characteristics of the system in the form of natural frequencies, mode

shapes and damping factor. These parameters are used to formulate the mathematical model for

system’s dynamic behaviour. Acoustic cavity with structural resonator has been considered as a

whole structural - acoustic coupled system for experimental modal analysis. Geometry creation

is done in the form of wire frame model. Coordinate measuring machine (CMM) has been used

to get the exact coordinates of every point with local frame of reference and later coordinates

transformation has been used to transform it into one global frame of reference. Roving hammer

method has been used with a tri axial sensor on the top plate and a uni axial sensor on the resonator.

Responses of the 160 points over the resonator and top plate were recorded at an average of three

hits at every point. Numerical analysis has been done considering three different cases structural,

acoustical and structural-acoustic coupled modal analysis. Boundary impedance considered as zero

for acoustic analysis and clamped boundary conditions for structural analysis. The flexible structural

surface area is linked with acoustic surface area in the coupled analysis. Modal Assurance Criteria

(MAC) number has been calculated to study and analyse the spatial match between the experimental

and numerical results. A comparative analysis of the three numerical cases done to understand the

contribution of acoustic and structural modes in the coupled analysis. It will help to us find the a

critical structural components in further acoustic analysis.
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Chapter 1

Introduction

1.1 Motivation

Sarasvati Veena is an ancient musical instrument present in South India. A good amount of literature

is available on musical studies and practices but very limited knowledge on construction and system-

atic mechanical analysis with modern computational tools. Veena is a complex mechanical system

and very good example of structural-acoustic coupled problem. Dynamic behaviour/properties of

the Veena formulated by natural frequency, mode shapes and damping factor. These parameters

are not yet studied extensively using FEA computational tools and modern experimental techniques.

Veena consist of components like wooden resonator, acoustic cavity, top-plate with the bridge

and strings with twenty four fret supports placed in the logarithmic manner over the fret board.

Along with the direct sound radiated by plucked string, energy gets transfer through the bridge to

top-plate to acoustical cavity and wooden resonator. Acoustic cavity and wooden resonator plays

an important role in the sound radiation. Acoustic air cavity adds additional stiffness to overall

system and it possess its own independent dynamic properties. When Acoustic impedance of the air

cavity is closer to the structural impedance, the acoustic wave excites the structure. The vibration

of structure will induce acoustic pressure inside the air cavity. These phenomena will continue under

coupling conditions. Coupling conditions depends on the acoustic and structural natural frequen-

cies and spatial match of the mode shapes. This is termed as structural-acoustic coupling. Hence

wooden resonator and acoustic cavity are two significant entities to be studied and analyzed as a

whole structural-acoustic coupled problem.

Closed form solutions for structural acoustic coupled problems are available for simple geometries

like simply supported plate, rectangular duct etc. FEA approached has been developed to study

and analyze complex and irregular geometries. In particular, calculation of coupling coefficient and

transfer factor for coupled system needs to be studied for complex and irregular geometry.
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1.2 Literature Review

Musical instruments are always areas of research for many design engineers. Significant research is

done on various types of musical instruments like string, bowled, wind, and percussion instruments.

Specific to string instruments major research is done on the different types of guitars and violins.

Veena is an ancient musical instrument found in south India. Its geometric complexity and sound

radiation properties differentiate itself very uniquely. Veena covers an overall frequency range of 80

to 6500 Hz [1] spanning over about three and half octaves. An octave is a range over which the

frequency doubles. In the year of 2001, P P Rao [2] studied the musical notes produced on Veena

which are based on the physical and mathematical formulations associated with the vibrations of

stretched strings. C V Raman [3] studied the geometric significance and effect of bridge on sound

radiation.

Modal analysis is considered as a first step in any dynamic analysis of the system. System

dynamic properties like natural frequencies, mode shapes and damping factor found by experimen-

tal and numerical analysis. Complete study of the resonator of Veena must include not only the

wooden structure but also the air cavity. M. J. Elejabarrieta [4] studied the cavity modes of the

guitar box using numerical computation. He found that the air-structure coupling lowers the nat-

ural frequency, especially for those modes in which the compressions and expansions imply volume

changes. A. Ezcurra [5] presented a comparative study of the guitar box in which the interior gas

is changed both experimentally and numerically. Modal patterns, natural frequencies and quality

factors are determined when the box is full of helium, air and krypton. respectively. This allowed to

characterize the soundboard back plate coupling via the cavity fluid, stressing the role of the struc-

tural and acoustic uncoupled modes. He concluded that the six lowest acoustic modes of the guitar

box present the same pattern, independently of the type of fluid, for the three studied gases, and

the pressure distribution inside the box is the same for the three gases in all the modes except the

Helmholtz resonance. Hossein Mansour [6] studied the measurements of a Persian Setar, compared

using an impulse hammer or a handheld shaker as excitation and an accelerometer or Laser Doppler

Vibrometer (LDV) to record the response. Measurements were made with the Setar both suspended,

to produce a free-free boundary condition, and clamped at its neck. Natural frequencies and mode

shapes are extracted for the first 12 structural modes. He found that both the accelerometer and

shaker dramatically affect the structure and thus, depending on the context, they are probably best

avoided if possible for the case of the Setar and similar instruments. On the other hand, the modal

map of the free-free Setar was in close agreement with the clamped condition. Therefore, measure-

ments on the Setar and similar instruments can be performed on a clamped instrument unless the

accurate damping properties are of interest. M. J. Elejabarrietaa [7] studied the coupled modes of

the resonance box of the guitar where the numerical model was developed progressively, starting

with the soundboard and back, then the assembled box and the inside air separately, and finally the

whole box; that is, the wood structure and the air together. In this way, mode evolution is tracked,

establishing the influence of each component on the final box. Comparison of the modal patterns and

frequencies with the modal analysis results corresponding to a real guitar box confirms the quality of

the model. Mariana R [8] studied the acoustic-structural coupling of the automotive compartment.

He found that strong coupling between the thin-walled structure and the acoustic enclosure exists in

the vicinity of any acoustic resonance. Also it was found that ”combined” acoustic-structure modes
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of vibration exist in the vicinity of an acoustic resonance, which means that the coupled system

manifests a new type of energy exchange.

Closed form solutions are available for simple and regular acoustic and structural geometries.

