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Abstract 

In the present work an attempt was made to investigate the weldability of High density 

polyethylene (HDPE) sheets by a hybrid friction stir welding process called i-fsw (Induction 

Assisted Friction stir welding) where the friction stir tool during welding is heated by Induction 

and the temperature is precisely maintained through a temperature feedback control system. 

The mechanical behavior and weld microstructure of the joints were studied over a wide range 

of tool rotational speeds and tool pin temperatures. A narrow transition zone between the 

weld and base material without any defect ensures joints with a strength similar to the base 

material, better than previously reported results with the same material. A drop in hardness at 

the weld zone, for all the parameters, and a transition from brittle to ductile nature of the joints 

at higher tool pin temperatures were observed. The percentage crystallinity of the selected 

welded samples and base material from Differential Scanning Calorimetry (DSC) test confirmed 

the narrow transition zone width obtained at higher tool pin temperatures. The Infrared 

spectra from Fourier Transform Infrared Spectroscopy (FTIR) test showed the presence of 

aromatic functional group for the sample showing maximum joint efficiency and signifies the 

chemical change i-fsw brings at moderate and high heat input conditions. 
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Chapter 1 

Introduction 

1.1 Background 

Thermoplastics have extensive applications in aerospace and automotive industries due to their 

high strength to weight ratios and toughness. Among them polyethylene is the most produced 

and used plastic material due to its light weight, flexibility, ease of joining, long term durability, 

low cost and lack of corrosion [1], hence finds place in gas distribution pipeline applications. 

Different grades of PE have been used as pipe materials, however High density polyethylene 

(HDPE) is the most preferred material for natural gas pipe manufacturing because it has high 

strength and a high modulus. For the last several years HDPE is being successfully used in 

geotechnical and civil engineering applications. In order to join PE materials various fusion 

joining techniques are being employed because of its high welding capability. All plastic welding 

techniques consist of three common stages: (a) Formation of a layer of molten material on the 

surfaces to be joined, (b) Bond formation by application of pressure, (c) The melt is allowed to 

cool and in this stage pressure should be maintained in order to prevent forming voids inside 

the weld zone. 

1.2 Friction Stir Welding 

Friction stir welding is a solid state welding method that was invented by Thomas W.M at The 

Welding Institute (TWI) in United Kingdom in 1991 [2]. Initially it was used for welding of 

aluminium and aluminium alloys and later extended to magnesium and titanium alloys. It is a 

solid state hot shear joining process in which a rotating tool with a shoulder and a pin traverses 

along the weld seam as shown in Fig. 1. The frictional heat from the tool shoulder and 

deformation heat from tool pin enable the material to soften without reaching the melting 

point. Severe plastic deformation and flow of this plasticized material occurs as the tool is 

translated along the welding direction. Material is transported from the leading to the trailing 

edge of the tool where it is forged to form a joint. 
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Fig. 1 Schematic of Friction Stir Welding process 

1.3 Advantages of FSW 

1) FSW is an environmentally friendly process as no cover gas or flux is required, is versatile 

and consumes less energy in comparision with conventional welding methods [3,4-6]. 

2) A milling machine and a tool are the only required equipment without any other welding 

machines. 

3) Increased productivity and quality due to ease of automation and possibility of long 

continuous welds with an ability to weld almost all thermoplastics [7]. 

1.4 Limitations of FSW 

Despite friction based welding such as friction stir welding or ultrasonic welding were very 

successful for metals, there are some limitations for plastic welding that are difficult to 

overcome such as [7,8]: 
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1) Low welding speed, low melting temperature, low hardness, relatively poor impact 

resistance and short solidification time. 

2) Insufficient heat input due to very low thermal conductivity. 

3) Non uniform weld bead and uneven polymer mixing [9] 

4) Flash formation or ejection of melted thermoplastic from the weld region. 

 

The FSW at present is primarily proved for producing linear welds and the process is different 

from that of metals because of differences in material structure and morphology. The tool in 

FSW of some hard metals sometimes need to be externally cooled whereas the same need to 

be externally heated in case of thermoplastics in order to avoid problems with conventional 

tools, such as squeezing of the polymer from the weld nugget. 

If the conventional FSW process which is capable of curvilinear welding can be modified such 

that the tool temperature can be maintained over the entire length of the weld then the 

limitation of welding plastics by the existing methods like shoe heating method may not be best 

for curvilinear welds, preheating of tool may not perform lengthier welds because of dip in tool 

temperature and external heating of tool may lead to unnecessary heating of base material, can 

be eliminated.  

The present work presents an attempt where the FSW tool is induction heated and precise 

temperature control is achieved through temperature feedback. This process is termed as 

Induction Assisted Friction Stir Welding process (i-fsw) and no publication was found on fsw of 

HDPE using this process. Tool rotational speed and tool pin temperature at the beginning of the 

process were considered as the variable parameters in order to study their effects on the 

Tensile strength, Micro structure and Micro hardness of the joints. Differential Scanning 

Calorimetry (DSC) examination of the Base material and five different cases of welded samples 

was performed for getting information about the crystalline nature of the joints (% 

crystallinity). Fourier Transform Infrared Spectroscopy (FTIR) technique was applied with the 

main objective of identifying any alteration in the HDPE composition ie composition of the 

welds performed at different parameters from the base material (case of no welding). 
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1.5 Document Organisation 

Chapter 1 is an Introduction to this document containing a brief discussion of the purpose of 

this thesis. A brief understanding about the friction stir welding process is given. 

Chapter 2 contains an in-depth review of literature published on friction stir welding of 

polymers. 

Chapter 3 gives information about the Materials and Experimental procedure employed in this 

research. Procedures for welding, specimen preparation and testing are explained. 

Chapter 4 presents the results obtained by butt welding HDPE plates using i-fsw process. It 

gives the relationship between the microstructure of the polymer within the weld zone and the 

mechanical properties of the welded joint.   
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Chapter 2 

Literature Review 

In this chapter the existing literatures on polymer welding are illustrated focusing mainly on 

friction based welding techniques. 

