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Abstract 

 

Uncertainty estimation in Computational Fluid Dynamics (CFD) simulation is 

becoming increasingly important as CFD is being extensively used as a design 

tool. Performance prediction from CFD along with an uncertainty band is expected 

to give a designer an estimation of the overall performance of a design within a 

defined confidence level. 

In a numerical approach, there are two sources of errors: (a) modelling errors and 

(b) numerical errors. Modelling error arises due to the assumptions and 

approximations in the mathematical representation of the physical problem. 

Numerical error are due to numerical solution of the mathematical equations.  

In this project, an attempt will be made to establish the procedure to estimate both 

sources of uncertainty in a typical CFD study. Diesel like spray simulation will be 

taken as an illustrative example to establish the procedure. Hence, as a major 

deliverable in this proposed project proposal, a general guideline will be 

established to determine uncertainty from a CFD study. 
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1. Motivation and Introduction 

(a) Motivation 

Numerical modelling and simulation of a physical problem has been in use for many 

decades and developed extensively with time. The techniques have established itself in 

many spheres of fluid mechanics and used extensively for everyday applications like 

aerospace, refinery, automotive etc. Simulation has helped to decrease the time and cost 

of experimentation in the iterative process of trial and error. Seldom though the 

experiment is exactly as per the predictions of simulations. This is mainly caused by the 

approximation of the actual physics and the non-ideal real life systems.  

(b) Introduction to uncertainty analysis 

The present study aims to quantify this mismatch between the numerical predicted 

output and the real life measurements. Often the experiment itself on repetition is varying 

in its measured output. The uncertainties are both numerical and experimental. The 

experimental setup involves instruments with its own uncertainty and setup which is not 

as per the ideal conditions like ambient air has varying humidity, composition, etc. 

Numerical uncertainty is the focus of the present study. The numerical uncertainties of 

different types are studied, analyzed and quantified accordingly to predict the final 

uncertainty. 
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Figure 1. Uncertainty and its categorization 

Uncertainty in numerical simulations arise due to two sources  [1]: 

(a) Modeling errors:  

Modelling errors arise due to the assumptions made in representing a particular 

physical phenomenon in mathematical form. The governing equations inherit assumptions 

in its derivation as a governing ordinary or partial differential equation. These governing 

differential equations are numerically discretized and solved, this involves truncating the 

equations after a particular order, resulting in truncation error. Higher the order lesser is 

the truncation error.  

The input and/or initial conditions are again involving uncertainty in real life as 

opposed to the fixed values given in the numerical simulations. The geometrical or 

manufacturing uncertainty of the system under consideration causes the difference in the 

modelling of the actual experimental setup. 

(b) Numerical errors: 

Numerical errors arise due to the numerical solution of the mathematical equations. 

The discretization of the physical equation is performed in any Computational Fluid 

Mechanics (CFD) problem. It necessarily involves spatial discretization and may also 

have time discretization for a transient problem. This discretization causes equation to be 

evaluated at certain discreet points and not exactly in a continuous way, leading to errors 

which keeps adding up with every iteration. 

 The computer has its own range for storing the numbers, double precision is a general 

practice which has the least count of10−308, and the error caused on rounding off also 

keeps adding up at every iteration. As it can be understood this uncertainty is the most 

insignificant of all the other sources of uncertainty and hence not included in the present 

study. 

As an example, consider the incompressible Navier Stoke’s equation used for a flow 

over a cylinder problem:- 

Navier Stoke’s incompressible equation:  

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌(𝑢 ∙ ∇)𝑢 − μ∇2𝑢 = −∇𝑃 + 𝜌𝑔 (1) 

Where, 



u is the velocity of the fluid, 

t is the time, 

𝜇 is the dynamic viscosity, 

𝜌 is the density, 

𝑃 is the pressure, 

g is the acceleration caused due to earth 

Modelling uncertainty: 

1. The equation has an assumption of ‘continuum hypothesis’ which is applicable 

when the non-dimensional Knudsen number is less than 1. 

2. A first or second order scheme would be used on discretization which would 

result in the corresponding truncation error. 

3. The input flowrate of the fluid and its ambient parameters like temperature, 

pressure etc. would have uncertainty as opposed to the simulation. 

4. The geometry of the cylinder and the boundaries includes the manufacturing 

tolerances as opposed to the perfect lines and curves in simulation. 

 

Numerical uncertainty: 

5. The geometry would be further meshed. The flow field would converge to a 

particular solution as the mesh gets finer and finer. 

6. Same as the mesh size, the flow field would converge to a particular solution as 

the time stepping keeps on decreasing. 

(c) Why Uncertainty in spray like simulations 

Spray simulations is composed using coupled Eulerian-Lagrangian approach. The 

physical equations have continuum assumptions which tend to be invalid as and how 

the scale of mass, volume etc. decrease. Spray like problems are an involving certain 

extremes like extreme velocities, pressure and temperature. To compensate, many 

empirical models are developed which would need fine tuning as per every particular 

case. This empirical nature further adds to the already caused uncertainties by 

turbulence model, discretization and input uncertainty. Hence the study is performed 

involving spray like problem. 

  



 

 

2.  Literature review 

The literature study can be split into two categories, one to understand the spray 

modelling and the other to understand uncertainty analysis.  

 

(a) Spray modelling: 

Rayleigh was a pioneer to understand jet behavior. Since then jet modelling has been 

studied extensively. The jet is further atomized which is again modelled in many 

different ways. There are many models developed so far to model different sprays 

belonging to low or high pressure applications [1][2]. For a high pressure liquid jet the 

kelvin Helmholtz instabilities are commonly used at the liquid – gas interface [2]. 

Taylor analogy breakup (TAB) model is also another commonly used model wherein 

the drop behavior is compared to the spring-mass system [search on net]. The KH wave 

model is combined with TAB or the newer Rayleigh-Taylor instability model (e.g., 

Patterson and Reitz [2]). Modifications to these is often the subject of many published 

studies. 

Rietz and Bracco [3] evaluated a number of proposed jet atomization theories. 

Comparing these with the experimental data they concluded the inadequacy of the 

models when used alone. They further concluded that the atomization is due to the 

aerodynamic effect of the gas on the injected liquid as well as nozzle geometry effects. 