However no analytical solutions are available for irregular geometries. FEM are used widely to study

and analyze these geometries. Formulating the structural-acoustic coupled closed form solutions are

not yet established very widely. J. Missaoui and L. Cheng [9] is presented an integro-modal approach

in his paper for computing the acoustic properties of irregular-shaped cavities. The method consists

of discretizing the whole cavity into a series of sub cavities, whose acoustic pressure is decomposed

either over a modal basis of regular sub cavities or over that of the bounding cavities in the case of

irregular-shaped boundaries. An integral formulation is then established to ensure continuity of both

pressure and velocity between adjacent sub cavities using a membrane with zero mass and stiffness.

M. R. Karamooz Ravari [10] studied frequency equations for the in-plane vibration of the orthotropic

circular annular plate for general boundary conditions. To obtain the frequency equation, first the

equation of motion for the circular annular plate in the cylindrical coordinate is derived by using the

stress-strain displacement expressions. Helmholtz decomposition is used to uncouple the equations

of motion. The wave equation is obtained by assumption a harmonic solution for the uncoupled

equations. Finally, boundary conditions are exerted and the natural frequency is derived for general

boundary conditions. The obtained results are validated by comparing with the previously reported

and those from finite element analysis.The presented results were validated with the previous reports

and the finite element model. This verification showed that the proposed method is accurate for

calculating the natural in-plane frequencies of circular annular plates. C.J. Nederveen [11] studied

the resonating air column in a thin-walled metal organ pipe. Effects became audible when a wall

resonance frequency was nearly the same as that of the air column. He proposed a 2D analytical

model for the same. He qualitatively explains the observed changes in resonance behaviour of the

air column. It allows identification and verification of the parameters governing the interaction.

The results suggest that similar effects might occur in other wind instruments such as saxophones,

bassoons etc.

R. Benjamin Davis [12] in his PhD thesis proposed a methodology called component mode syn-

thesis of structural acoustic coupled problem of complex and irregular geometries. A CMS approach

offers the potential for acoustoelastic analyses that are more computationally efficient and robust

than FE-FE models. Additionally, CMS techniques permit simpler FE models and promote in-

creased insight into the underlying physics of the system. The extent to which the CMS approach

accords these advantages ultimately depends upon the capabilities of the FE-FE (or FE-BE) code

that would be used in its place. His study compares the capabilities of a CMS approach to the

FE-FE capabilities of ANSYS.

1.3 Overview of the thesis

Chapter 2 discusses the history, types, dimensional details, music and mechanism of sound transfer.

Chapter 3 dedicated to theoretical formulation of coupled problem.

3



Chapter 4 discusses the methodology followed for the experimental and numerical modal analysis.

Chapter 5 discusses the development, validation and implementation of the Component Mode

Synthesis (CMS) method.

Chapter 6 discusses the results of the chapter 4 and chapter 5.

Chapter 7 dedicated to conclusion of the thesis and future work.

4



Chapter 2

The Veena

2.1 History

Veena is an ancient musical instrument from south India and it is Indias national instrument. The

Veena has a recorded history that dates back to the approximately 1500 BCE. It is mainly used in

Carnatic and Hisdustani classical music. Veena is a Sanskrit word referred from the Rugveda, it is

considered as a generic term for any string instruments in Indian history so far. The classifications

of the musical instruments can be done based on the way the sound is produced. This was according

to Bharata (500 B.C.) from India and also by Erich Von Hornbostel and Curt Sachss publication

from 1914. Chordophones, Aerophones, Membranophones and Idiophones are the four classification

and the Veena falls under the Chordophones category. Three approached has been followed to ex-

plain the construction of the Veena. The very first one is spiritualistic and mythological, the Hindu

goddess of knowledge and wisdom, Saraswati plays the Veena found in many religious references.

It is Hindu belief that lord Naradais the one who brought the music to the earth. Second one is

symbolic approach where it is related to human body. Its big resonator (Kudam) is a human head,

Its fret board with 24 frets connected to curved dragon or yali is compared to human spinal column.

Its frets are vertebras of the spinal column and principles of the Yoga.

2.2 Classification of Veena

Veena basically classified into three major families

• Veena with Frets

1. Rudra Veena: Plucked string instrument used in Hindustani music. Construction is

based on bamboo fret board. It has two large resonators with a fret board with 24 frets

supported in-between.

2. Saraswati Veena: also known as Tanjore Veena. Its a plucked string instrument from

Carnatic music. It has one bigger resonator with a small resonator and fret board with

24 frets in between.

5



• Veena without frets

1. Vichitra Veena

2. Chitra Veena

Figure 2.1: Rudra Veena with two large resonator

Figure 2.2: Tanjore Veena 9(Saraswati Veena)

2.3 Veena and Its parts

For our research, we have selected Saraswati Veena which is commonly used in India. Please refer

fig no. 2.4 for part identification.

Saraswati Veena divided into major parts such as big resonator, fret board with twenty four

frets, a small resonator and seven strings. Fret board connects these two resonators. In total it has

6



Figure 2.3: Vichitra Veena

Figure 2.4: Veena and its parts

seven strings out of which four passes over the fret board, they are called as main strings and three

minor stretching along the side of the Veena. These three strings are without any support inbetween.

The Resonator: Kudam Its a dome shaped spherical part, hand crafted from the jack-fruit

wood. Resonator is divided into two parts, the spherical wooden cavity, and the top plate. Top

plate carries a bridge over which 4 major strings held stretched along its length. This has a unique

design, a brass strip is attached at the top which has very small curvature, and it makes strings

to pass on it tangentially. Top plate carries a small hole through the cavity near the neck of the

7



instrument. Thickness of the wooden resonator cavity and the top-plate is maintained at 1/5 inch.

Following are the detail dimensions:

• Radius of the spherical wooden dome: 20.5 cm

• Radius of the top-plate: 19 cm

• Radius of the sound hole: 2 cm

• Height of the wooden dome: 27.5 cm

The Fretboard: Its a 60 cm long piece of wood connecting the resonator to other part of the

instrument. Ekandam Veena is the class where entire instrument, from resonator to the dragon

faced end carved in the single piece of the jack-fruit trunk. However in Tanjore Veena (current

model considered for study as shown in fig. no. 2.4) resonator and fretboard are joint by nails and

glue. 24 frets which are made up of brass are placed on a thick lining of the wax at a logarithmic scale.