Polymers can be welded by three methods that depend on the heat generation technique: 

Methods based on a) Heat conduction b) Heat Radiation c) Mechanical Friction. In heat 

conduction based techniques such as Hot plate welding, Hot gas welding, Extrusion welding, 

the surfaces to be welded are electrically heated and then they are pressed together by 

applying pressure to form a strong joint. In welding methods based on radiation such as Laser 

welding, Induction or High Frequency welding, Infrared welding the material absorbs the 

electromagnetic radiations there by rising its temperature. In the case of friction welding 

methods such as Spin welding, Linear Vibration welding, Ultrasonic welding the heat is 

generated the surface friction between the surfaces. Friction Stir Welding is a new member in 

this family of welding for joining soft metals and was initially used for aluminium alloys. 

 

2.1 Welding with conventional FSW tool (Integrated pin and shoulder) 

Bozkut [10] employed a conventional FSW tool with an 18mm diameter shoulder and 6mm 

diameter pin varying the tool rotation speed from 1500 to 3000rpm and travel speed from 45 

to 115 mm/min in welding of High Density Polyethylene (HDPE).  Temperature variations 

between 120°C and 165°C were measured and the author observed root cracks and voids in the 

welds which were responsible for the poor tensile properties. 

Saeedy and Givi [11] investigated the effects of critical process parameters on FSW of 

polyethylene where the parameters ranged from 1000-1800 rpm, 12-20 mm/min travel speed 

and tool tilt angles of 1° and 2°. A weld strength of 75% of the base material was achieved for 

only one optimized set of welding parameters that showed the importance of process 

parameters on the strength of the weld. 

Arici and Selele [12] and Arici and Sinmaz [13] performed double pass butt welding of PE using 

conventional FSW tool to avoid root defects at rotation speeds upto 1000rpm and traverse 
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speeds upto 60 mm/min. They observed that depending on the amount of heat input, some 

material was expelled from the joining area during welding.  

Arici and Selale [12] also investigated the influence of tool tilt angle on FSW of PE where they 

observed that the strength and thickness of the welds decreased with increase in tilt angle. 

Panneerselvam and Lenin [14] used square, triangular, threaded and tapered pin profiles to 

analyse the influence of pin geometry on FSW of Polypropylene (PP) at rpm of 1500-2250 and 

traverse speed of 30-60 mm/min. They reported poor joining at the retreating side and the 

threaded pin profile gave the best welding results. 

These others also used a left hand threaded tool pin profile operated at 1000rpm and 10 

mm/min feed to analyse the influence of tool rotation direction on the quality of the weld for 

Nylon 6 Polyamide as the base material and found that the weld was free of defects with 

improved strength when the tool was rotated in the anti clock wise direction. The clock wise 

direction resulted in expulsion of material from the seam resulting in poor weld quality. 

 

2.2 Preheating of tool and Preheating of Plates 

Aydin [15] used Ultra High Molecular Weight Polyethylene (UHMW-PE) as the base material 

and preheated it to perform single pass butt welding. They reported that the surface 

morphology of the weld and global properties were improved by preheating. 

Squeo and Quadrini [16] performed preheating of tool and work piece using conventional 

rotating tools in FSW of polyethylene claiming that the weld quality was improved but 

optimization of process parameters was needed to achieve optimum FSW conditions 

2.3 FSW with Modified tools (Hot Shoe)  

To avoid expulsion of melted polymer from the weld seam some researchers used a modified 

tool with a stationary shoulder called Shoe. 

Nelson et al. [8] proposed the patented FSW tool with a hot shoe to overcome the problems 

with conventional tools like ejection of material by the rotating shoulder where the heat input 

is given by an electric heater connected with the shoe as shown in Fig. 2, thus retaining the 

molten material in the weld region and providing forging pressure for thermoplastic 

consolidation. Joint efficiency of atleast 75% of the base material was achieved. 
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Fig. 2 Friction stir welding tool with a heated shoe [8] 

 

Mostafapour and Azarsa [17] varied the rpm from 1000-1600, travel speed from 10-40mm/min 

and used shoulder temperatures 80°C, 110°C and 140°C to weld HDPE using a heated 

aluminium shoulder and reported defects such as lack of bonding between the weld nugget and 

the base material, incomplete tool penetration as well as material degradation at high 

temperatures. When there was sufficient heat input to the weld seam these defects were 

reduced. 

Rezgui et al. [18] used a stationary shoulder made of wood to weld HDPE at three different 

cylindrical threaded pins and used Taguchi method to optimize the weld parameters. They 

observed that the presence of discontinuities in the weld caused the specimens to fail for very 

small strain values. 

Kiss and Czigany [19,20] used an non heated shoe to perform FSW for Polypropylene (PP) and 

Polyethylene terephthalate glycol (PETG) where spherulitic structures similar to the base 

material (B.M) were observed in the nugget due to the slow cooling rate of the weld, for PP 

welds. In case of PETG welds a sharp discontinuity between the weld and B.M were reported. 

Bagheri et al. [21] used a heated shoe to weld ABS and observed inadequate material mixing 

and lack of joining between the seam and the base material at low rpm and burning of material 

at high rpm. The results were improved by heating the shoe. 
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2.4 Viblade Method 

Viblade method belongs to the family of friction based methods of heat generation where an 

Oscillating blade and Shoulder move in the horizontal direction as shown in Fig. 3 and hence the 

heat reaches the root of the joint. It is used for welding thick plastics but can produce only 

linear welds due to the limitation of the blade tool [22]. 

   

                                        a)                                                                                     b)  

 Fig. 3 Viblade welding process. a) Schematic outline of the Viblade process b) Viblade 

machine[22] 

From the literature review it becomes clear that in order to avoid plastic material being 

expelled from the weld seam and obtain good quality welds, Stationary shoulder tools with a 

heating system need to be used but they cannot perform curvilinear welds. In the present work 

an attempt was made to weld HDPE plates using a tool that is induction heated, because of its 

advantages as there is no publication on fsw of HDPE using i-fsw process. 

