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Abstract

The field of Computer Vision has repeatedly been recognized as an intellectual frontier whose

boundaries of applicability are yet to be stipulated. The work attempts to demonstrate that vision

can achieve an automatic localization and tracking of targets in a 3D space. Localization of targets

has gained importance in the recent past due to the myriad of applications it plays a significant

role in. It is analogous to detection of objects in a video sequence in the image processing domain.

This work aims to localize a target based on range measurements obtained using a network of

sensors scattered in the 3D continuum. To this end, the use of the biologically inspired particle

swarm optimization (PSO) algorithm is motivated. In this context, a novel modification of PSO

algorithm is proposed that leads to faster convergence, and eliminates the flip ambiguity encountered

by coplanar sensors. The initial results over several simulation runs highlight the accuracy and speed

of the proposed approach.

Among various factors influencing the performance of localization system, including quality of

sensing devices and strength of the signal, the relative position of the sensors has a significant

effect. In this paper, our goal is to optimize the positions of the sensors in order to localize an

unknown target with maximum accuracy. In order to minimize the variance of the localization

error, a statistical measure provided by Cramer Rao Lower Bound which relates the variance of the

error to the Fisher Information is incorporated in this framework. The computational advantage

of Fisher Information method combined with the accuracy of the use of variance based objective

function helps in providing the optimal position of sensors. The proposed technique is validated

using practical experiments that provide the optimal position of sensors on a terrain to localize a

target present anywhere on the road.

Localization serves as a precursor to all the tracking applications. Tracking involves prediction,

data association and estimation of motion vectors based on the observation. The problem of tracking

is dealt with from the image processing front and to illustrate 3D tracking of object, a network of

stereo cameras is considered. Common feature points are identified in both the views of the stereo

camera and the motion vectors are estimated using Kanade-Lucas-Tomasi (KLT) feature point

tracker. These points are then projected in 3D using the camera parameters estimated during the

calibration. Experimental results illustrate the scope of the tracking algorithm and motivates the

need for a multiple-stereo network.
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Chapter 1

Introduction

1.1 Scope of the Thesis

In a variety of applications, including target tracking and wireless cellular networks, location infor-

mation plays a crucial role. In order to properly route calls between two mobile users and provide

a seemless connection, the base stations at the respective geographical locations must be aware of

the position of the users [1]. The design of handoff strategies and allocation of bandwidth are de-

veloped with the help of localization. In addition, the locations of the base stations are important

in providing an efficient communication system [2], [3] and to provide maximum coverage while

minimizing the localization error [4], [5]. Localization is not restricted to outdoor scenario but is

also used in indoor applications like security systems [6] [7]. In the area of target tracking, local-

ization plays a vital role in ensuring successful navigation of unmanned aerial vehicles (UAVs) and

terrestrial objects. UAVs play vital role in several scientific and commercial applications includ-

ing monitoring wildlife and vegetation, surveillance, search and rescue operations and so on. The

quality of the intelligence gathered is often determined by the accuracy of the estimated position

at any time instant [8]. Location information is also central to terrestrial vehicle tracking systems

[9], [10]. Vehicle tracking systems are often coupled with security systems to notify unauthorized

access of an area. It is also used in recovering stolen vehicles, managing e-commerce, traffic control

and surveillance. Even though localization of objects does not directly lead to tracking the object,

it serves as a precursor to several tracking algorithms [11], [12]. The first step in determining the

trajectory of a moving object is to localize the object in the 3D continuum to reduce the search

space. Using the estimated location of the object as initialization, its location in subsequent time

instants can be estimated with maximum accuracy. However, the localization error has to be main-

tained below a certain threshold. Among various factors affecting the localization error, including

the quality of sensing devices and the transmitted signal, one of the most important factors that

has a direct influence on the accuracy of localization is the placement of sensors. The geometry

and position of the sensors play a key role in determining the ability of the system to estimate the

location of the target with minimum uncertainty [13], [14]. Therefore, it is necessary to optimize

the positions of the sensors [15], [16]. This work deals with a systematic approach to determine the

optimal position of sensors that can be used in any of the applications specified above. In addition

to localization, tracking is also demonstrated using visual fiducials and a near-accurate track of the
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object is provided in 3D.