Reitz and Bracco [3] described the aerodynamic interaction between gas and liquid as 

well as the nozzle geometry effects. They mention briefly the existence of a length of 

intact liquid near the nozzle of a jet. Hiroyusa [4] experimentally concluded the strong 

dependence of breakup length on nozzle geometry effects and the velocity. 

Intact core modelling is described by Bracco [5]. Reitz and Diwakar [6] simulated the 

intact core by injecting drops with an initial SMR equal to the effective nozzle radius. 

As an actual continuous liquid volume cannot be modelled in ‘discrete particle spray 

models’ instead large closely packed ‘blobs’ were used to represent the intact core. 

Reitz [7] used the ‘blob’ injection model and incorporated a wave model based on the 

KH instability to predict secondary drop breakup. Beale and Reitz [8] modelled 



secondary breakup of the individual drops with Kelvin-Helmholtz model in conjunction 

with the Rayleigh-Taylor (RT) accelerative instability model. A modification was made 

to the KH-RT hybrid model that allowed the RT accelerative instabilities to affect all 

drops outside the intact liquid core of the jet. 

(b) Uncertainty analysis: 

Numerous papers have appeared in the Computational Fluid Dynamics (CFD) literature 

addressing the subject of credible CFD simulations  [9]–[21]. The AIAA Journal 

devoted a special section on this topic, one of the aspects being sources of uncertainty. 

Summary from Oberkampf and Blottner [17] for the source of uncertainty and error in 

CFD  

Source Examples 

Physical Modelling (assumptions in the 

PDE) 

Inviscid flow 

Viscous flow 

Incompressible flow 

Chemical reacting gas 

Transitional /Turbulent flow 

Auxiliary Physical Models 

Equation of state 

Thermodynamic properties 

Transport properties 

Chemical models, reactions, and rates 

Turbulent model 

Boundary conditions 

Wall, e.g. roughness 

Open, e.g. far-field 

Free surface 

Geometry representation 

Discretization & solution 

Truncation error – spatial and temporal 

Iterative convergence – steady state 

Iterative convergence – time dependent 

Geometry representation 

Round-off error Finite – precision arithmetic 



Table 1 – summary for the source of uncertainty and error in CFD Simulations 

 

Turbulence model, geometric uncertainty and discretization error is found to cause 

major sources of uncertainty and cause significant scatter of experimental data with 

reference to simulation [10] .Discretization error has been estimated by various 

methods (e.g. [23][21]). Grid adaptation use such techniques to improve the base grid. 

ASME has benchmarked this grid uncertainty [24]and considers this as the standard 

way to quantify the same. Geometric uncertainties and their effect of output functions 

have been studied by[25][26]. Michele has modelled geometric parameters as input 

parameters and studied the propagation of these in the output uncertainties using 

sensitivity derivatives. Very less work has been carried out for exclusively quantifying 

the turbulence modelling uncertainty relatively.  

Pie and Som [27] studied uncertainty for different output functions of injection sprays. 

They varied 32 parameters using Monte Carlo technique and identified the sensitive 

parameters to any specific output function. Further quantification was not carried out 

though. 

The methods to study uncertainty in CFD can further be classified into 4 categories 

[28]: 

(i) Interval analysis 

If the parameter is bound to vary but the range is known, a simple technique can be 

used to assess the range of output function. All the probable values are simulated and 

the maximum and minimum of the output function is the range for uncertainty caused 

by the given uncertainty in the input parameter. 

 

(ii) Propagation of error using sensitivity derivatives 

The output function under consideration can be seen as a function of several parameters 

including the ones involving uncertainty. If the function is continuous with respect to 

the parameter, it can be approximated with the Taylor series in the uncertain domain 

thus estimating the propagated uncertainty to the output. 

If u is a fnction of 𝜉𝑖 where 𝜉𝑖 is the ith independent variable with error ∆𝜉𝑖 associated 

with it then a deterministic approximation given to the error is ∆𝑢, 



∆𝑢 = [∑ (
𝜕𝑢

𝜕𝜉𝑖

)
2

∆𝜉𝑖

2

𝑛

𝑖=1

]

1
2

 

(iii) Monte Carlo 

For a multivariate problem, (like Pie and Som [27]), to study statistically the output 

dependence on the different input parameters Monte Carlo method is very helpful. It 

most importantly helps to maintain the input distribution as equally scattered and 

equally probable as possible. It is basically a tool to improve quality of statistical 

analysis while minimizing the computational cost inquired.  

Basic procedure consists of: 

1. Sample input random variables from their known or assumed probabilities 

2. Compute deterministic output for each input 

3. Determine statistics of the output distribution, i.e. mean variance, skewness 

 

  

Figure 2– example input uncertainty Figure 3 - example output uncertainty 

 

(iv) Moments method 

Statistical determination of the error due to truncation of the Taylor series is the 

Moments Method.  It is a statistical method which estimates the variance in the output 

from the variance in the input which is a function of the derivatives of the output with 

respect to the inputs. 

For example consider a function 𝑢(𝜉) expanded about the point(𝜉̅): 

First order accurate approximation 

𝐸𝐹𝑂[𝑢(𝜉)] = 𝑢(𝜉̅) 

Second order accurate approximation 



𝐸𝑆𝑂[𝑢(𝜉)] = 𝑢(𝜉̅) +
1

2
𝑉𝑎𝑟(𝜉)

𝜕2𝑢

𝜕𝜉2
|�̅� 

First order accurate approximation of the variance 

𝑉𝑎𝑟𝐹𝑂𝑢[(𝜉)] = (
𝜕𝑢

𝜕𝜉
|�̅�)

2

𝑉𝑎𝑟(𝜉) 

Second order accurate approximate of the variance 

𝑉𝑎𝑟𝑆𝑂[𝑢(𝜉)] = (
𝜕𝑢

𝜕𝜉
|�̅�)

2

𝑉𝑎𝑟(𝜉) +
1

2
(

𝜕2𝑢

𝜕𝜉2
|�̅�𝑉𝑎𝑟(𝜉))

2

 

  



3. Scope and specifications of the study 

(a) Essentials 

The Solver needs to be tested for against an experimentally quantified problem. This 

establishes the solver credibility. The solver inherently may have sources of error and 

hence this needs to be assessed beforehand. The empirical nature of spray simulations 

need a tuning of the hydrodynamic constants to get the flow as per the experimentally 

measured data. Ansys Fluent v13 was used in this study. Experimental data for 

dodecane spray under “Spray-A” condition provided on Engine Combustion Network 

(ECN) website (http://www.sandia.gov/ecn/) was used for validation. 