 

2.5 Objectives of present study 

1. To demonstrate a new technique of friction stir welding called Induction Assisted friction 

stir    welding (i-fsw) that can overcome the limitations of existing methods. 

2. To study the effects of critical process parameters on the mechanical properties ie tensile 

strength and microhardness and identify the relation between the types of fracture and 

strength of the joints. 

3. To evaluate the microstructure and understand the crystalline nature of the welded joints.  
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Chapter 3 

Materials and Experimental Method 
 

The present study is carried out on High density polyethylene thermoplastic as the raw material 

and a vertical milling machine is used to perform the FSW experiments. The following section 

gives details about the experimental set up, welding parameters and materials and tools used. 

 

3.1 Experimental set up 

The i-fsw process consists of an induction coil that encircles the FSW tool as shown in fig. 4. The 

Induction coil along with the induction power source and optical infrared temperature sensor 

are mounted on the machine head and move with the tool as shown in fig. 5.  

 

3.2 Principle of Working 

When an alternating electrical current is applied to the primary of a transformer, an alternating 

magnetic field is created. According to faradays law, if the secondary of the transformer is 

located within the magnetic field, an electric current will be induced. In fig. 4 the induction 

power source serves as the transformer primary and the part to be heated (work piece) 

becomes a short circuit secondary. When a metal part is placed within the induction coil and 

enters the magnetic field, circulating eddy currents are induced within the part.  These eddy 

currents flow against the electrical resistivity of the metal, generating precise and localized heat 

without any direct contact between the part and the induction coil. This heating occurs with 

both magnetic and non-magnetic parts and is often referred to as, the Joule Effect.  
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Fig. 4 Schematic of basic Induction heating setup 

  

 

  
 

                                                a)                                                                           b) 

Fig. 5 a) Induction power source with coil and Infrared temperature recorder b) Welding 

equipment installed on the milling machine. 

 

In this way the FSW tool is consequently heated and the temperature sensor senses the 

temperature at the tip of the tool and sends signal to the temperature controller which is 

synchronized with the induction power source. 
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3.3 Material Specification and Tool Dimensions 

Commercial 5mm thick high density polyethylene (HDPE) plates were cut into 170x85 mm size 

plates for FSW with mechanical properties given in table 1. 

Table 1: Mechanical properties of HDPE 

Youngs Modulus Yield Strength Break Stress Strain at Break Hardness 

0.714 Gpa 19.92 Mpa 11.12 Mpa 117.23 % 4.85 HV 

 

The tool used was made of H13 tool steel material with a hardness of 53HRC. The shoulder has 

a diameter of 10mm and the pin is taper threaded with a major and minor diameter of 6mm 

and 5mm respectively. The pin length is 3.83mm. The direction of tool rotation was 

anticlockwise to promote a downward flow of material, since the pin was right hand threaded. 

3.4 Process Preparation 

After preparing the HDPE plates as per the required dimensions they were held tightly together 

in the butt configuration in a simple fixture as shown in fig. 6. 

 

Fig. 6 Fixture for butt joint configuration 

The rotational speed of the tool, travel speed and tool pin temperature were considered as the 

process parameters  and were chosen through pilot experiments conducted on bead-on-plate 

(BOP) welds. Three different rotational speeds, four different tool pin temperatures and a 

constant feed rate were selected as shown in table 2. 

 

 

 

 



12 

 

Table 2: Processing parameters 

Welding Parameters (feed rate=50mm/min) 

   Rotational speed(RPM)    Tool Pin temperature(˚C) 

                  1000                        40 

                  2000                        45 

                  3000 

                   

                       50 

                       55 

 

Once the processing parameters were set and the two pieces held tightly in the fixture a hole of 

dimater 7mm was made initially using a drill bit until a depth of 4.7mm on the butt line and 

then the tool was induction heated where the temperature of the pin was measured using the 

optical infrared temperature sensor. Once the pin reached the required temperature the 

rotating tool was plunged into the sheets 1.17mm shorter than the thickness of the workpiece 

in order to prevent outpouring of the melted material from the bottom. A dwell time of 15 

seconds was given to let the tool warm up the material by friction and then it was traversed 

along the weld line. The heating of the tool by induction is continued throughout the weld line 

and once the tool reaches the end of the butt line it is lifted up together with the induction coil 

and then heating of the tool is stopped. After FSW the welds were allowed to cool in the fixture 

for about 15 minutes to avoid bending caused due to shrinkage of the material in the weld 

zone. 

3.5 Measurement and Tests 

3.5.1 Tensile test 

For each welding condition (using a given set of process parameters) two welds were made at 

different points of time to bring into effect different environmental conditions and a dog bone 

shaped specimen was cut at the centre of the welded sample as per ASTM D-638 standard type 

1 specimen shown in fig. 7 and tensile test was performed with the specimen without removing 

the flash in a Universal Tensile Testing Machine at a cross head speed of 5mm/min as shown in 

fig. 8.  
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Fig. 7 Dimensions of dog bone shaped tensile specimen as per ASTM D-638 standard in mm 

 

 

Fig. 8 Tensile testing of the Base material 

Base material 
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3.5.2 Hardness Distribution 

Vickers hardness test was conducted on the cross section of the welded specimens, each of size 

40 ⨯ 20 ⨯ 5mm at distances 1.2mm and 2.4mm above the base. Samples were polished in a 

polishing machine until they were smooth and then indented with a load of 100g for a dwell 

time of 15 seconds. Before Indentation the surface was rubbed with a small amount of acetone 

to enable a clear identification of the diagonals of the indent. 