Support Resonator: Support resonator is hollow and smaller in size. It should not be necessar-

ily made up of the same wood. It can be of other material as its only purpose to provide the supports.

Strings: Veena has seven different strings each with the specific material and diameter. It has

4 major strings which passes over the fret board and three minor strings which are stretched at

the side. Four major strings has more or less equal length, however three side strings has different

lengths. Please refer below table for string material and diameter.

Table 2.1: String dimensional details
Sr. No. String Material Gauge Length cm
1 String 1 Brass Gauge 21 87
2 String 2 Brass Gauge 24 87
3 String 3 Steel Gauge 27 87
4 String 4 Steel Gauge 29 87
5 String 5, 6, 7 Steel Gauge 31 70, 61.5, 52.5

Musical notes:

Veena covers the fundamental frequency range of 99 to 1056 Hz and considering the harmonics it

covers the overall range from 90 to 6000 Hz. These ranges are covered by 4 strings and 24 frets, and

divided into three and half octave. Octave is an interval where frequencies doubles in value. Here

each octave consist of 12 distinct frequencies called notes, from Sa to next upper Sa. Each note has

unique relation with the length of the string and diameter, and it is produce by plucking the string

near the bridge by maintaining the distance by pressing the string on corresponding fret. Twelve

Shruti frequencies are used to tune this string instrument. Values of the length of the strings from

l0 to l12 can be found out using simple mathematical relationship as stated below.

ln+1 =
ln

2
1
N

=
l0

2
n+1
N

(2.1)
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Mechanism of sound transfer

Sound radiated by any string instrument is not solely by strings, other part of the instruments plays

an important role. Consider a string held between two concrete block and plucked, it would give

very little sound. Fundamentally strings vibrates against boundary which has a large impedance

difference making it difficult to transfer the sound energy. With so little of its energy transmitted,

string would vibrate for a longer time radiating very little sound.

To accomplish the better sound quality and quantity, Veena has a bridge, top-plate and resonator

coupled with vibrating string. As string is plucked it vibrates with the particular frequency, since

impedance change between the string and bridge is not to significant maximum amount of wave

energy gets transferred. As this get transferred to bridge, topplate and resonator causing vibration

of much greater surface area. This in turn moves significant amount of air than a string alone,

making vibration clearly audible.
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Chapter 3

Theoretical Formulation

In this chapter analytical formulation of various aspects of Veena has been studied. mainly string

tension, frequency and density relation. This theoretical study helps to understand the inside physics

of sound generation of Veena.

3.1 String’s natural frequency calculations.

Please refer fig. no. 3.1 which is fundamental mode of string vibration.

Figure 3.1: Fundamental mode.

Here length of the string is half the wavelength of the string.

L =
1

2
λ⇒ λ = 2L (3.1)

Hence frequency is given as

f1 =
v

2L
(3.2)

Wave speed of the string depends on the two main factors, tension of the string, and liner mass
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density. Linear mass density is defined as mass per unit length of the string. Mass of the string can

be formulated in terms of density and volume [13].

v =

√
T

µ
(3.3)

Hence,

f1 =

√
T
µ

2L
Hz (3.4)

Above equation gives three basic relationship with the fundamental frequency of the vibrating

string.

Now consider the next possible mode of the string vibration. Two nodes at the ends, a node at

the center of the string with two anti-nodes at the center of two subsequent nodes. Frequency can be

formulated in the same way as that of the fundamental mode but the only difference is, wavelength

is equal to the length of the string.

f1 =
v

L
⇒ f1 =

√
T
µ

L
(3.5)

Above frequency is exactly twice as that of fundamental frequency. Similarly frequencies of the

subsequent modes can be formulated.

3.2 Structural-Acoustic Interaction

In real world structural-acoustic interaction is commonly observed in many applications. It is noth-

ing but the dynamic formulation of coupling between acoustic pressure field and structural flexibility.

In order to address the problem, it is necessary to formulate the two interacting system indepen-

dently. Solving the acoustic problem considering coupled structure is perfectly rigid and solving

structural problem assuming the system is in vacuum.

The present work focused on a structural- acoustic coupled system where acoustic fluid is enclosed

in an irregular geometry. Resonator of the Veena is taken into consideration to study the mech-

anism of structural-acoustic interaction and mechanism of sound radiation at different musical notes.
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3.2.1 Structural-Acoustic Interaction methods

Over the period many methodologies has been developed to define and solve the structural acoustic

coupled problem. For a given problem it is not necessary that all the methods are appropriate. Each

methods has limitations and advances, hence first and foremost task is to identify the classification

of the problem and then apply the corresponding methodology.

Figure 3.2: Structural-acoustic methods.

With energy methods such as Statistical Energy Analysis (SEA) [14, 15], the acoustic- structure

system is divided into energy storage subsystems. A power balance between these subsystems is then

enforced. The power balance can be formulated in various ways depending upon the system response

parameters of interest. However, in the case of SEA, these system responses are calculated in an

average sense and do not provide any information related to how the response may vary spatially

throughout a subsystem. Energy methods are most accurate when considering the system response

at high frequencies.

Discretization means the finite element/boundary element approach which is widely used to solve the

structural acoustic coupled problem where acoustic and/ or acoustic domain has geometric complex-

ity. General discretization methods involves interaction finite element model of acoustic with finite

element model of structural (FEFE), and finite element model of structure with boundary element

model of acoustic (FE-BE). FE-BE formulations are generally best suited to problems in which the

structure is coupled to an infinite exterior acoustic domain. There are several commercially avail-

able software packages that facilitate FE-FE and/or FE-BE solutions. Two of the most widely used

commercial FE packages, ANSYS and NASTRAN, refer to their respective FE-FE formulations as

fluid-structure interaction (FSI) solutions.

12



Analytical approach is more precise, computationally reliable and applicable to simple and reg-

ular geometries like cylinder, rectangular duct etc. In the analytical model also two coupled system

studied independently. B Venkatesham studied the structural acoustic coupling of the rectangular

duct with one wall flexible based on impedance mobility approach. J. Missaoui studied the inte-

gro modal approach to formulate acoustic analysis in for regular geometries by dividing it into the

some regular shapes. A disadvantage of purely analytical formulations is that they are most readily

employable in systems with simple geometries. In the case of complex geometry, the analytical

formulations must be discretized and solved numerically.