To have consistency of results all the study was conducted on the v13 as a version 

change also reflected in sharp deviations from the experimental data or in other words 

needed redoing the tuning of the hydrodynamic constants. 

System Configuration:  

The system as 6 Giga Byte Random Access Memory, 64 bit Intel Zeon quad core 

processor. With all the simulations running on double precision accuracy.  

(b) Problem description 

Transient CFD simulations to perform and calculate the penetration length of liquid and 

vapor spray. A 50mm x 50 mm x 100mm cube is the control chamber which is 

uniformly meshed for cell sizes of 1mm x 1mm x 1mm. The liquid penetration length 

is estimated by the length from the nozzle tip such that 90% of the ejected mass is 

contained within. The vapor penetration length is the farthest length containing all the 

vapor from the nozzle tip. No slip boundary condition on all the walls and pressure 

outlet condition on the exit 

 Injection was carried out for 1 ms 

 Injected fuel mass flow rate and velocity was determined from the data 

provided on the ECN website 

 Liquid penetration length and vapour penetration length were used to 

characterise the spray 

 Liquid penetration length was defined as the average liquid length achieved 

between 0.8 – 1.0 ms 

http://www.sandia.gov/ecn/


 Vapour penetration length was defined as the vapour length achieved at 1 ms 

 

 

Parameter Value 

Time of injection 1 ms 

Mass of fuel injected 3.5 g 

Nozzle diameter 0.1 mm 

Fuel inlet temperature 363 K 

Ambient temperature 900 K 

Ambient pressure 6 MPa 

Cone angle 8.7o 

Figure 4 – Control volume of the spray chamber 
Table 2 – specifications of the 

simulation 

 

 

(c) KH-RT parameters 

 

 

Figure 5 – Jet breakup 

   



 KH-RT model is a hybridization of two breakup models – primary breakup of the 

incoming blobs and secondary forming the child drops. 

 It assumes that a liquid core exists in the near nozzle region 

 Droplet breakup within liquid core is due to aerodynamic breakup which is 

described by Kelvin-Helmholtz instability 

 Child droplets are shed from the liquid core  

 Rayleigh-Taylor instability is dominant on these child droplets when subjected to 

sudden acceleration 

𝐵𝑜 𝑟𝑐 =  𝐵0𝜑𝐾𝐻 
Child radius for KH 

instability 

𝐵1 𝜏𝐾𝐻 =
3.726𝐵1𝑟

𝜔𝐾𝐻𝜑𝐾𝐻
 Time constant for KH 

𝐶𝜏 𝜏𝑅𝑇 =
𝐶𝜏

𝜔𝑅𝑇
 Time constant for RT 

𝐶𝑅𝑇 𝑟𝑐 =
𝜋𝐶𝑅𝑇

𝐾𝑅𝑇
 

Child radius for RT 

instability 

𝐶𝑙 𝐿𝑏 = 𝐶𝑏𝑑0√
𝜌𝑓

𝜌𝑎
 Liquid core length 

Table 3 – KH-RT parameter and significance 

 

 The length of the liquid core is obtained from Levich theory. 

 Where 𝜑𝐾𝐻 is the wavelength corresponding to the KH wave with the maximum 

growth rate 𝜔𝐾𝐻 , which are functions of surface tension, density, temperature, 

weber and Re number and orifice diameter. 

 𝜔𝑅𝑇 is the frequency of fastest growing wave in the RT model wave instability 

which is a function of surface tension, densities and acceleration. 

 𝐾𝑅𝑇 is the corresponding wave number. 

 

 

 

 



(d) Adaptive Mesh refinement (AMR) 

   

Refinement level-0 Refinement level-1 Refinement level-2 

Figure 6 – AMR refinement 

 

The jet like spray is highly dynamic in nature. The droplets vary significantly in sizes 

and keep varying dynamically. 

As and how the grid size decreases the final output, liquid and vapour penetration length 

also converge. At the same time the refined mesh proportionately increase the time taken 

to compute as the number of cells it needs to perform computation on increases.  

Adaptive mesh refinement is a smart solution for the same. It can intelligently refine mesh 

only where required for each time step. The criteria for defining need of refinement can be 

gradient of any property like density, temperature etc. In the spray like simulations it is 

appropriate to use gradient of the density. The present study refines the mesh if the 

gradient is more than 0.2 and coarsens the mesh if it is less than 0.05.   

Fluent v13 has two options to control the mesh refinement dynamically. The first one is to 

limit the number of refinement levels and the other is to limit the least cell volume that can 

be allowed before refinement. As the study involves uncertainty in output function due to 

mesh refinement it is binding to understand the software’s algorithm on performing AMR. 

The following figure describes the same. 

 



Algorithm: 

1. Check for Dynamic mesh enable 

2. If yes check for minimum cell volume 

3. If no then no refinement. 

4. If yes then check for the maximum level of refinement 

5. If maximum level not reached then refine further. 

6. If the maximum level reached already then stop further refinement 

 

Thus it can be seen that the final refined least cell volume might be less than the minimum 

cell volume specified. 

 

Figure 7 – Fluent v13 refinement algorithm 

 

 

(e) Nominal case 

A 50x50x100mm parallelepiped was meshed for 1x1x1mm cell size. The resultant is a 

quarter million cell mesh. This is the base mesh for the simulation. The injector model 

Check for minimum 
cell volume

Dynamic mesh on

Further refine

Check level of 
refinement 

No further 
refinement



was used from ‘define’ utilities. The nozzle is positioned at 1 mm from the inlet and along 

the z axis. The material properties used for Dodecane have been extensively gathered 

from Perry’s handbook and other sources mentioned in appendix -1. AMR is further used 

over the geometry 

The problem was modelled in Ansys fluent v13 as mentioned previously. Second order 

upwind schemes in solution methodologies. And 50 iterations per time step. The KH-RT 

parameters were fine tuned to get the output as close to the experimental data as possible. 