 

3.5.3 Microstucture Examination 

Microstructure images of the weld zone were examined using the optical microscope at 50X, 

100X and 500X magnifications. Samples were initially polished with emery papers of grit sizes 

180, 360, 600, 1200, 2000 and later were subjected to diamond polishing to get a smooth 

surface without any scratches. Once polished they were etched in 0.7% solution of Kmno4 in a 

mixture of 35% volume  of ortho phosphoric acid and 65% volume of sulphuric acid. The etching 

time was 2 hours followed by rinsing in a mixture of 2 parts by volume of sulphuric acid and 7 

parts of water which were cooled to near freezing point, washed with hydrogen peroxide from 

the fridge followed by distilled water and acetone. After rinsing the samples, they were allowed 

to dry for about 5 minutes before being examined under the microscope.   

 

3.5.4 Fourier Transform Infrared Spectroscopy (FTIR) 

FTIR is a method to identify unknown materials, where the chemical bonds in the material 

interact with the infrared radiation and the amount of absorbed/transmitted radiation at 

different wave lengths gives information about the functional groups in the sample. The FTIR 

technique was applied with the main objective of identifying any alteration in the HDPE 

composition ie composition of the welds performed at different parameters from the base 

material (case of no welding). 

 

3.5.5  Differential Scanning Calorimetry (DSC) 

DSC is an analytical technique that measures the heat flow rate to or from a sample as it is 

subjected to a controlled temperature program in a controlled atmosphere. When specimens of 
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semicrystalline thermoplastic pass through phase transitions such as melting points, the 

additional energy required to pass through such transitions are measured as endotherms. 

Melting point measurement and calorimetric studies of samples welded at 5 different 

parameters was performed on Differential Scanning Calorimeter. 10mg of each sample was 

taken from the center of the weld seam in a sealed aluminium sample holder with perforated 

cap and heated at a rate of 10°C/min from 40°C to 200°C. The crystallinity of a polymer can be 

calculated using the enthalpy of fusion (ΔH) and equation 1. 

                             % Crystallinity = (ΔH/ΔHC)⨯100                                                      (1) 

ΔH-Enthalpy of fusion for the sample 

ΔHC - Enthalpy of fusion for a 100% crystalline standard. 

Melting point and enthalpy of fusion are listed in table 3. 

Table 3: Physical properties of HDPE 

Density (g/cm
3
) Melting point (°C) ΔH (J/g) Crystallinity (%) 

0.9705 144.4 107.7 36.39 
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Chapter 4 

Results and Discussion 

4.1 Pilot Experimentation 

The input parameters shown in table 2 were chosen through pilot experiments conducted on 

bead-on-plate welds. The amount of flash and visual quality of BOP welds were observed. 

Welds were made at 1000, 2000 and 3000rpm at tool pin temperatures of 50°C, 55°C, 60°C, 

65°C, 72°C and 80°C with feed rates of 50 and 100mm/min. Fig. 9 shows the effect of process 

parameters of single HDPE plates. From the observations of the BOP welds, keeping in mind the 

flash criteria and the quality of the weld bead it was decided not to perform the butt joints at 

tool pin temperatures more than 55°C and feed rates not more than 50mm/min. So in order to 

get the basic understanding of the effect of induction heating on HDPE, rotational speeds of 

1000, 2000 and 3000rpm and tool pin temperatures varying from 55°C to the room 

temperature (case of no tool heating) at an interval of 5°C were chosen as the process 

parameters for performing the butt joints, keeping the feed rate constant at 50mm/min. The 

observations of pilot experiments is shown in table 4. 
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Fig. 9 Cases of a) Improper material mixing b) Poor quality of weld bead c) Burning appearance 

of plastic material d) Good material mixing with heavy flash appearance  

 

Table 4: Observations made on single HDPE plates at different parameters 

 

RPM Feed rate 

(mm/min) 

Tool pin 

Temperature(°C) 

Observations 

1000,2000,3000 100 55 Groove was observed throughout weld line 

3000,2000 50,100 60 Material mixing was not proper and small 

slots were seen on the weld bead 

1000,2000,3000 50 65 Material mixing was good but heavy flash 

was seen 

1000,2000,3000 50 72,80 Slight yellow colour of the flash was seen 

which marked the onset of burning of the 

plastic 

1000,2000,3000 100 72,80 Solid HDPE particles were deposited on the 

weld bead 

 

   

4.2 Surface Views, Material Flow and Tensile Strength 

The material flow, ie flash can be controlled by selecting proper process parameters. Fig. 10 

shows the surface views of two HDPE plates joined by friction stir welding at different 
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parameters indicating four representative cases of flash namely No flash (fig. 10a), Moderate 

flash (fig. 10b), Heavy flash (fig. 10c) and Very heavy flash (fig. 10d). It can be seen that changes 

in rotational speed and temperature greatly influence flash generation. For a change in 

temperature of 15°C for the same rotation speed no flash to very heavy flash condition is 

observed in fig. 10 (a) and fig. 10 (d). Similarly change in rotation speed at constant 

temperature brings a considerable change in flash generation. The flash criteria is important 

when the weld is seen from the aesthetic point of view but is not always decisive in terms of 

joint strength. 
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Fig. 10 Flash appearance in samples welded at different parameters 

Fig. 10 (e) shows the surface view of the joint made at 2000rpm and a tool pin temperature of 

45˚C that is having the maximum tensile strength compared with other parameters. Though 

heavy flash was seen for the joint made at 2000rpm and tool pin temperature of 55˚C, shown in 

fig. 10 (c), the strength was very close to that of the base material, indicating that the strength 

of the joint cannot be judged based on the flash criteria ie, it cannot be ensured that the welds 

showing considerable amount of flash, have a strength less than the welds with zero flash, 

which is the case shown in fig. 10 (a) that is having minimum tensile strength. 