(a) Missile localization (b) UAV tracking

(c) Vehicular tracking

(d) Wireless networks

Figure 1.1: Application of localization and tracking
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1.2 Literature Survey and Motivation

Localization techniques can be broadly classified into the following two categories: (i) Range-free

localization, and (ii) Range-based localization. Range-free algorithms estimate the location of the

target using the geometry of reference points and do not require distance measurement. This tech-

nique proves to be simpler, however, compromising on the accuracy [17], [18], [19]. In contrast,

applications requiring high accuracy employ range-based algorithms, where a network of sensors are

deployed at certain reference points with known locations. Based on the sensing modalities, the

distance between the sensors and the target is estimated based on various measured quantities in-

cluding the received signal strength (RSS) [20], [21], [22], time of arrival (TOA) [23], time difference

of arrival (TDOA) [24], [25], [26] or angle of arrival (AOA) [27], [28]. One of the simplest range-based

localization techniques is Multilateration [29] which is motivated by geometry. Yuang Zhang et al.

[30] proposed a 3D localization technique that combines both distance as well as angle measurements

to localize the object. Integrating sensors with additional hardware has also been incorporated by

Modar Ibraheem [31] to improve the localization accuracy. Despite the fact that the problem of

range-based localization has been addressed to a great extent [17], [31], [32], this work will provide

an improved solution to localization with a significantly higher accuracy and lower computational

overhead. In particular, this paper deals with systems that estimate the range measurements based

on received signal strength (RSS) and localizes an unknown target using a network of sensors.

The need for precise estimation of location has lead researchers to focus more on optimal place-

ment of sensors. An obvious inference is that clustering of sensors results in poor ability to provide

an accurate location estimate. When the target is stationary, it can be seen intuitively that the op-

timal position of sensors is the vertices of a regular polygon with the target at the center. However,

this situation serves no practical significance because the purpose of localization is moot when the

position of the target is known apriori. A direct extension of the intuition is also not possible when

the target is not stationary. Therefore, the urge for a rigorous mathematical framework to optimize

the sensor placement stems from the complexity of the problem. As a first step to an optimization

problem, it is necessary to define an objective function. The objective function must be a reflection

of the accuracy of the estimated location. For several years, researchers in the GPS community

used Geometric Dilution of Precision (GDOP) as a metric to assess the quality of satellite geometry

[33], [34]. GDOP is an indication of how the error in the measured data results in inaccuracy in

the estimated location. Despite the simplicity of the metric, it is not used extensively because of its

inability in capturing both the stochastic nature of the measurement and the geometry of sensors

individually. Several information theoretic measures have also been used to select a set of optimal

candidate sensors [35]. Fisher et al. [36] consider a Bayesian filtering strategy and use the principle

of mutual information to determine the optimal set of sensors. An entropy-based selection heuristic

was used by Wang et al. [37] that selects an informative sensor which when combined with existing

sensors results in the maximum reduction of entropy of the distribution of target location. The au-

thors claim that this heuristics is computationally less expensive and accurate compared to mutual

information based techniques. A more natural selection of a measure of inaccuracy is the variance

of the location estimate. The computation of variance is complex and an exhaustive enumeration

is computationally infeasible. Therefore, an alternate, yet computationally simple, representation

of variance is required. Information inequality provides a statistical bound on the variance of an

estimated variable. According to Cramer Rao lower bound, the variance of an unbiased estimate is
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lower bounded by the inverse of a statistical measure called Fisher Information. Fisher Information

often admits closed form expression and therefore, maximization of Fisher Information is practical.

Instead of minimizing the variance of the location estimate, the lower bound on the variance is

minimized which essentially provides a balance between complutational cost and accuracy. Fisher

Information based approach has been used by several researchers to resolve the issue of sensor place-

ment [16], [38], [39]. However, this work proposes a novel technique that fuses the computational

advantage of Fisher Information based methods as well as the accuracy of direct minimization of

variance.