 Rectangular cross-section of 50mm50mm and 100mm length 

 Baseline mesh of 111 mm3 

 Two levels of Adaptive Mesh Refinement (AMR) based on vapour 

concentration gradient 

 Min. cell size 0.250.25 0.25 mm3 

 Time step size Δ𝑡 = 1 × 10−6 sec 

 k- turbulence model 

𝐵𝑜 0.2 0.8 

𝐵1 5 80 

𝐶𝜏 0.5 1.5 

𝐶𝑅𝑇 0.05 0.15 

𝐶𝑙 5 80 

Table 4 – KH-RT parameters with their range for 

tuning 

 

The liquid penetration length increases initially and stays more or less constant thereafter. 

Vapour penetration length though continuously increases as the liquid is constantly 

vaporising and adding to the total vapour content.  

 



 

Figure 8- Liquid penetration length vs time for the nominal case and ECN 

  

 

 

Figure 9-Vapor penetration length vs time for the nominal case and ECN 

 

  



 

Penetration Length 
ECN (mm) CFD (mm) % Error 

Liquid 11.68 11.07 - 5.22% 

Vapour 46.81 39.5 - 15.61% 

Table 5 – Nominal simulation results 

 

𝐵𝑜 0.6 

𝐵1 20 

𝐶𝜏 1 

𝐶𝑅𝑇 0.1 

𝐶𝑙 20 

Table 6– KH-RT parameters after tuning 

The results are in close agreement with that of the experimental data and thus this set of 

input was finalized as the nominal case for the study. All the uncertainty calculations are 

with respect to this benchmarked results. 

  



4. Uncertainty quantification methodology 

The objective of the study is to quantify the uncertainty that may be found from an 

actual experimentally measured quantity compared to the predicted numerical simulation 

value. At the same time we need to keep in mind the time intensive nature of the 

‘numerical prediction’. The methodology evolved over the period of study. Some 

mistakes helped further improvise on the methodology to make it robust in nature for 

future implementation on any other CFD problem.  

(a) Initial approach: 

The study involved a 3 step approach:- 

 Identify the parameters to perform uncertainty analysis.  

 Perform a Monte Carlo methods study.  

(b) Identify the parameters –  

The physical problem at hand, spray simulation of diesel like fuels, was studied and 

existing significant dependence of the desired output, liquid and vapor penetration length, 

on the many parameters input to the simulation were considered in identifying the 

parameters to be studied for. The limits of the same were as per the existing research had 

been carried on over. If no exact range was found a 10% limit above and over the nominal 

value was considered in th study. The parameters were considered based on the 

classification of the uncertainty in CFD. The modelling uncertainty in this study is 

comprised primarily from the turbulence models used and the KH-RT spray modelling. 

The input uncertainty is caused by the input parameters namely temperature and pressure 

of the chamber, injector temperature, cone angle of the injector, mass flow rate of the 

spray. The discretization errors due to the spatial and time discretization. All of the 

parameters were considered for the next stage of study. 



 

Table 7 - the parameters included in the study 

 

(c) Monte Carlo methods study –  

(i) Introduction to Monte Carlo methods 

Monte Carlo methods (or Monte Carlo experiments) are a broad class of computational 

algorithms that rely on repeated random sampling to obtain numerical results. They are 

often used in physical and mathematical problems and are most useful when it is difficult 

or impossible to use other mathematical methods. Monte Carlo methods are mainly used 

in three distinct problem classes: optimization, numerical integration, and generating 

draws from a probability distribution (as in this study). 

(ii) Requirement for Monte Carlo Methods 

The problem at hand has multiple parameters to study for uncertainty. Uncertainty can 

be estimated by knowing the gradients of the physical problem by relating variance in the 

output as a function of the input variance and its gradients. But as we don’t have gradients 

from a governing equation we need to calculate the gradients numerically i.e. perturbing 



the simulations and calculating the gradient based on the difference in the input and 

output values. 

The parameters need to have as many points equally distributed among the domain to 

perturb to get better numerically approximated gradients over the domain. Also the 

multiple parameters arise accordingly many permutations and combinations in the 

domain. For example a 5 parameter set with 5 points each in the perturbing domain would 

result in 55 which is 3125 combinations to simulate. Since the time required for each 

simulation is 10 hours approximately on the system configuration mentioned in the 

previous chapter, 3125 simulations would require around 31250 hours which is close to 

3.56 years for a single system to carry out. Hence we need to reduce the number of 

simulations with keeping the distribution as equally spaced as possible. Monte Carlo 

methods fulfill these requirements and hence used for the study.  

 

Figure 10 - Need for Monte Carlo Methods 

(iii) Procedure to generate the Monte Carlo distribution – 

A code was developed to generate equally probable and equally distributed sample 

space. The following example illustrates the process:- 

Example: A random distribution of 50 samples between 5 and 80 is required for the 

parameter 𝐶𝑙 

transient problem without a funtion of the 
inputs for the outputs

numerical perturbation required to ensure 
gradients numerically

equally spaced/probable and multi 
parameter hyper space required 

Monte Carlo methods



 

1. The code is given the 4 values namely, lower bound, higher bound, the sample 

size required and the number of discrete points the sample has to be divided 

into. If no discrete distribution required then the sample size can be entered as 

the number of discrete points required. 

2. The sample is then divided into the discrete values based on the number of 

intervals required, in this case the sample would be generated by dividing 5 to 

80 into 50 values including 5 and 80. 

3. Each of the values is assigned a value from 1 to 50 (number of samples) 

4. A random generator ‘rand’ built in Matlab 2013b is used to generate a random 

number 0 to 1 which is then multiplied by 50 (sample size)  

5. The number corresponding to this number is taken as the final sample input. 

6. If the number has already been taken as input the random number generator is 

called again. 

7. After 50 (sample size) inputs are generated the code ceases. 

If the number of discrete values is less than that of the sample size multiple copies are 

generated. For example if 50 sample inputs of 5 discrete values is required, then 5 copies 

of each input would be generated each assigned a value from 1 to 50. If it isn’t a perfect 

multiple, then a rough spread is maintained over the range. For example 53 samples are 

required from 5 discrete values, then 6 copies of 1st, 3rd and 5th value would be generated 

and 5 copies of 2nd and 4th value each assigned a value from 1 to 53. 