4.3 Effect of Rotational speed and Tool pin temperature on Tensile strength of 

the joints 

 
Fig. 11 shows the surface plot of ultimate tensile strength with tool rotational speed and pin 

temperature which is convex shaped showing that the strength increased in a linear fashion 

from 1000 to 3000rpm for the welds performed without tool heating at room temperature 

while it increased from 1000 to 2000rpm at all tool pin temperatures, however a further 

increase in rpm caused the strength to decrease. It shows an interactive effect of tool rotational 

speed and pin temperature on the tensile strength of the joints. Similarly an increase in 

temperature from 35°C to 45°C resulted in an increase in strength, which came down at 50°C 

(showing the onset of flash) and later increased at 55°C in case of 1000rpm and 2000rpm but 

showed a slight decrease at 3000rpm.  
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Fig. 11 Effect of tool pin temperature and RPM on the tensile strength 

 

Though 1000rpm and tool pin temperature of 40°C resulted in minimum flash this combination 

also resulted in minimum strength. At low rotational speed and low tool pin temperature the 

heat generated is insufficient to soften and plasticize the polymer, resulting in improper fusion 

between the seam and the base material, as shown in Fig. 12. Stagnant material near the 

bottom of the seam on the retreating side of the joint indicates improper merging between the 

weld seam and the adjacent material.  
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Fig. 12 Stagnant solid material near the bottom of the seam at the retreating side of the joint at 

1000rpm and tool pin temperature of 40°C 

Increase in rpm increases the temperature at the weld zone which is necessary for plastic 

deformation and thorough mixing of the plastic material. But higher rpm also results in heavy 

flash that reduces the thickness of the weld seam at the cross section. Thus a moderate rpm 

and temperature work optimal for i-fsw process in terms of ultimate tensile strength. At the 

high rotational speed of 3000rpm, the deformation and frictional heat cause excessive 

turbulence of material in the seam and hence the flow of softened material cannot be 

controlled, resulting in out flow of material. As a result the strength is reduced compared to 

that at 2000rpm where sufficient heat is generated at all the tool pin temperatures to soften 

the seam and properly fuse with the base material. In this case, the material rather than getting 

expelled is confined to a greater extent within the weld seam.  

 

4.4 Fracture Analysis 

Table 5 shows five different cases of fracture locations identified after conducting the tensile 

test. The welded samples fractured at different locations starting from outside the weld seam, 

at the retreating interface, in the retreating side of the weld seam, at the center of the weld 

seam, and in the advancing side of the weld seam. 
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Table 5: Types of Fracture Locations 

Types of 

Fracture 

Schematic Photograph 

 

a) Crack 

formed 

outside 

weld 

seam 
  

 

b) Crack 

formed at  

the 

retreating 

interface 

  

 

c) Crack 

formed in 

retreating 

side of 

weld 

seam 

 

 

 

d) Crack 

formed at 

the 

centre of 

the weld 

seam    

e) Crack 

formed in 

the 

advancing 

side of 

weld 

seam 
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Table 6: Joint efficiency, fracture type and % elongation in friction stir welded samples  

 

Sno 

 

RPM 

 

Tool Pin 

Temperature(˚C) 

Ultimate 

Tensile 

Strength 

(Mpa) 

        

Joint 

Efficiency(%) 

 

Types of 

Fracture 

 

Percentage 

Elongation 

(%) 

1 1000 
35 (room 

temperature) 
0.55 2.87 Type c 6.96 

2 1000 40 8.17 41.01 Type c 6.56 

3 1000 45 15.81 79.37 Type c 15.56 

4 1000 50 15.36 77.11 Type c 15.08 

5 1000 55 18.76 94.18 Type d 21.69 

6 2000 
35 (room 

temperature) 
4.5 23.62 

Fractured 

at the 

root tip 

1.37 

7 2000 40 18.75 94.13 Type b 16.26 

8 2000 45 20.78 104.32 Type a 20.17 

9 2000 50 17.68 88.76 Type d 18.42 

10 2000 55 19.66 98.69 Type c 18.05 

11 3000 
35 (room 

temperature) 
9.48 49.82 Type e 2.59 

12 3000 40 17.9 89.86 Type e 14.29 

13 3000 45 19.69 98.85 Type d 13.49 

14 3000 50 15.72 78.92 Type d 20.7 

15 3000 55 15.51 77.86 Type e 23.55 

  

Table 6 shows the joint strength, types of fracture and % elongation of samples welded at 

different process parameters. The welds performed at 2000rpm and tool pin temperature of 

55°C and 3000rpm and tool pin temperature of 45°C showed a joint strength of more than 98% 

which was very close to the base material and was not achieved earlier. The weld made at 

2000rpm and 45°C pin temperature was found to have a joint efficiency of more than 100% 

which was a distinct case. From the above table it can be observed that the welds performed at 

low rpm and at all tool pin temperatures showed type c failure where all the welds failed in a 

brittle manner at the retreating side. These welds showed very low joint efficiency and 

percentage elongation on comparing with other welds. In the i-fsw welding process, the rpm 

which is mainly responsible for mixing of the plastic material (discussed in the later section) did 
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not mix the plasticized material properly at low rotational speeds resulting in poor bonding 

between the weld seam and the base material that caused the welds to fail at the retreating 

side of the weld seam. When the crack formed at the interface of the weld seam and base 

material in the retreating side (type b) or at the center of the weld (type d) the joint efficiency 

was between 78-98 %. From table 5 the parameters at 2000rpm and pin temperatures of 40°C, 

45°C and 55˚C show a strength more than that at 50˚C because the parameter at 50˚C shows 

type d failure where the crack is in the middle of the seam indicating that the seam is weak in 

this portion. In the other parameters the crack is present outside the seam or just at the 

interface indicating that the seam is strong due to good material mixing and proper fusion with 

the base material. Comparing parameters at pin temperature 40˚C and rpm of 1000, 2000 and 

3000 the position of the crack shifts from the retreating interface(just inside seam, type c) to 

the interface (type b) and then to the centre(type e) indicating the strong effect of rpm on the 

tensile strength of the joint. 