Fisher Information is a statistical measure of the amount of information present in the obervable

data about the underlying unknown parameter. When the information content is high, the unknown

variable can be estimated with higher confidence. Using the noise models of range measurements

proposed by Cassioli et al. [40], Borah et al. proposed an algorithm that determines the optimal

position of sensors based on maximization of Fisher Information for a stationary as well as a moving

target [38]. The work is primarily based on the closed form expressions for Fisher Information

derived in [41] and later used in [16] and [39]. The paper provides a solid mathematical foundation

for placement of heterogeneous sensors for accurate localization. The authors have proposed an

efficient algorithm that solves the optimization problem using exponential smoothing. The key

features of the algorithm include a convex search space and the use of a projected gradient seach

technique to restrict the search space. The authors have illustrated with numerical results how

the proposed technique enables accurate localization of target over large volume of seach space as

compared to random sensor locations. The effect of the heterogenity of the sensors is incorporated

in the framework and illustrated using simple examples. Given a network of sensors, the algorithm

provides the optimal location of an additional sensor to localize a fixed or moving target. The optimal

position of sensors is obtained by maximizing the determinant of Fisher Information matrix (FIM)

defined with respect to the target location. When the target is not stationary, the cost function is

averaged over the search space of the target to incorporate the prior information about the target

location. However, Fisher information fails to capture the variation in the variance of the estimated

location. Maximizing Fisher Information only lowers the bound on the error covariance, it does not

translate to lowest expected localization error which is described in terms of root mean squared error

(RMSE). Therefore, the solution to the sensor placement problem is not just to find the maxima

of the determinant of FIM but to also examine if the corresponding sensor placement results in

the lowest RMSE. This complexity of the problem is further increased when the determinant of

FIM is multimodal. A multimodal objective could consist of either multiple global maxima or a

combination of global and local stationary points. The RMSE is locally minimum around each of

the stationary points of FIM determinant. However, the global maxima of FIM determinant does

not necessarily correspond to the global minimum of RMSE. Figures 1.2a and 1.2b give a graphical

representation of the same. In Figure 1.2a, all the stationary points of FIM determinant have the

same value but the behavior of each in a localization system is significantly different. This is reflected

in the variation of RMSE plotted in blue. Only one of the global maxima has the lowest RMSE and

this therefore, the optimal configuration of sensors. In a practical scenario, there could be several

maxima of FIM determinant with varying values as shown in Figure 1.2b. However, the RMSE

does not follow the same pattern. The global minima of RMSE could lie around one of the local

maxima of FIM determinant. The primary contribution of the thesis is to highlight the existance of
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multiple maxima of FIM and compare the performance of each in a localization system in order to

provide an optimal sensor position. This is supported with the help of an illustrative toy example

where the existance of multiple maxima is proved analytically and an experimental comparison of

the performance of each maxima is provided.

1.3 Primary Contributions

The main areas of focus in this thesis are:

• Object Localization in 3D

• Optimal Placement of sensors for an improved localization

• Tracking of an object in 3D using visual data

In the field of localization, the thesis proposes a modification of the bio-inspired optimization al-

gorithm called Particle Swarm Optimization that leads to faster convergence and eliminates the

flip ambiguity encountered by coplanar sensors. This thesis also proposes a novel optimal sensor

placement technique that first determines all the local maxima of Fisher Information. An exhaustive

evaluation of each of the local maxima is performed to determine the solution with minimum vari-

ance. To motivate the need for a two step optimization, a toy example is considered. The location of

a stationary target is assumed to be known. The sensors are further constrained to be located along

the circumference of a circle with the target located at its center. This example would clearly high-

light the fact that maximization of Fisher Information merely serves as an initial step to finding the

optimal sensor positions and is not the final solution. A real life situation of tracking a vehicle on a

(a) Plot showing that all the global maxima of FIM determinant do
not have the same RMSE

(b) Plot showing that a local maxima (instead of a global maxima)
of FIM determinant has the lowest RMSE

Figure 1.2: Multiple maxima of FIM determinant
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road is considered for corroboration. The stationary target is first assumed to located on a road with

sensors to be deployed along the road. As an extension of the above, the algorithm is demostrated

for a moving target whose location is not known precisely but a set of probable target locations is

known. The target can, therefore, be located anywhere on a known section of the road and sensors,

subject to practical constraints, are placed on either side of the road to localize the target efficiently.

As can be seen from the results obtained, the sensor orientation with better localization performance

has a significantly lower value of Fisher Information compared to its global maxima. A comparison

of the global maxima of FIM determinant and the local maxima resulting in minimum Root Mean

Squared Error (RMSE) shows that the local maxima results in approximately 50% improvement in

the RMSE over the global maxima of FIM determinant. The results obtained conclusively proves

that the global maxima of Fisher Information does not always result in the lowest localization error.

This work also makes use of a real data set that was obtained for practical illustrations.