A key feature is the non-repeatability of the spread i.e. every single time we run the 

code we get a different combination of the sample 



  

Figure 11 - Different pattern generated on repetition of the code for equal probability 

continuous distribution 

 

Figure 12 - pattern generated by the code for equal probability discrete distribution 

(d) Need for improvisation 

During the study the above procedure was undertaken. The 15 parameters where 

considered for the study. Accordingly the code was used to generate the Monte Carlo 

based samples. The simulation would take anywhere between 10 minimum (no other 

computational process ongoing on the system) to 48 hours (heavy computation running 

parallel). Thus the study was considered to be carried out only for 50 samples.  
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The parameter to simulation ratio was nearly 1:3.33 (15 parameters and 50 

simulations). There was no empirical thumb rule found in literature for the threshold ratio 

required. The ratio seemed quite inadequate though. Also the number of simulations may 

need to vary dynamically, i.e. the number of simulations may be increased later or the 50 

simulations may not be possible to simulate in time. Also the manual process of changing 

each parameter for every simulation had an inherent error possible due to human error. 

 

Figure  13- Considerations for the study 

(e) Improvisations 

The considerations were individually addressed. As the objective of the study is to 

establish a standard methodology for estimating uncertainty in CFD applications, a robust 

methodology is very much required. Three of the improvisations made are as follows: 

• Manual setting up of the many 
simulations involve high possibility 
of mistakes

Human error

• Time taken for each computation is 
very crucial and should be 
judicially used

Time intensive 
computation

• Sample set may have to increase or 
decrease with or without 
modification to the parameters

Dynamic control on 
the simulation sample 

set



(i) Automation  
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Figure 14 -automatic file stitching  

Ansys Fluent v13 has a feature of ‘input boundary condition’ file which is basically 

recording all the input values given for the case to be simulated in a text file. This file can 

be generated for the simulation and saved onto the workspace. The input file can be edited 

manually or by a program, which on reading by the Ansys Fluent v13 would accordingly 

reflect upon the changes.  

1) The code for automation uses the input file generated from the nominal case 

file.  

2) The parameters in the study are located on the input file. 

3) The input file is sliced into various segments leaving the parameters value. 

4) The segments are read by a code and pasted in a new file one after the other 

with every value being written in between the segments. 

Thus the format is maintained with modified values for each case. This input file is 

used as input for all the simulations to perform. 



 

 

Figure 14 - Improvisations in the study 

 

(ii) Interval Analysis 

The ratio of parameter to number of simulations can be improvised if we focus on the 

parameters which are sensitive to the concerned output. This can be estimated by 

individually perturbing he parameters one after another, keeping all the rest constant. 

Interval Analysis has been used in uncertainty estimation of CFD applications. The 

interval analysis is basically a tool which can be used to estimate the maximum and 

minimum value of the output for the entire range of inputs available. All the possible 

values the input can take is simulated and output of all is recorded. The maximum and 

minimum among these is the interval for the output function to take.  

The parameters were then decided to be perturbed individually by a constant deviation 

of 10% from the nominal value. Parameters from each type of uncertainty namely, 

modelling, input and discretization were to be shortlisted for further Monte Carlo 

methods. 

 

(iii) Sobol based Monte Carlo Methods 

Sobol sequences (also called LPτ sequences or (t, s) sequences in base 2) are an 

example of quasi-random low-discrepancy sequences. They were first introduced by the 

Russian mathematician I. M. Sobol in 1967. Low-discrepancy sequences are also called 

•Remove human involvement as much as 
possible

Automation of the 
process

•Judiciously screen sensitive parameters for 
further studyInterval analysis

•Sobol based Monte Carlo provides the ability to 
dynamically increase the sample set with 
modifications to the parameters

Sobol based 
Monte Carlo 
distribution 



quasi-random or sub-random sequences, due to their common use as a replacement of 

uniformly distributed random numbers. 

The discrepancy of a sequence is low if the proportion of points in the sequence falling 

into an arbitrary set B is close to proportional to the measure of B, as would happen on 

average (but not for particular samples) in the case of an equidistributed sequence. 

Specific definitions of discrepancy differ regarding the choice of B (hyperspheres, 

hypercubes, etc.) and how the discrepancy for every B is computed (usually normalized) 

and combined (usually by taking the worst value). 

Key feature of Sobol sequence for which it is incorporated are: 

1) Constant values on every time we generate the sample. 

The code used in the study is built in function of Matlab 2013 named ‘sobolset(input 

number of parameters)’. The function gives a point to the set of values generated by the 

Sobol method. From which the required amount of values can be recorded. These values 

remain constant every time we generate the values. 

  

Figure  15- Same distribution on repetitive use of Sobol sequence 
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Figure 16 - Pattern when Sobol sequence adapted for discreet distribution 

 

2) Low discrepancy distribution 

The distribution tends to be distributed equally more or less. This doesn’t depend on 

the number of samples taken. The more the sample size the more is it equally distributed. 

Morris and Mitchell developed a method to quantify the distribution of the sample termed 

as “mmphi index”. The smaller the index the better is the distribution. The Sobol based 

distribution lowers the mmphi index significantly as can also visually experienced. 

Mmphi index = 

429.2955 

 

*normalized for the 

range (0,1) 

 

Figure 17 - mmphi index for equal probability continuous distribution 
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Mmphi index = 

485.4272 

 

*normalized for the 

range (0,1) 

 

Figure 18 - mmphi index for Sobol continuous distribution 

 

The inputs should be taken from the start of the Sobol sequence to the number of inputs 

required. For the above two requirements to hold consistent. 

 

(f) Moments Method 

Statistical determination of the error due to truncation of the Taylor series is the 

Moments Method.  It is a statistical method which estimates the variance in the output 

from the variance in the input which is a function of the derivatives of the output with 

respect to the inputs. 