Certain complex acoustic-structure interaction problems can be approximated using empirical

methods. While such empirical formulas can be accurate and easily applied, they are often limited

in their scope of applicability and do not provide the analyst with any physical insight into the

specific problem.

Current work focused on modeling and analysis of the structural-acoustic coupled problem in Veena,

the flexible wooden resonator with enclosed acoustic cavity.

3.2.2 Structural-Acoustic equation of motion

Structural-acoustic coupled problem is of great interest for many researcher from last four decades.

In 1960s, Warburton [16] was one of the first researcher who found that a cylindrical shell containing

air as an acoustic fluid possesses natural frequencies which are close to either uncoupled structural

natural frequencies or the uncoupled acoustic natural frequencies of the enclosed air. Dowell et

al. [17] expanded upon this idea by developing a theoretical model that combines the uncoupled

acoustic cavity modes and the uncoupled structural modes into a system of coupled ODEs. This

model, which serves as the theoretical framework for much of the present work, has been used to

investigate structural-acoustic interaction in a variety of systems of practical interest like rectangular

enclosures, resonant modes of guitar bodies.

Please refer fig. no. an irregular acoustic cavity enclosed in structural interface.

General equation of inside cavity pressure p at some location and the compliance wall vibration

velocity w at some location on flexible surface for the uncoupled cavity mode N and structural mode

M are

P =
∑

ψnan = ψTa (3.6)

w =
∑

φmbm = φT b (3.7)

ψn is the uncoupled acoustic mode shape function, an is the complex amplitude of the nth

acoustic pressure mode, φm is the uncoupled vibration mode shape function, and bm is the complex

amplitude of the mth vibration velocity.

Here normal modes satisfies the properties of orthogonality for uncoupled acoustic mode,
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Figure 3.3: structural-acoustic coupling

1

V

∑
ψiψj = 0 for i 6= j (3.8)

= Mn for i = J (3.9)

Similarly for uncoupled structural mode,

∑
φlφk = 0 for l 6= k (3.10)

= Mm for l = k (3.11)

Complete equation for coupled structural-acoustic problem is given by

[M ]

{
äj
q̈k

}
+ [G]

{
ȧj
q̇k

}
+ [k]

{
aj
qk

}
=

{
0

0

}
(3.12)

where,

[M ] =

[
VMn 0

0 Mm

]
, [K] =

[
VMmΩ2

n 0

0 MmΩ2
m

]
, [G] =

[
0 −Sfc20[Cm,n]

Sfρ0[Cm,n]T 0

]
(3.13)

[M ] and [K]are mass and stiffness matrices and [G] is the coupling matrix. Equation written for

the structure in contact with the interior fluid.
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Here Ωn and Ωm are uncoupled acoustic and uncoupled structural natural frequencies. Sf is

flexible surface area, c0 is velocity of sound in the fluid and ρ0 is structural mass density.

Cm,n is uncoupled structural-acoustic mode shape coefficient. It is relationship between the

uncoupled structural and acoustic mode shape of vibration surface Sf and its measure of spatial

match between the panel and cavity mode. When value of coupling coefficient is unity then two

modes are in exact spatial match and when value is zero no spatial match between two.

Hence Cm,n is given as,

Cm,n =
1

Sf

∑
ψnφm over the area Sf (3.14)

Transfer factor is used to identify the well-coupled modes. The transfer factor for thin cavity

flexible wall for nth acoustic and mth structural mode can be written as,

Tm,n =

(
1 +

(
Ω2
m − Ω2

n

)
ρshSfV

4ρ0c20C
2
m,n

)−1

(3.15)

More general form of equation can be formulated considering viscous damping present in the

system and application of external forcing function.

[M ]g̈(t) + [C +G]ġ(t) + [K]g(t) = Q , (3.16)

Here [C] is damping matrix and [Q] is external forcing function.
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Chapter 4

Modal Analysis

Modal analysis is a method of finding the dynamic characteristic of the system. These character-

istics are natural frequencies, mode shapes and damping factor, which are used to formulate the

mathematical model for system dynamic behavior.

The dynamics of a structure are physically decomposed by frequency and position. This is clearly

evidenced by the analytical solution of partial differential equations of continuous systems such as

beams and strings. Modal analysis is based upon the fact that the vibration response of a linear

time-invariant dynamic system can be expressed as the linear combination of a set of simple harmonic

motions called the natural modes of vibration. The natural modes of vibration are inherent to a

dynamic system and are determined completely by its physical properties (mass, stiffness, damping)

and their spatial distributions. Each mode is described in terms of its modal parameters: natural

frequency, the modal damping factor and characteristic displacement pattern, namely mode shape.

The mode shape may be real or complex. Each corresponds to a natural frequency.

Modal analysis can be done using numerical, analytical and experimental techniques. Applica-

tion of the said techniques depends on the state of the problem. For a very simple geometry like

plate, beam and strings etc. it is always advisable to use the analytical and experimental techniques.

However, for complex and irregular geometries numerical techniques are well suited. The current

study deals with experimental and numerical modal analysis of the Veena Resonator.

4.1 Numerical modal analysis of the Veena

Numerical modal analysis consist of discretization of the continuous system. Multi degree of free-

dom model used with the matrix formulation. Let us consider the equation of the motion for the

undamped MDoF system for free vibrations.

[M ] {ẍ}+ [K] {x} = {0} (4.1)

Above system leads to the following Eigen value problem.
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([K]− ω2[M ]) {ϕ} = {0} (4.2)

[M ] is mass matrix and [K] is stiffness matrix, and both are symmetric in nature. The mass

matrix is positive definite and stiffness matrix may become semi positive definite if system possess

the rigid body modes.

Solution to above equation possess the n eigen values and n eigen vectors. Square root of the

eigen values are the natural frequencies and eigen vectors are the simply mode shapes.

Following numerical models are considered for the modal analysis of Veena.