Although the problem of localization has been addressed from the point of view of wireless sensor

networks, the tracking of object is considered using visual data to highlight the effects of occlusions

that hinder the efficiency of tracking algorithms. This effect is eliminated by using a network of

cameras (stereo cameras in particular) instead of a single camera because the notion of occlusion

is obsolete in 3D. This work provides a foundation for 3D object tracking highlighting the several

vital components of the process and illustrates how a point cloud generated using a stereo pair can

be tracked in 3D.
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Chapter 2

Object Localization in 3D

2.1 Introduction

Location information is crucial in several applications such as navigation, target tracking and en-

vironment monitoring. For instance, value of intelligence collected by unmanned aerial vehicles

(UAVs) often crucially depends on accurately finding their locations in 3D, and enabling successful

navigation. Accurate location information is also central in efficient design of mobile networks. In

particular, accurate localization of a mobile user enables one to design efficient handoff strategies

and hence optimize energy budgeting. Localization error is often kept below a threshold by using

a network of sensors. A majority of localization techniques fall under one of the two categories: (i)

Range-free localization, and (ii) Range-based localization. Range-free algorithms make use of only

sensor geometry, do not require distance measurement, and tend to be simpler but less accurate

[17]. In contrast, applications requiring high accuracy often employ range-based algorithms, where

a network of sensors, capable of recording and interpreting range-finding signals, are deployed at

certain reference points with known locations. Practically, the range is not directly measured, but

estimated based on various measured quantities including the received signal strength (RSS), time

of arrival (TOA), time difference of arrival (TDOA) or angle of arrival (AOA). It is worthwhile to

mention that measurement of such quantities has become increasingly accurate and efficient with

recent advancements in the fields of wireless sensor network and wireless communication. Typical

SLAM-based localization methods use visual fiducials and operate on indoor geometries of smaller

scale. However, we aim to provide a solution to the localization problem can even be extended to

using RF signals spanning several kilometers.

2.2 Related Work

Several attempts have been made to accurately localize an object using range measurements. One

of the simplest techniques proposed in the literature is Multilateration [29]. Fig 3.1 depicts how

trilateration (number of sensors equal to 3) is used to localize an object in 2D. The location of the

target is the point of intersection of circles drawn with the sensors at the center and radii equal to

the distances measured. The presence of noise introduces ambiguity in the radius of the circles which

results in a region of intersection in contrast to a point. The complexity increases when the number of
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Figure 2.1: Trilateration in 2D.

sensors becomes large. Yuang Zhang et al. [30] proposed a 3D localization technique that combines

both distance as well as angle measurements to localize the object. Several authors have proposed

techniques that require additional hardware in addition to the sensors deployed. 3D pose estimation

by Modar Ibraheem [31] integrates data from odometer and gyro meter to minimize localization

error. The following work is based on the use of Particle Swarm Optimization to estimate the

location of an unknown target using range measurements derived from the strength of the received

signal. The following section describes the mathematical framework for the localization problem

and motivates the need for an evolutionary search algorithm.

2.3 Target localization in 3D with sensors at known locations

Consider a network of N sensors at locations ri = (xi, yi, zi)
T

, where i = 1, . . . , N . If the position

of the target in 3D space is denoted as s = (x, y, z)
T

, the distance between the ith sensor and the

target is given by

di = ‖ri − s‖2. (2.1)

Due to inaccuracies in the sensing devices, the measured distance mi deviates from the true distance

Figure 2.2: Graphical representation of localization
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di by a factor ni given by

mi = di + ni. (2.2)

If m = [m1,m2, . . . ,mN]
T

represents the vector of all the measured distances, d = [d1,d2, . . . ,dN]
T

is the vector of true Euclidean distances and n = [n1,n2, . . . ,nN]
T

is the vector of all measurement

noise components, Equation 2.2 can be represented in vector form as

m = d + n. (2.3)

Therefore, given the measured distances m and the position of the sensors ri = (xi, yi, zi)
T
,∀i ∈

{1, . . . , N}, the problem of localization is defined as estimation of the vector d (which in turn gives

the position of the target s) such that the effect of measurement noise is minimized. In other

words, the true Euclidean distances are estimated such that the norm of the measurement error

‖n‖2 = ‖m− d‖2 is minimized.