For example consider a function 𝑢(𝜉) expanded about the point (𝜉̅): 

• First order accurate approximation 

𝐸𝐹𝑂[𝑢(𝜉)] = 𝑢(𝜉̅) 

• Second order accurate approximation 

𝐸𝑆𝑂[𝑢(𝜉)] = 𝑢(𝜉̅) +
1

2
𝑉𝑎𝑟(𝜉)

𝜕2𝑢

𝜕𝜉2
|�̅� 

• First order accurate approximation of the variance 

𝑉𝑎𝑟𝐹𝑂𝑢[(𝜉)] = (
𝜕𝑢

𝜕𝜉
|�̅�)

2

𝑉𝑎𝑟(𝜉) 

• Second order accurate approximate of the variance 
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𝑉𝑎𝑟𝑆𝑂[𝑢(𝜉)] = (
𝜕𝑢

𝜕𝜉
|�̅�)

2

𝑉𝑎𝑟(𝜉) +
1

2
(

𝜕2𝑢

𝜕𝜉2
|�̅�𝑉𝑎𝑟(𝜉))

2

 

For a similar Multivariate problem it would be: 

• For first order accurate approximations 

𝐸𝐹𝑂[𝑢(𝜉1, 𝜉2)] = 𝑢(𝜉1̅, 𝜉2̅) 

• First order accurate approximation of the variance 

𝑉𝑎𝑟𝐹𝑂[𝑢(𝜉1, 𝜉2)] = (
𝜕𝑢

𝜕𝜉1

|�̅�1
)

2

𝜎𝜉1

2 + 

(
𝜕𝑢

𝜕𝜉2

|�̅�2
)

2

𝜎𝜉2

2 + 2 (
𝜕𝑢

𝜕𝜉1

|�̅�1
) (

𝜕𝑢

𝜕𝜉2

|�̅�2
) 

The Variance being the final band of uncertainty. Thus the Moments method is the last 

step in estimation of the uncertainty. The problem existing though is that there is no direct 

governing function between the input and the output. The gradients can be estimated 

numerically though. The study uses least squares fit method to acesses the gradients. 

 

(g) Modified least square fits 

The method of least squares is a standard approach in regression analysis to the 

approximate solution of overdetermined systems, i.e., sets of equations in which there are 

more equations than unknowns. "Least squares" means that the overall solution minimizes 

the sum of the squares of the errors made in the results of every single equation. 

The most important application is in data fitting. The best fit in the least-squares sense 

minimizes the sum of squared residuals, a residual being the difference between an 

observed value and the fitted value provided by a model. When the problem has 

substantial uncertainties in the independent variable (the x variable), then simple 

regression and least squares methods have problems; in such cases, the methodology 

required for fitting errors-in-variables models may be considered instead of that for least 

squares. 



 

Figure  19– linear least square fit through randomly generated data (source: internet) 

 

  As the study has 7 parameters to study uncertainty for the minimizing second 

order function according to standard least square fit technique is: 

Σ𝑗 = 1: (𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒) (𝑉𝑗 − Σ𝑖 = 1: 7(𝑎𝑖𝑗𝑥𝑖𝑗 + 𝑏𝑖𝑗𝑥𝑖𝑗
2 ))

2
 

Where, 

𝑎𝑖𝑗 = 𝑓′,  𝑏𝑖𝑗 =
𝑓′′

2!
 

   

 

The study at hand has a complexity of two sets of parameters: 

1. Continuous domain interval (KH-RT parameters, temperature, pressure) 

2. Discreet domain interval (AMR refinement level, turbulence model, time 

stepping,) 

The continuous domain interval could be easily estimated with a standard least square 

approach whereas the discreet domain cannot as there is no physical significance for 

derivatives in that case. Hence the need to modify the least square fit to accommodate the 

discreet domain. The modification assigns a constant value to each of the possible discreet 

values.  



  Minimizing function modified accordingly is then: 

Σ𝑗 = 1: (𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒) (
𝑉𝑗 − Σ𝑖 = 1: 4(𝑎𝑖𝑗𝑥𝑖𝑗 + 𝑏𝑖𝑗𝑥𝑖𝑗

2 ) +

(𝐶1 + 𝐶2 + 𝐶3)|𝑡𝑢𝑟𝑏 + (𝐶4 + 𝐶5)|𝑚𝑒𝑠ℎ + 𝐶6|Δ𝑡

)

2

 

 

𝐶1 k- turbulence model 

𝐶2 RNG k- turbulence model 

𝐶3 RSM turbulence model 

𝐶4 Level 0 mesh refinement 

𝐶5 Level 1 mesh refinement 

𝐶6 t = 10
-5

 sec 

 

 

This equation is then repeatedly differentiated with respect to every unknown 

parameter in the equation and equated with zero, thus resulting in: 

 

10 unknowns & 10 equations  -For 1st order least square fit 

14 unknowns & 14 equations  -For 2nd order least square fit 

18 unknowns & 18 equations  -For 3rd order least square fit 

26 unknowns & 26 equations  -For 5th order least square fit 

These set of simultaneous linear equations are then solved to estimate the gradients and 

constants. 

These gradients are later then used in the Moments Method to estimate the Uncertainty. 

  



5. Results and discussions 

(a) Sensitivity analysis 

To reduce the parameters studied in the extensive probabilistic approach the Interval 

study is carried out. The sensitivity is then estimated from the same. The sensitivities are 

calculated with respect to the nominal value. For parameters other than the discreet values 

10% deviation in the input was carried out. The higher bound is the nominal +10% value 

and the lower bound is the nominal -10% value. Sensitivity is calculated as follows: 

𝑆

=

𝑂𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒 − (𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒)
𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒

𝐼𝑛𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒 − (𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒)
𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑜𝑢𝑡𝑢𝑡 𝑣𝑎𝑙𝑢𝑒

⁄  

 

 

Figure 20 – Liquid penetration length sensitivity with respect to the parameters 
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Figure 21 – Vapor penetration length sensitivity with respect to the parameters 

Based on the Interval study six parameters were screened for a further analysis using 

Monte Carlo simulations with 4 turbulence models added as the seventh parameter. 

1. B1 

2. CL 

3. Ambient Temperature 

4. Ambient pressure 

5. Mesh size 

6. Time step size 

7. Turbulence models 

 

(b) Sobol based Monte Carlo Methods 

The screened seven parameters are now generated using Sobol based Monte Carlo sampling. A 

sample set of 50 values was generated and executed the simulation run. On which 47 converged 

and 3 diverged. The intervals for the KH-RT inputs is set as the domain encompassing all the range 

found in literature for the same. For the input parameters approximate range was specified. For the 

discreet valued parameters the discreet values itself as range were taken. 
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# Name Lower limit Upper limit 

1 Model 1 4 

2 B1 5 80 

3 Cl 5 80 

4 Pressure 5MPa 7MPa 

5 Temperature 800 Kelvin 1000 Kelvin 

6 Grid refinement 0 level 2 level 

7 Time stepping 1.00E-05 1.00E-04 

Table 8 – Limits for each parameter for the Sobol based Monte Carlo study  

 

The inputs are as follows: 