• Uncoupled structural modal model

• Uncoupled acoustic modal model

• Coupled structural-acoustic modal model

4.1.1 Geometric Details

The Veena as shown in fig. 3.1 is considered for experimental study. These dimensions have been

measured with proper scale and multiple averaging methods. Figure 4.1 shows the CAD model of the

Veena. Figure 4.2 and 4.3 shows the schematic diagram of the Veena with all the dimensions in meter.

Figure 4.1: CAD model of Veena

17



Figure 4.2: Dimensional details of Veena

Figure 4.3: Top view of the Veena

4.1.2 Uncoupled structural modal model

It was previously mentioned that in order to study the coupled model study of uncoupled systems

is necessary. Here structural model is studied in different section as follows,

1. Complete Veena model

• Here complete structural part of the Veena has considered, right from resonator, top-plate

and fretboard.

18



2. Resonator Veena model (partial model)

• In this model, only the resonator and top-plate is considered as a single system for modal

analysis.

Figure 4.4: Numerical modelfor complete Veena structure. structure.

Figure 4.5: Numerical model for partial Veena structure.

Numerical Details: For structural analysis entire geometry is model and mesh with SOLID185

element. Element size of 0.01 is used with element number of 17372 for complete structural model
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and 12976 for partial acoustic model.

4.1.3 Uncoupled acoustic modal model

A complete acoustic cavity model and partial acoustic cavity model of Veena considered here for

analysis in order to have comparison with structural models.

1. Complete acoustic cavity model

• Acoustic cavity right from resonator to fret board considered here.

2. Partial acoustic cavity model (partial model)

• Acoustic cavity of resonator and neck considered here.

Figure 4.6: Acoustic model complete Veena cavity.

Numerical Details: FLUID220 element is used to model and mesh the uncoupled acoustic

geometry. Element size of 0.01 is used with element number of 17372 for complete structural model

and 12976 for partial acoustic model.
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Figure 4.7: Acoustic model of Veena resonator.

4.1.4 Structural-acoustic coupled model

In order to have the comparison with uncoupled structural and acoustic model, two models are used

here which are complete and partial models. FSI flag from ANSYS 2015 is used to apply coupling

between structural and acoustic interface. SHELL281 (8 noded) with six degrees of freedom used

for structural part and FLUID220 (3D Acoustic 20 noded) with four degrees of freedon (X,Y,Z and

Pressure) used for acoustic part.Orthotropic properties of wood and acoustic properties of air used in

material model. Unsymmetric solver used to solve the unsymmetric matrices arises out of coupling

of two systems.

4.2 Experimental Modal Analysis

This part of chapter describes the complete experimental set up for determining the dynamics charac-

teristics of Veena subjected to two different boundary conditions. Various measurement procedures

to determine structural and acoustic parameters have been reported.

4.2.1 Instrumentation and Softwares

Instrumentation used for experimental study are as follows:

• Data Acquisition System (DAQ)

• Accelerometer
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• SO analyser

• Force sensor (Hammer)

Data Acquisition System (DAQ): Data acquisition is the process of sampling signals that

measure real world physical conditions and converting the resulting samples into digital numeric

values that can be manipulated by a computer. SO analyzer is used to record the pressure and

acceleration data while conducting vibration measurements.

SO analyser: m+p SO Analyzer is a fully integrated solution for dynamic signal measurement,

analysis and advanced reporting of all noise and vibration, acoustics and general dynamic signal

applications. Comprehensive time and frequency analysis is available with both online and offline

data processing. Complete with advanced application wizards the m+p dynamic signal analyzer

makes light work of gathering data, displaying results, performing specialized analysis and generat-

ing customer ready reports all within one familiar Microsoft Office style user interface. m+p SO

Analyzer is designed for noise and vibration applications in the field and in the lab.

Accelerometer: Vibration measurements are done by using accelerometer for estimating struc-

tural parameters such as wall vibration velocity and wall displacement. Accelerometer used is from

Dytran instruments, INC with model number 3055B3 and serial number 142B2.The sensitivity of

the accelerometer is 503.96 mV/g. Figure shows the accelerometer.

Force sensor (Impact Hammer): It is designed to excite and measure impact forces on

small to medium structures such as engine blocks, car frames and automotive components. An

accelerometer (or laser velocity transducer) is used to measure the response of the structure. It uses

for Impact-force measurements on small to medium structures, measurement of frequency response

functions using impact excitation techniques and as part of a dynamic structural testing system for

modal analysis and the prediction of structural response.

4.2.2 Experimental Setup

Fig. no.4.8 shows the experimental setup of the modal analysis. Support arrangement is as shown

in the fig. here two high sensitivity accelerometers are used to pickup the vibration response one is

triaxial fixed at the top-plate and a uniaxial at the end of resonator. Sensitivity values of accelerom-

eter provided my manufacturer. Position of the same determined by pre FEM analysis. Mounting

methods of these accelerometers are important because they affect usable frequency range. There

are different mounting conditions are possible like stud mounting, wax mounting, holding by hand.

In this analysis, wax mounting is used for mounting the accelerometer to beam because it is an easy

and fast way of mounting. Care has to be taken on thickness of wax mounting used because it affects

readings as stiffness changes.

Impact hammer is used for inducing vibrations in the structure. Impact hammer mainly consists

of two parts, tip of the hammer and a force transducer connected to the tip. Tip of the hammer is

decided based on the frequency range of interest which is decided by FEM analysis. A major factor

which controls the frequency range of interest is hardness of hammer tip and compliance of impact
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Figure 4.8: Experimental setup

surface. Minor factors are weight of the hammer and impact velocity. One more critical factor which

controls the tip and weight of hammer is double impact. Double impact should be avoided while

taking measurements as it increases noise in the measurements. The light weight hammer is useful

for avoiding double impact.

m+p international SO Analyzer Rev. 4.1 hardware and associated software is used for data ac-

quisition and processing purpose. Force transducer from impact hammer is connected to first input

channel which is excitation input for software and the accelerometer is connected as the second and

third inputs. Then this time domain data is converted to frequency domain data using Fast Fourier

Transform (FFT) in the software. Then software creates Frequency Response Function (FRF) be-

tween two inputs. As the roving hammer method is used for analysis, software treats the excitation

signal as a response signal and transducer (accelerometer) signal as a reference signal to calculate

FRF. Average of three measurements for every point is considered.