This determininstic framework results in a trivial solution of d̂ = m. However, the practical

constraints impels the need for a physical model of the measurement noise. We adopt one such noise

model proposed in literature [40] that models the noise vector to jointly follow Gaussian distribution

with mean 0 and covariance matrix that is a function of the Euclidean distance between the target

and the sensor. Therefore, the measurements are said to follow a Gaussian distribution N (d,A)

given by

p(m; s,q) =
1

(2π)
N/2

exp

(
−1

2
(m− d)

T
A−1(m− d)

)
. (2.4)

Localization is a multidimensional non-linear optimization problem which can be solved using an

iterative approach only. Most of the techniques address the localization problem in 2D and cannot

be directly upgraded to 3D. Equation 3.4 involves a nonconvex objective function (with a Hessian

matrix not positive definite). Therefore, L2 optimization methods are not generally optimal. A

PSO-based heuristics that balances accuracy and exploration at low computational cost is adopted.

PSO is a widely used iterative algorithm that has proved to be robust in many situations. The

entire search space is scanned to find the global extremum. This can be cumbersome when the

dimensions of the search space is large. Therefore, it is necessary to provide the right initialization

of the particles so that the time taken for convergence is reduced drastically. Before delwing in to

the details of the proposed PSO based localization algorithm, a brief overview of PSO is provided.

2.4 Particle Swarm Optimization

Particle Swarm Optimization is a global optimization technique that is inspired by fish schooling

and swarm behavior of birds. It was first proposed by Kennedy et al. in 1995 [42]. The algorithm

iteratively scans the search space to find the optimal solution. Each particle in the algorithm

represents a potential solution in the search space. The evolution of the particles is guided by a

fitness function (a measure of its quality). The particles keep track of its own best position and is

aware of the best particle in the group. It is influenced by its own experience and also by the social

behavior of the group. The velocity vi of the ith particle is updated using the following equation

vk+1
i = ω × vki + c1 × r1 × (pi best −Xk

i ) + c2 × r2 × (gbest −Xk
i ), (2.5)
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Retain the previous
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Update each particle’s

velocity and position 
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Terminate the process

Yes No

Yes

No

Figure 2.3: Flowchart for PSO.

where vki represents the velocity of the ith particle at the kth iteration, Xk
i , the position of the ith

particle, c1 and c2 are correction factors, ω is inertia and r1 andr2 are random numbers between 0

and 1. Fig 2.3 explains how PSO is used for optimization. The position of the ith particle is updated

by the equation

Xk+1
i = vk+1

i +Xk
i . (2.6)

2.5 PSO based Localization

As explained in section 2.4, PSO finds the extremum using particles. In this context, a particle

refers to the coordinates of the target. The fitness function F , given by

F =
1

N

∑
i

(
mi −

√
(xi − xs)2 + (yi − ys)2 + (zi − zs)2

)2

(2.7)
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represents the mean squared difference between the measured and the actual distance between the

target and each of the sensors. The particle with the minimum fitness value is said to have a higher

quality. All particles evolve in this search space till they converge at the minimum fitness value.

Instead of initializing the particles randomly in the entire space, the search space of PSO is restricted.

This is inspired by trilateration technique. The search space is now restricted to the shaded region

in Fig. 3.1 thereby reducing the the time required to compute the target location. A similar method

is incorporated in case of 3D. The circles in 2D are replaced by spheres in 3D and the region of

intersection is a volume in 3D. If the particles are initialized around the centroid of the region, the

algorithm converges at a faster rate.

2.5.1 Flip ambiguity

Flip ambiguity is an phenomenon that is commonly observed when the sensors are collinear or

coplanar. This occurs because of the existance of two minima ofF . Instead of the original location,

the object is estimated to be present at its reflection about the line joining the sensors in case of 2D

or the plane of the sensors in 3D.

Consider a set of three collinear sensors. For a given set of range measurements, there are two

points satisfying the distance constraint. If the initial value supplied to the estimator is incorrect,

it can converge at either of the points. Fig 3.2 shows how a set of three sensors with erroneous

range measurements results in 6 points of intersection of circles. These points are classified into two

clusters based on the Euclidean distance. The cluster with lower volume is chosen and the particles

of PSO are initialized around the centroid of the cluster.

Figure 2.4: Cluster-based initialization in 2D for collinear senors.
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2.6 Experimental Results

This section describes the experiments conducted to validate the theories proposed. The results of the

experiments reflect the performance of the algorithm in terms of computational time and accuracy.