# 

Input Output 

Mo

del 
B1 Cl pressure 

temperatur

e 

AM

R 
dt 

Liquid 

penetratio

n length 

Vapor 

penetratio

n length 

1 1 5 5 
540000

0 
810 0 

1.00E

-05 
3.69E-03 4.25E-02 

2 3 42.5 42.5 
600000

0 
900 1 

1.00E

-06 

2.327E-

02 
3.15E-02 

3 2 23.75 61.25 
630000

0 
855 2 

1.00E

-06 
3.25E-02 4.68E-02 

4 3 61.25 23.75 
570000

0 
945 0 

1.00E

-05 
1.40E-02 3.05E-02 

5 1 70.625 14.375 
615000

0 
967.5 2 

1.00E

-05 
8.37E-03 4.55E-02 

6 3 33.125 51.875 
555000

0 
877.5 1 

1.00E

-06 
2.04E-02 2.95E-02 

7 2 51.875 70.625 
585000

0 
922.5 0 

1.00E

-06 
4.26E-02 4.93E-02 

8 4 14.375 33.125 
645000

0 
832.5 1 

1.00E

-05 
1.87E-02 4.65E-02 

9 1 56.5625 9.6875 
547500

0 
843.75 1 

1.00E

-05 
5.64E-03 4.45E-02 

10 3 19.0625 47.1875 
607500

0 
933.75 2 

1.00E

-06 
1.51E-02 2.55E-02 

11 2 75.3125 65.9375 
637500

0 
888.75 2 

1.00E

-06 
3.62E-02 5.15E-02 



12 1 28.4375 19.0625 
622500

0 
956.25 1 

1.00E

-05 
1.03E-02 4.65E-02 

13 3 65.9375 56.5625 
562500

0 
866.25 0 

1.00E

-06 
2.84E-02 3.55E-02 

14 2 9.6875 75.3125 
592500

0 
911.25 0 

1.00E

-06 
3.43E-02 5.15E-02 

15 4 47.1875 37.8125 
652500

0 
821.25 2 

1.00E

-05 
2.02E-02 4.85E-02 

16 1 
35.4687

5 

49.5312

5 

596250

0 
973.125 1 

1.00E

-06 
2.87E-02 3.65E-02 

17 3 
72.9687

5 

12.0312

5 

656250

0 
883.125 0 

1.00E

-05 
6.44E-03 2.35E-02 

18 2 
16.7187

5 

30.7812

5 

626250

0 
928.125 1 

1.00E

-05 
2.85E-02 5.45E-02 

19 4 
54.2187

5 

68.2812

5 

566250

0 
838.125 2 

1.00E

-06 
3.49E-02 4.65E-02 

20 1 
44.8437

5 

58.9062

5 

641250

0 
815.625 0 

1.00E

-06 
3.22E-02 3.98E-02 

21 3 7.34375 
21.4062

5 

581250

0 
905.625 2 

1.00E

-05 
5.81E-03 2.25E-02 

22 2 
63.5937

5 

40.1562

5 

551250

0 
860.625 1 

1.00E

-05 
2.36E-02 2.55E-02 

23 4 
26.0937

5 

77.6562

5 

611250

0 
950.625 0 

1.00E

-06 
3.45E-02 4.85E-02 

24 1 
68.2812

5 

44.8437

5 

588750

0 
961.875 2 

1.00E

-06 
2.65E-02 4.15E-02 

25 3 
30.7812

5 
7.34375 

648750

0 
871.875 1 

1.00E

-05 
3.82E-03 2.25E-02 

26 2 
49.5312

5 

26.0937

5 

618750

0 
916.875 0 

1.00E

-05 
1.53E-02 5.45E-02 

27 4 
12.0312

5 

63.5937

5 

558750

0 
826.875 1 

1.00E

-06 
2.56E-02 4.95E-02 

28 1 
21.4062

5 

54.2187

5 

633750

0 
849.375 0 

1.00E

-06 
2.59E-02 3.95E-02 

29 3 
58.9062

5 

16.7187

5 

573750

0 
939.375 2 

1.00E

-05 
9.44E-03 2.75E-02 

30 2 
40.1562

5 

35.4687

5 

543750

0 
894.375 2 

1.00E

-05 
2.30E-02 5.65E-02 

31 4 
77.6562

5 

72.9687

5 

603750

0 
984.375 1 

1.00E

-06 
4.20E-02 5.45E-02 

32 1 
76.4843

8 

29.6093

8 

654375

0 
829.6875 1 

1.00E

-06 
1.50E-02 3.35E-02 



33 3 
38.9843

8 

67.1093

8 

594375

0 
919.6875 2 

1.00E

-05 
2.13E-02 2.85E-02 

34 2 
57.7343

8 

48.3593

8 

564375

0 
874.6875 1 

1.00E

-05 
3.00E-02 5.75E-02 

35 1 
10.8593

8 

38.9843

8 

579375

0 
987.1875 1 

1.00E

-06 
1.65E-02 3.65E-02 

36 2 
29.6093

8 

57.7343

8 

609375

0 
942.1875 0 

1.00E

-05 
2.87E-02 5.35E-02 

37 4 
67.1093

8 

20.2343

8 

549375

0 
852.1875 2 

1.00E

-06 
1.13E-02 4.45E-02 

38 1 
24.9218

8 

24.9218

8 

646875

0 
840.9375 0 

1.00E

-06 
1.31E-02 3.75E-02 

39 3 
62.4218

8 

62.4218

8 

586875

0 
930.9375 1 

1.00E

-05 
2.77E-02 3.35E-02 

40 2 
6.17187

5 

43.6718

8 

556875

0 
885.9375 2 

1.00E

-05 
2.92E-02 5.15E-02 

41 4 
43.6718

8 

6.17187

5 

616875

0 
975.9375 0 

1.00E

-06 
5.22E-03 4.55E-02 

42 1 
53.0468

8 

34.2968

8 

571875

0 
953.4375 2 

1.00E

-06 
1.96E-02 4.05E-02 

43 3 
15.5468

8 

71.7968

8 

631875

0 
863.4375 1 

1.00E

-05 
9.52E-03 2.25E-02 

44 2 
71.7968

8 

53.0468

8 

601875

0 
908.4375 0 

1.00E

-05 
3.19E-02 5.35E-02 

45 4 
34.2968

8 

15.5468

8 

541875

0 
818.4375 2 

1.00E

-06 
8.38E-03 4.35E-02 

46 1 
50.7031

3 

64.7656

3 

605625

0 
981.5625 2 

1.00E

-05 
3.42E-02 4.75E-02 

47 3 
13.2031

3 

27.2656

3 

545625

0 
891.5625 0 

1.00E

-06 
1.14E-02 2.45E-02 

Table 9 – Input values 

 