Entire geometry is model using the wire frame mesh. Total of 160 points are considered on

partial model of the Veena. Co-ordinate Measuring Machine (CMM) is used to measure the exact

co-ordinates of each point.
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Figure 4.9: Wireframe model of partial Veena
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Chapter 5

Component Mode Synthesis

Method

This chapter discusses the implementation of a component mode synthesis (CMS) technique that

avoids the use of a FE-based unsymmetric eigensolver and thus circumvents a variety of practical

difficulties. This method useful to find out the transfer factor for complex and irregular geometries.

The technique validated here using the simple rectangular duct structure, but it may be extended

for use in more general cases. The following sections discuss the technique in greater detail and

present the results of a benchmark test designed to directly compare the performance of the CMS

technique to that of a modern, commercially-available, FE-FE code. Finally, the technique is used

to analysis the structural-acoustic coupled problem in Veena.

5.0.3 CMS methodology

Figure 5.1 is a flowchart describing the CMS procedure which is implemented here.The first steps

of the method involve building FE models to extract the natural frequencies and modes of the in

uncoupled structure as well as those of the rigid wall fluid cavity(ies). The solutions to these uncou-

pled problems rely on symmetric formulations of the discretized equations of motion. ANSYS2015,

a popular commercial FE package, is used in this study; however, any FE software package with a

built-in eigensolver that supports both structural and fluid elements may be used. Next, the nodal

displacements corresponding to each acoustic and structural mode are written to data files. These

data files are then used as input for the matrix analysis software MATLAB. The extent to which

the individual acoustic and structural modes couple to each other is calculated by means of numer-

ical integration over the nodal displacements at the fluid-structure interface. Finally, the complete

problem is written as a set of coupled ordinary differential equations according to the formulation

presented in Chapter 3.

The CMS method thus requires the solution of two or more relatively large symmetric eigenvalue

problems in addition to one relatively small unsymmetric problem. This is in contrast to the ANSYS

FE-FE formulations which require the solution of one very large unsymmetric problem.
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Figure 5.1: CMS methodology Veena

5.0.4 Implementation of CMS methodology

The primary effort involved with the implementation of the CMS method is writing the matrix

analysis code to post-process the output of the uncoupled FE solutions. This code determines the

modal coupling coefficients and transfer factor. The unforced coupled problem is then assembled in

the following form.
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[M ]

{
äj
q̈k

}
+ [G]

{
ȧj
q̇k

}
+ [k]

{
aj
qk

}
=

{
0

0

}
(5.1)

[M ] =

[
VMn 0

0 Mm

]
, [K] =

[
VMmΩ2

n 0

0 MmΩ2
m

]
, [G] =

[
0 −Sfc20[Cm,n]

Sfρ0[Cm,n]T 0

]
(5.2)

The coupling coefficient Cm,n , however, are calculated using the following expression.

Cm,n =
1

Sf

∑
ψnφm over the area Sf (5.3)

Transfer factor with gives the relation between the uncoupled acoustic and structural modes for

spacial and energy match is given by equation no.5.4 If transfer factor is close to unity implies two

modes are strongly coupled however transfer factor zero means weakly coupled system.

Tm,n =

(
1 +

(
Ω2
m − Ω2

n

)
ρshSfV

4ρ0c20C
2
m,n

)−1

(5.4)

5.0.5 Limitation of the CMS methodology

While implementing the CMS method following limitations are taken care,

• Number of nodes on uncoupled structural and acoustic interface should me equal and must

have spatial match.

• While developing the structural and acoustic geometry In FEA or CAD model the global frame

of reference for coordinate system should remain same.

Above limitations can be eliminated in future work of the project by developing the more gen-

eralized code for CMS methodology.

5.0.6 Validation of the CMS methodology

A Rectangular duct with one wall flexible is considered to validate the code written for CMS method-

ology. Simply supported boundary condition is maintained. Fig. shows the schematic drawing of

the duct which is of 0.3m x 0.4m x 1.5m dimension with 5 mm thickness. Its made up of steel of

density 2770 kg/m3, young’s modulus of 71e9 N/m2 and poisson’s ratio of 0.29.

FEA analysis of uncoupled acoustic and structural is done is ANSYS15 Academic package and

post processing is done in ANSYS as well as MATLAB. Total of 1621 nodes are considered on in-

terface surface area of structural-acoustic coupling and total acoustic nodes 32169. Results of the

CMS method compared with analytical and numerical results.
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Figure 5.2: Simply supported FEA model of flexible wall of duct

Figure 5.3: FEA model of acoustic cavity of rectangular duct

5.0.7 Implementation of the CMS methodology on

Here CMS methodology is applied to a irregular geometry of Veena. Mapped mesh technique is used

to divided the geometry in different parts in order to have same interface nodes. Fig 5.4 and Fig

5.5 shows the similar mapped mesh sections on structural and acoustic geometry. Simply supported

boundary condition is applied to the structure.
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Figure 5.4: Mapped geometry of structural top-plate

Figure 5.5: Mapped geometry of acoustic air cavity
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Chapter 6

Results and discussion

This chapter is dedicated only for results of the study done in previous chapters. Comparison of

experimental and numerical analysis of Veena with different partial and complete model of Veena.

Results of the component mode synthesis method also discussed with two different cases of validation

and implementation.

6.1 Modal Analysis

From chapter 4, it is understood that modal analysis is done for different cases under the uncoupled

structural model two models are studied, complete and partial model. Similarly with uncoupled

acoustic model. A separate case studied for structural-coupled problem. Results from experimental

modal analysis considered as reference model.

6.1.1 Mode shape nomenclature

In order to denote the modes of the circular plate a nomenclature system is followed. It helps to

understand the spacial distribution in numbers. Its defines as (d, r) where d is defined as number

of nodal diameter. It is the complete diametric lines particular mode is having and r is number of

nodal circle concentric to the center.

Look at the fundamental mode (0,1) where no diametric line is present hence value of d is zero

where as a single concentric circle is present hence value of r is 1. In (1,1) mode, a single diametric

line is present and a nodal circle.