 

4.5 Transition zone and comparision of DSC and FTIR results 

The fracture location and pattern are greatly influenced by shearing or flow developed by the 

outer perimeter of the tool. There exists some relationship between the microstructure of the 

polymer within the weld zone and the mechanical properties of the welded joint. Fig. 13 shows 

transition zone observed at the bottom of the tool pin in retreating side, between the seam and 

the base material. The width of the transition zone in case (a) is narrow compared to others. 

The case (a) represents the weld that was performed at 2000rpm and a tool pin temperature of 

45°C and resulted in the maximum joint efficiency. This is in agreement with the findings of Kiss 

and Czigany [19] who observed that the strength of the FSW joint was close to that of the base 

material if the overall width of the transition zone is small and the less complex its morphology 

is. The width of the transition zone is controlled by cooling, molecular alignment/relaxation and 

crystallization, where crystallization plays the most important role. A wider zone can be 

observed in the case of the weld that was performed at 1000rpm and a tool pin temperature of 

50°C, as shown in Fig. 13 (b). In this case the fracture occurred in the weld zone at the 

retreating side and the joint efficiency was quite low. In the absence of sufficient rotational 
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speed, even if the temperature was increased to 50°C, proper fusion between the seam and the 

base material was not obtained. A crack at the weld and base material interface can be 

observed in Fig. 13 (b). When the rotation speed was increased to 3000 rpm the transition zone 

was uniform but wider and more clearly visible (Fig. 13 (c)) than the maximum joint efficiency 

condition of 2000 rpm (Fig. 13 (a)). 

    

         a) 2000rpm and pin temperature=45°C                 b) 1000rpm and pin temperature=50°C 

 

c) 3000rpm and pin temperature=45°C 

Fig. 13 Transition zone at different welding conditions 

The transition zone is due to skin-core structure formation in the weld. The central part of weld 

seem (core) cools slowly where as more intense heat withdrawal occurs at the base material 

and weld interface (i.e. skin). Thus, spherulitic crystallization could take place in the core 

section while supermolecular structure is formed in the skin. Moreover, temperature generated 

due to the rotation of the pin in FSW helps in crystallization because of longer molecular 
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relaxation time [19]. As a result narrow transition zone width is obtained at higher tool pin 

temperature. The skin-core postulation was verified with the help of Differential Scanning 

Calorimetry (DSC) results. Fig. 14 shows the DSC thermograms for the base material and a 

sample welded at 3000rpm and 50°C tool pin temperature. The samples welded at higher tool 

rotation speed such as 2000 rpm showed 34% crystallinity which was close to base material (i.e. 

36 %). With increase in rpm to 3000 crystallinity increased to 39 %. However for the sample at 

1000rpm that showed wider transition zone, the crystallinity reduced to 13% shown in fig. 15, 

which may also be the reason for the fracture to originate from the weld seam at the retreating 

side. 

 

a) 
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b) 

Fig 14. DSC thermograms of a) Base material and b) Sample welded at 3000rpm and 50°C pin 

temperature 

 

Fig. 15 Percentage crystallinity for base material and welds made at three different welding 

conditions 
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The DSC results were supported by FTIR results. Figs. 16 and 17 show the Infrared spectra (IR) 

of the base material and welds obtained at higher, moderate and lower heat input represented 

by 3000rpm and 50°C, 2000rpm and 45°C and 1000rpm and 40°C. The IR spectra of the weld 

made at 3000rpm and 50°C (case of higher heat input) resembles more with the base material. 

In these two cases similar bands (ie strong bands at 2912 and 2845 cm
-1

 which is due to 

asymmetric and symmetric stretching frequency of C-H group, a medium band at about 1465 

cm
-1 

due to stretching frequency of the C-C bond and medium band at 721 cm
-1

) are observed, 

which are not observed at medium and low heat input welds, shown in table 7. The IR spectra 

of the weld at 2000rpm and 45°C showed a strong bond (close to 800 cm
-1

 ) similar to that 

observed in weld produced at 3000rpm and 50°C. This band indicates the presence of aromatic 

functional group and signifies the chemical change i-fsw brings at moderate and high heat input 

conditions. In case of 2000rpm weak bands in the range of 1665-1760 cm
-1

 are observed that is 

related with oxidation phenomenon. The oxidation range becomes stronger with low heat input 

weld. Moreover phenomenon of chain breaking (observed at bands of 900, 1177, 1368, 1375 

and 1678 cm
-1

) was observed, presented in table 8. Thus from the FTIR results it can be inferred 

that higher relaxation time due to high heat input conditions like 3000rpm and 50°C tool pin 

temperature, helps in preserving the internal structure of the welds, however the flash 

formation at this high rpm, lowers the strength to some extent as described in the section on 

surface views and material flow. 

Table 7: Table indicating wave number, type of bond/vibration and functional group 

Specimen Wave number (cm
-1

) Type of 

Bond/vibration 

Type of Functional 

group 

 

Base material 

2912.81 (s), 2845.81 

(s) 

C-H stretching Alkanes 

1465.43 (m) C-C stretching Aromatics 

722.39 (m) C-H rocking Alkanes 

3000rpm and tool pin 

temperature=50°C 

(High heat input 

2913.39 (s), 2846.06 

(s), 

C-H stretching Alkanes 

1466.87 (m) C-C stretching Aromatics 
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condition) 721.43 (m) C-H rocking Alkanes 

2000rpm and tool pin 

temperature=45°C 

(Medium heat input 

condition) 

799.68 (s) C-H “oop” Aromatics 

1000rpm and tool pin 

temperature=40°C 

(Low heat input 

condition)  

551.1 (s) C-Cl stretching Alkyl halides 

670.36 (m) C-Cl stretching Alkyl halides 

note: (s), (m) indicate strong and medium intensities of infrared radiation 

Table 8: Phenomenon of chain breaking, chain branching, cross link and oxidation 

 Types of Phenomenon 

Specimen Chain breaking Chain branching Cross links Oxidation 

Base material     

3000rpm and 

50°C pin 

temperature 

 