Model number 

     1 Standard k- ϵ 

2 Standard k- ω 

3 RANS 

4 RSM 

Table 10 – Model number and associated turbulence 

model 



 

 

 

The associated scatter plot of the outputs is as follows: 

 

Figure 22 - Liquid penetration length  

 

 

Figure 23 - Vapor penetration length 

 

The spread is very wide for the Liquid penetration length compared to the vapor 

penetration length. As the liquid penetration length is computed using Lagrange approach, 
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it is expected to be more sensitive than the vapor penetration length computed using the 

Euler approach.  

(c) Modified least square fit 

The output data from the Sobol based Monte Carlo study is used to estimate gradients 

and constants of the modified least square fit equation. 1st and 2nd order comparison states 

that the parameters have more or less a monotonic relation over the parameters. To further 

ensure accuracy of the curve fit higher order equations like 3rd order and 5th order were 

also computed. 

(i) 1st order curve fit 

 

Figure 24 – 1st order curve fit for the 47 simulations liquid penetration length 

 



 

Figure 25– 1st order curve fit for the 47 simulations vapor penetration length 

 

 

The gradients and constants are used to compute the estimated values for each of the 47 

output values. And are compared. The 5th order fit is slightly better than the 1st order. 1st 

order curve fit is considered close enough and used for further calculations. 

 

Figure 26– Approximation using 1st order curve fit gradients for liquid penetration length 
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Figure 27– Approximation using 1st order curve fit gradients for vapor penetration length 

 

(ii) 2nd order curve fit 

 

Figure 28– 2nd order curve fit for the 47 simulations liquid penetration length 
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Figure 29– 2nd order curve fit for the 47 simulations vapor penetration length 

 

The trend of the output to input relation is best mimicked by 1st order compared to 2nd 

order least square fit, implying an odd degree relationship more or less like that of 

monotonically increasing or decreasing dependence.  

To further ensure the approximation is well approximated 5th order curve fit is also 

computed. 



(iii) 5th order curve fit 

 

Figure 30– 5th order curve fit for the 47 simulations liquid penetration length 

 

 

Figure 31– 5th order curve fit for the 47 simulations vapor penetration length 

 



 

Figure 32– Approximation using 5th order curve fit gradients for liquid penetration length 

 

(iv) Additional 10 simulations 

As the 50 simulations conducted for Sobol based Monte Carlo study involved the 

KHRT parameters uncertainty a wide spread of liquid and vapor penetration length was 

detected. This uncertainty is basically uncertainty in characterization of the injector. An 

injector has its own peculiar nozzle geometry and surface properties which has 

significance in the jet breakup. To quantify this breakup one needs to fine tune the KHRT 

parameters to match with the experimentally measured output. Once done the KHRT 

parameters are the characterized constants for the given nozzle specifications. 

Thus there are 2 types of uncertainty that are of interest with respect to diesel like 

sprays: 

1. Without the injector characterization 

2. With injector characterization. 

The former can be studied from the already performed 50 simulations. For the latter we 

need to fix the KHRT parameter values to its nominal values and repeat the process. As 

the system is Sobol based the number of sampling could be dynamically controlled. 10 

further simulation sampling was therefore generated and simulated.  

 

The results of which are as follows: 
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(9 on the simulations converged and 1 diverged) 

 

Figure 33– Estimated values using 1st order gradients for liquid penetration length 

 

 

Figure 34– Estimated values using 1st order gradients for Vapor penetration length 

 

(d) Moments Method 

The gradients and constants are finally used to estimate the uncertainty. The parameters 

are assumed to be mutually independent i.e. the co-variance terms are zero. The 

assumption is aimed to simplify the study though it would not be as accurate.  
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The variance in the output due to each input is computed with the help of the 1st order 

gradients which are added for the continuous domain parameters. Among the constants 

maximum and minimum values are calculated for each namely, Turbulence model, time 

discretization and grid discretization. The upper bound of uncertainty is estimated by the 

total variance from all the gradients and adding the maximum value of constants among 

each of the 3 categories. Similarly the lower bound computed by deducting the total sum 

of all the variance and the minimum value of constants. 

 

 

Figure 35– Uncertainty band for liquid penetration length without injector 

characterization 
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Figure 36– Uncertainty band for vapor penetration length without injector 

characterization 

 

 

Figure 37– Uncertainty band for liquid penetration length with injector characterization 
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Figure 38– Uncertainty band for vapor penetration length with injector characterization 

 

 

Type 
Liquid penetration 

uncertainty band length 

Vapor penetration 

uncertainty band length 

Without injector 

characterization 
38.65 mm 45.41 mm 

With injector 

characterization 
13.57 mm 35.8 mm 

Table 11 – Summary of the uncertainty band 
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6. Conclusions & future scope 

The uncertainty band is extremely sensitive to injector characterization. The 

uncertainty is estimated for the 10 simulations based on the gradients received from the 1st 

order curve fitting the initial 47 simulations. It should be noted that the uncertainty study 

is based on Taylor series expansion around the nominal value. As much as the interval 

closer to the interval used to compute the gradients, better approximate uncertainty 

estimation can be expected. 

The uncertainty is considerably reduced with the injector characterisations, 25.08 mm 

for liquid and 9.6 mm for vapour penetration length.  

A systematic methodology established and executed for a computationally intensive 

problem. The technique does need improved uncertainty quantification for modified least 

square technique needed to solve. The current study estimates uncertainty in a crude way 

of adding the maximum and minimum bounds of all the discreet domain parameters.  

The study included injector cone angle as the only geometrical input parameter. The 

parameter did not though require to redo the geometry and meshing. Which would not 

always be the case. Most of the times the geometry being simulated would have to be 

redone each time. In such case automation is extremely complicated but even more 

important. A process to do the same is very much required. 

The parameters are assumed to have no mutual dependence on each other. Considering 

a system with mutual dependence would improvise on the accuracy of the model. 
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