6.1.2 Experimental modal analysis

After recording time domain data of impact force and accelerometer, software itself will convert that

data into frequency domain data and results will be displayed in form of FRF. After getting all

FRFs, data need to be analyzed to get the correct information about modal parameters. Driving

point is the point where the accelerometer is placed and impact also given. That is why driving

point reading is very important while recording the data. Though FRF shows peaks clearly it doesn’t
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Figure 6.1: (0,1) Mode

Figure 6.2: (1,1) Mode

mean that it has to be related with mode of system because it can be operating deflection shape also.

Please refer to fig 6.4 and fig. 6.5, X-axis is frequency range and Y axis is an amplitude of relative

displacement. here peaks are clearly observed at 288.8 Hz, 478 Hz and 539.38 Hz. 288.8 Hz is a

fundamental mode of vibration which is associated to top-plate of the resonator and which is (0,1)

mode of vibration ( refer to figure ).
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Figure 6.3: (2,1) Mode

Please refer tabulated data in table 6.1 for first three modes of Veena.

Table 6.1: Experimental results

Mode No Mode name
Frequency

(Hz)
Mode shape damping

1 (0,1) 288.8 1.25%

2 (1,1) 478 0.99%

3 (2,1) 539.38 1.8%

6.1.3 Numerical analysis: Partial Veena model

From chapter 4 it is clear that two different numerical models considered to compare and analyze

our results with experimental results. One of it is partial Veena model.

Referring to table 6.4 were comparison is done based on uncoupled structural, uncoupled acoustic

and coupled partial model of Veena.
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Figure 6.4: FRF data at point no. 33

Figure 6.5: FRF data at point no. 48

• first column of the table refer to the experimental results which are three modes of the partial

veena model. second column refers to the frequencies of the uncoupled structural analysis.

Here ’T’ refers to the mode associated with only top=plate, ’R’ for only resonator of veena

and (T+R)refers to the top-plate and resonator both. Third and fourth column for uncoupled

acoustic and coupled modes, respectively. Last column refer to the appearance of the uncoupled

modes in coupled analysis.

• Mode 288.8 Hz (0,1) is in close accordance with uncoupled structural mode of 252.58 Hz and

coupled 281.8 Hz of coupled analysis. Uncoupled acoustic frequencies starting from 497 Hz

itself, hence no influence on coupled frequency.

• Mode 478 Hz (1,1) is deviated from coupled mode of 485 Hz and 504 Hz with marginal

frequency. This mode is reflected in uncoupled structural analysis of 429.98 Hz. Hence 429.98

Hz mode of uncoupled structural model happened to be stiffer due to acoustic coupling and

reflected in coupled analysis.

• Mode 539.38 hz (1,1) which an symmetric mode to previous mode is close to coupled mode of

485.79 Hz and 502.26 hz.
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Table 6.2: Comparison of partial Veena model with experimental results

Exp. Frequency
(Hz)

Uncoupled Structural
Resonator

(Hz)

Uncoupled
Acoustic

Resonator
(Hz)

Coupled
resonator

(Hz)
Type

288.8
(0,1)

102(R) 497 117.14 (R) Structural

478
(1,1)

195.03
(R)

580.7 281.8(T) (0,1) Structural

539.38
(1,1)

252.58 (T) (0,1) 330.07(R) Acoustic

285.81(R) 423.59(R) Structural
310.55(R) 427.47(T+R) Structural
381.37(R) 442.82(R) Acoustic
399.25(R) 485.79(T+R) (1,1) Structural

429.98(T) (1,1) 504.26(T+R) (1,1) structural
483.5(R) 576.49(T+R) Structural
510.62(R) 587.46(T+R) Structural
525.94(R)
547.98(R)

564.3(T+R) (1,1)
584.09(T) (1,1)

In order to quantify the spatial match between the experimental and numerical coupled model

correlation analysis is done. Modal Assurance Criteria (MAC)number quantifies the spatial match

between two model over the scale of 0 to 1. Here value close to 1 refer two the very close spatial

match between two models and in the other hand zero stands for no spatial match.

• refer fig.6.6, X-axis specifies the coupled modes of the numerical model and Y-axis represents

modes of the experimental modes.

• MAC number of 0.7 is observed at fundamental mode of vibration. however every low MAC

number observed for rest of the modes.

• Hence mass contribution of the total Veena model has to be consider for analysis which will

maintain the same condition as that of experimental model.

6.1.4 Numerical analysis: Complete Veena model

In this model, complete geometry means the complete mass of the Veena is considered for analysis.

fixed-fixed boundary condition is maintained as mentioned in chapter 3. Three different analysis are

done same as the previous case and comparison is done.

• Here first column is same as that of previous one which is of experimental results. Second, third

and forth are of uncoupled structural, uncoupled acoustic and coupled modes, respectively.

here the term ’B’ is used additional to previous section which states the modes associated with

beam of the Veena.
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Figure 6.6: Correlation Analysis: MAC values for partial Veena model

• Mode 288 Hz (0,1)is very close with 273.44 Hz and 275.58 Hz. MAC number of 0.9 is observed

between these modes. Please refer to fig. 6.7.

• MAC number of 0.7 is observed between second mode from experimental which is 478Hz (1,1)

and 441 Hz from coupled numerical model.

• MAC number of 0.6 is observed between third mode of 539 Hz (1,1) from experimental results

and 518 Hz of the coupled numerical model.

Table 6.3: Comparison table: complete veena model

Exp. Frequency
(Hz)

Uncoupled
Structural

(Hz)

uncoupled
Acoustic

(Hz)

Coupled
(Hz)

Type

288.8
(0,1)

98.4
(T)

154.5(B) 98.104(T) (0,1) Structural

478
(1,1)

184.42(B) 400(B) 128.9(R) Acoustic

539.38
(1,1)

195.18(R) 537(B) 222.06(B) Structural

253.51(T) (0,1) 590.05(R) 252.22(B) structural
286.78

(R)
673.9(B) 273.44(T) (0,1) Structural

315.26(R) 733.92(B+R) 275.58(T) (0,1) structural
368.12(B) 850.56(B+R) 366.89(R) acoustic
375.97(B) 954.6(R) 441.63(T) (1,1) structural
383.76(R) 964(B) 456.07(T) (1,1) structural
403.88(R) 486.26(R) acoustic

429.98(T) (1,1) 490.16(B) Structural
461.78(B) 518(T+R) (1,1) Structural
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Figure 6.7: Correlation Analysis: MAC table for complete Veena

6.2 Component mode synthesis method

In chapter 5 complete methodology of the CMS method is discussed. Code for the same is written

in steps using two different commercial softwares one is ANSYS15 which is used to solve the FEA

solutions and other one is MATLAB of post processing and finding desired results. Code is first

validated on simple geometry and implemented on irregular geometry of Veena.