 

 

 

 

 

 

 

2000rpm and 

45°C pin 

temperature 

 

 

 

 

 

 

 

 

1000rpm and 

40°C pin 

temperature 

 

 

 

 

 

 

 

 

3000rpm and 

40°C pin 

temperature 

 

 

 

 

 

 

 

 

1000rpm and 

50°C pin 

temperature 
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Fig. 16 FTIR results of the Base material and the weld performed at 3000rpm and tool pin 

temperature of 50°C 
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Fig. 17 FTIR results of the welds performed at 2000rpm and tool pin temperature of 45°C and 

1000rpm and tool pin temperature of 40°C 

 

4.6 Stress-Strain curves and their relation with fracture locations 

The fracture locations and stress strain curves obtained for low tool pin temperature welds, is 

shown in Fig. 18 that indicate that all the joints failed in a brittle manner where there was a 

sudden drop in the strength after reaching the ultimate tensile strength. In all the three cases at 

different rotation speeds the frictional heat generated was not sufficient to have a good fusion 

between weld and base material. From the fracture locations seen along with the stress-strain 

curves in Fig. 18, the weakest part of the joint was seen at the interface zone (between the 

weld seam and the base material) due to the difference in internal structure between the 

interface and the weld seam [12]. 



Fig. 18 Stress-strain curves and fracture locations at tool pin temperature of 40

Fig. 19 Stress-strain curves and fracture locations at tool pin temperature of 45°C

When temperature was increased to 45°C, improvement in tensile strength and resilience 

observed, as shown in Fig. 19. The ultimate tensile strength and resilience was at a maximum at 
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strain curves and fracture locations at tool pin temperature of 40

 

strain curves and fracture locations at tool pin temperature of 45°C

 

When temperature was increased to 45°C, improvement in tensile strength and resilience 

. The ultimate tensile strength and resilience was at a maximum at 
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Pin temperature = 40˚C
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strain curves and fracture locations at tool pin temperature of 40˚C 

 

strain curves and fracture locations at tool pin temperature of 45°C 

When temperature was increased to 45°C, improvement in tensile strength and resilience was 

. The ultimate tensile strength and resilience was at a maximum at 

3000rpm
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3000rpm
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2000 rpm and the fracture was well outside the weld seam unlike the case of the joint made at 

3000rpm where the fracture was at the center of the weld seam. The cross section images of 

the weld at 3000 rpm at the top, middle and bottom portions of the weld zone are shown in 

Fig. 20, that  reveal the presence of defects, such as cavities and cracks, which reduced its 

strength. In the case of a joint made at 2000rpm, very few or negligible defects were seen. One 

of the reasons may be the fact that the rotational speed of the tool is not greatly responsible 

for heat generation; rather it is more responsible for the mixing of the material in the weld 

seam. Hence at 2000rpm the mixing of the material is good and the material was confined 

within the weld zone as compared to that at 3000rpm where, due to excessive turbulence, the 

flow became uncontrolled, reducing the strength of the joint. 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 20 Defects in the weld joint made at 3000rpm and tool pin temperature of 45°C, a) Top 

region, large pore b) Middle region, small pores c) Bottom region, appearance of crack. 



Fig. 21 Stress-strain curves and fracture locations at tool pin temperature of 50°C

The strength of the joints was reduced in all the parameters at a tool pin temperature of 50°C, 
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strain curves and fracture locations at tool pin temperature of 50°C

 

The strength of the joints was reduced in all the parameters at a tool pin temperature of 50°C, 

compared to Fig. 19, since this temperature marked the onset of flash at the 

retreating side of the welds that reduced the strength, whereas in the former case material 

retention within the seam contributed to an increase in joint strength. There is a sudden 

reduction in strength after reaching the optimum strength in all joints in Fig. 19

, indicating that the strength is mainly governed by the ductility of the joints. 

At a tool pin temperature of 55°C the elongation (in percentage) of all the join

wn in Fig. 22 compared to Fig. 21 and a fibrous structure was seen at the fracture locations. 

Compared to a tool pin temperature of 50°C, joint strength increased at 55°C for cases of 1000 

and 2000rpm along with an increase in the amount of flash. The reason being that width of 

transition zone between seam and the base was narrow that governed strength of the joints, as 

discussed earlier. In all the four Figs. 18,19,21,22 the strength of the welds performed at 
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2000rpm, were well above the remaining curves i

the mechanical properties (ie. joint strength).

 

Fig. 22 Stress-strain curves and fracture locations at tool pin temperature of 55°C

 

4.7 Mechanism of material flow

Fig. 23 Representation of deformation 
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remaining curves indicating that this rpm had a strong effe

the mechanical properties (ie. joint strength). 

strain curves and fracture locations at tool pin temperature of 55°C

4.7 Mechanism of material flow 

 

Representation of deformation zones in the transverse section of a tensile

sample. 

The mechanism of material flow and weld formation is quite different in polymers compared to 

metals. Initially when the tool pin comes in contact with the work piece, plasticized material is 
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formed which is surrounded by the bottom of the shoulder, cooler base material adjacent to 

the pin and the backing plate at the bottom. When linear motion is given to the tool, material 

from the leading edge is progressively plasticized and flows from the retreating side to the 

advancing side and vice versa. During this transfer, if the resistance to the flow of the 

plasticized material between the tool and the base material is high, material will flow out of the 

weld cavity which mainly happens on the retreating side, since the peripheral velocity of the 

tool is opposite to the traverse direction. At the advancing side material coming from the 

retreating side is extruded against the side wall base material where the pressure generated by 

the flow of material is sufficient to consolidate it giving rise to an almost continuous joint 

interface as shown in Fig. 23. The zone I indicates retreating side deformation zone and II 

indicates advancing side deformation zone. 