6.2.1 Validation of CMS methodology

For validation a simple geometry of rectangular duct is selected with one wall flexible and simply

supported boundary condition. Coupled natural frequencies and transfer factor has been found and

compared with the analytical results. Table 6.4 shows the comparison for coupled natural frequen-

cies and table 6.5 shows comparison between transfer factors.

• From the table 6.4 it is observed that results from CMS method is in good accordance with

that of analytical results.

• maximum frequency difference of 3.8 Hz observed which is of 2.7 percentage variation with

respect to analytical.

• From the transfer factor comparison, it is also very clear that CMS results are validated.
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Table 6.4: CMS: comparison of coupled natural frequencies

Sr. No
Coupled Natural frequency

from Analytical solution (Hz)
Coupled natural frequency

from CMS code (Hz)
Difference

Percentage
variation

1 111.5 112.4 -0.9 0.84
2 141.7 137.9 3.8 2.7
3 158.9 156.1 2.8 1.7
4 182.3 179.1 3.2 1.7
5 221.3 217.1 4.1 1.8
6 228.5 230.2 -1.6 0.7
7 270.5 265.3 5.2 1.9
8 328.8 322.8 5.9 1.8
9 341.8 344.3 -2.5 0.7
10 399.9 392.2 7.6 1.9

Table 6.5: Transfer factor for rectangular duct with one wall flexible by CMS metod. Here first
rows represents the uncoupled structural frequencies and first column represents uncoupled acoustic
frequencies.

138.44 154.17 180.49 217.45 265.07 323.37 392.33
114.33 0 0.4688 0 0.0205 0 0.0021 0
228.67 0.0411 0 0.3281 0 0.1181 0 0.0028

343 0 0.0139 0 0.0614 0 0.3853 0

Table 6.6: Transfer factor for rectangular duct with one wall flexible by CMS metod. here first
rows represents the uncoupled structural frequencies and first column represents uncoupled acoustic
frequencies.

138.44 154.17 180.49 217.45 265.07 323.37 392.33
114.33 0 0.4424 0 0.02 0 0.0021 0
228.67 0.0479 0 0.3965 0 0.0913 0 0.0027

343 0 0.0158 0 0.0726 0 0.6085

6.2.2 Implementation of CMS methodology

From validation of CMS code, it very clear that results are close to previously proven analytical

methods. Hence same code is implemented on irregular geometry of partial model of the veena.

Model consist of the top-plate which is simply supported and the acoustic resonator cavity of veena.

Mapped mesh technique is used to generate the structured mesh of same dimensions on structural

and acoustic geometry to match nodal data.

Table 6.7: Transfer factor for partial model of Veena by numerical method. here first rows represents
the uncoupled structural frequencies and first column represents uncoupled acoustic frequencies.

237.1 538.8 539.8 620.8 788.3 904.1 956.5
497.0 0 0.014 0 0.277 0.055 0 0
580.7 0 0.838 0.844 0.010 0.020 0 0
715.8 0.032 0 0 0.072 0.597 0.014 0.019
798.4 0.017 0 0 0.029 0.983 0.035 0
942.4 0 0 0 0 0.085 0.737 0.967
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Table 6.8: Comparison of CMS and numerical model.

Sr.No.
Uncoupled Structural

freq.
(Hz)

Uncoupled acoustic
freq.
(Hz)

Coupled freq. (Hz)
Numerical

Coupled freq. (Hz)
CMS method

1 237.1 497.02 230 236.3
2 538.8 580.7 492.2 493.5
3 539.8 715.8 532.5 521.2
4 620.8 798.5 566.5 539.3
5 788.4 942.5 588.5 600.3
6 904.1 716.0 623.3
7 956.5 756.5 711.0
8 777.8 779.7
9 792.9 816.5
10 836.7 898.4
11 911.9 935.4
12 938.0 972.5
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Chapter 7

Conclusion

This chapter is dedicated for conclusion of the entire work done in this thesis. Modal analysis results

have been discussed previously for different numerical models. Based on it conclusions are drawn

which generic applicable to all structural-acoustic coupled problem and some are very specific to

Veena. Results of CMS method were discussed in previous chapter, it is observed that validation of

the code justified well with supporting results from analytical solution. Transfer factor for irregular

geometry is aslo found by CMS method.

7.1 Modal Analysis

In Modal analysis, studied different numerical model and results are compared with that of experi-

mental modal analysis. Following are the conclusions:

• MAC number for partial model shows that only fundamental mode matches with moderately

value.

• Mass addition to numerical system to be considered. Even analysis focus on the particular

part of the geometry but mass contribution can not be ignored completely.

• Complete model shows good match with experimental modal analysis with MAC no of 0.9 for

fundamental mode which shows that complete mass of the Veena plays an important role.

• It found that results which are obtained for the free-free analysis is in close accordance with

that of fixed-fixed condition. Hence for the similar geometric condition it is very clear to have

fixed-fixed condition.

• First few modes are mostly associated with top-plate rather than spherical dome. Hence in

vibration transfer mechanism top-late plays an important role.

• Few natural frequencies are very close to the musical notes of the Veena.

7.2 CMS method

CMS method developed to understand the participation of uncoupled structural and acoustic mode

in energy exchange and spatial match. Validation of CMS code is done on simple rectangular duct
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with one wall flexible. Code implemented on complex and irregular geometries.

Following are the conclusions from validation and implementation of the CMS method:

• CMS code validated for simple geometry with maximum error of 1.2 percent. Hence code is

satisfying the underlying physics of the problem.

• Transfer factor which plays an important role in any coupled analysis which tells about the

mechanism of energy transfer and spatial match is validated accurately.

• From the implementation of the code, it is found that not all the frequencies are in good

accordance. Hence extensive studied related to mapped/structured mesh techniques need to

be done.

• However, transfer factor gives the explanation overall physics of coupled problem analysis.
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