In i-FSW, at high tool pin temperatures, the shoulder driven material is squeezed out rather 

than entering into zone II which happens in the case of metals [23] and it is mainly the pin-

driven flow volume that contributes to joint formation. In metals the welds result from the 

coalescence of the shoulder and pin-driven material flow, that happens at low tool pin 

temperatures in the case of i-FSW process. At the advancing side, where the peripheral velocity 

of the pin and traverse of the tool have the same direction, a polymer element spends a longer 

time and is more influenced by the velocity field. Hence the grain structure is more refined and 

the resultant hardening is higher than on the retreating side. This is discused in detail in the 

following section on hardness of the welded joints. 

 

4.8 Hardness Results 

Micro Vickers hardness results were analysed measured at 2.4mm above the bottom of the 

specimens. Figures 24, 25 and 26 show the hardness distribution at the cross section of the 

joints welded with different process parameters. The weld zone (-5mm to +5mm) showed 

lower hardness value compared to the base material. The drop in hardness is due to softening 

of material caused by the heated tool. From Figs. 24 and 26, the drop in hardness at the stir 

zone or pin influence zone, which is approximately -2mm to +2mm from the center of the 
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seam, is greater at a tool pin temperature of 55°C compared to that at 40°C, showing a 

decrease in hardness with increase in tool pin temperature. 

 

Fig. 24 Hardness plot at 3000rpm and different tool pin temperatures 

 

 

Fig. 25 Hardness plot at 2000rpm and different tool pin temperatures 
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Fig. 26 Hardness plot at 1000rpm and different tool pin temperatures 

 

The observed hardness pattern is mainly due to the ductile nature of the joints, as evidenced 

from the fracture locations. Hardness reduction ratio at the weld center [24] as shown in Eq. (1) 

is a good indicator in understanding the behavior of the weld joint. 
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Comparing Figs. 27 and 28, the hardness reduction ratio showed the same tendency with the 

joint efficiency; that is with a decrease in the hardness reduction ratio the joint efficiency 

increased at tool pin temperatures of 40°C and 45°C. This effect was not seen at higher tool pin 

temperatures of 50°C and 55°C for the cases of 1000rpm and 2000rpm. At these temperatures, 

fibers were observed at the fracture locations and the strength was mainly governed by the 

ductility of the joints. The joint produced at 1000rpm and 40°C was an exception, since in this 

case the fusion of seam and base material at the retreating side was improper (shown in Fig. 

12) and the joint failed in a brittle manner. The minimum hardness reduction ratio, other than 

the above mentioned case was seen for the weld performed at 2000rpm and a tool pin 

temperature of 45°C which showed the highest value of joint efficiency among other welds, 

also shown in Fig. 28. 
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Fig. 27 Plot of Hardness reduction ratio at weld center for different parameters

Fig. 28 Plot of joint efficiency for different parameters

It is evident from fig. 28 that the joint efficiency for the welds performed at room temperature 

(without tool heating) is quite low compared to the welds where the tool was induction heated.
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Hardness reduction ratio at weld center for different parameters

Plot of joint efficiency for different parameters 

that the joint efficiency for the welds performed at room temperature 

w compared to the welds where the tool was induction heated.
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Moreover without tool heating, joint efficiency at 3000rpm is higher indicating that frictional 

heat generated at higher rpm helps in good fusion between the seam and base material. Thus 

when the tool is induction heated, even at low rpm, little improvement in joint efficiency is 

obtained beyond a tool pin temperature of 45°C. 
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Chapter 5 

Conclusions 

The present work presents an attempt where the FSW tool is induction heated and precise 

temperature control is achieved through temperature feedback. The investigation also seeks to 

assess the efficacy of the proposed process through examination of joint efficiency, weld 

microstructure, type of fracture and weld hardness so that a better insight of the FSW of 

thermoplastics may be developed. FTIR and DSC tests were conducted to understand the 

structural and chemical changes respectively. 

5.1 Conclusions 

1. A new technique of joining thermoplastic using friction stir welding, namely Induction 

Assisted Friction Stir Welding (i-FSW) is introduced wherein an induction-heated tool welds 

plates of High density polyethylene in a butt configuration and few cases with 

zero/minimum amount of flash were reported. 

2. Induction heating of tool enabled the plastic material to soften in a short time and to be 

easily stirred. As the tool pin temperature increases, the hardness at the stir zone decreases 

due to the ductile nature of the joints and softening at the stir zone. At high tool pin 

temperatures the strength of the joint is governed by the ductile behavior of the material. 

Turbulence of the material, caused by the stirring action of the tool, was the main factor 

that governed the strength of the welds at low tool temperature or high rotational speed 

conditions.  

3. At low rotational speed and low tool pin temperature the heat generated was insufficient to 

soften and plasticize the polymer, resulting in improper fusion between the seam and the 

base material. 

4. The optimum conditions for the maximum strength of the joints were a tool pin 

temperature of 45°C and a rotational speed of 2000rpm. Microstructural examination 

revealed that the strength of the friction stir welded joint will be close to that of the base 

material if the overall width of the transition zone is small with less complex morphology. 

Such welds also exhibit structural and chemical similarity with the base material evidenced 

from the DSC and FTIR results. 
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5. In i-FSW process, at high tool pin temperatures, the shoulder driven material is squeezed 

out rather than entering into advancing side deformation zone which happens in the case of 

metals and it is mainly the pin-driven flow volume that contributes to joint formation. 

6. It is postulated that the effect of i-FSW on the crystallization mechanism could be an 

important factor, determining the mechanical performance of the joints, which merits 

further investigation in future studies. 

 

5.2 Future Scope 

1. The effect of tool tilt angle, that has a strong influence on retainment of plastic material 

within the weld zone, can be studied on i-fsw process. 

2. The effect of Joint strength and Micro hardness of the joints can be studied further with 

tool rotational speeds higher than 3000rpm and feed rates less than 50mm/min. 
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