The sensors are placed arbitrarily on a given terrain and the trajectory of the target is marked in

the 3D continuum. A section of California terrain obtained from Google Earth is considered to show

that even with minimal variation in the heights of the sensors, a target flying high above the surface

can be localized with maximum accuracy. As shown in Fig. 2.5, the maximum variation in height of

the sensors is only around 500m whereas the target is at a height of 2km from the sea level. Error in

the range measurements has an impact on the accuracy of the location estimate. Fig. 2.6 shows the

variation of the localization error with the range measurement error. When the distances measured

are accurate, the localization error is zero. It can be observed that the variation of location estimate

error with measurement error does not assume a linear pattern.

The proposed cluster-based initialization has a significant advantage in comparison to the stan-

dard PSO in terms of speed of computation. While standard PSO with random initialization requires

about 120 function evaluations to converge, cluster-based initialization needs only 60 function eval-

uations for convergence. This method not only increases the speed of the localization, but it also
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eliminates flip ambiguity as illustrated in Fig. 2.7. Random initialization can lead to convergence

at the reflection of the target’s original location about the line joining the sensors causing large lo-

calization errors. PSO based localization is compared with the standard L2 optimization techniques

like Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and Least Squares (LS) method. Table

2.1 depicts how this method outperforms the other two by eliminating flip ambiguity. Therefore,

the proposed PSO based localization not only solves the complex optimization problem but also

eliminates flip ambiguity and is computationally faster. This is vital because location information

is requuired in real-time applications. A detailed explanation of the proposed algorithm and the

results obtained are available in the paper proposed by Vidya et al. [43].
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Figure 2.7: Elimination of flip ambiguity.

Table 2.1: Comparison of Localization performace of PSO, BFGS and LS optimization methods.

Method x error y error z error MSE

Proposed PSO 0.0052 0.0022 0.0086 0.0114

BFGS 1.9388 0.6364 4.9221 5.356

LS 3.56 1.33 10.37 11.05
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Chapter 3

Sensor Placement Problem

This work is aimed at provinding an optimal network of sensors that can localize any unknown

target with the best average performance. The positions of the sensors, subject to some practical

constraints, are estimated so that the localization error incurred is minimum. This section describes

the mathematical framework for localization, followed by the optimal sensor placement problem.

3.1 Optimal sensor placement for known target location

Localization, as described previously, is used to estimate the location of a target using a set of

sensors at pre-defined locations. These sensors, however, do not localize every target location in a

given search space with the same accuracy. This is due to the difference in the relative positions of

the sensors with respect to the each of the target locations. For the target location which is localized

with maximum accuracy, the given network of sensors is said to be optimally placed. Optimal sensor

placement is a process of determining such orientations that has the ability to localize a target with

minimum error. It can also be viewed as the inverse of localization. A statistical measure of accuracy

is the variance of the estimated variable. Localization error is expressed in terms of the variance

of the estimated location. For a fixed target location, the set of sensor locations that provides the

minimum variance is said to be optimal [38] [40]. If ŝ is the estimate of the target location s, the

covariance matrix is given by R= E
[
(s− ŝ) (s− ŝ)T

]
.

For a fixed target location, the optimal position of the sensors is the one that minimizes the

determinant of the covariance matrix given by

q̂ = arg min
q

∣∣∣E [(s− ŝ) (s− ŝ)
T
]∣∣∣ , (3.1)

where q = [x1, y1, z1, x2, y2, z2, . . . , xN, yN, zN]
T

is a vector of the position of all the sensors. Owing

to the complexity in computation of covariance matrix, the lower bound on the determinant of

covariance matrix defined by Cramer Rao Lower Bound is minimized. If s is an unknown scalar

variable, the variance of an unbiased estimator ŝ of s (E [ŝ] = s) is bounded by the reciprocal of

Fisher Information I(s):

var (ŝ) ≥ 1

I(s)
, (3.2)
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where the Fisher Information I(s) is defined by

I(s) = E

[(
∂ log (p (m; s))

∂s

)2
]
.

In vector form, a bound on the covariance matrix implies that R succedes the Fisher Information,

i.e.

R = E
[
(s− ŝ) (s− ŝ)

T
]
� [I(s,q)]

−1
, (3.3)

where I(s,q) is the Fisher Information Matrix (FIM). This also implies that R−[I(s,q)]
−1

is positive

semidefinite. The Fisher Information matrix is represened in vector form as

I(s,q) = E
[
(∇s ln p (m; s,q))

T
(∇s ln p (m; s,q))

]
. (3.4)

Using Cramer Rao Lower Bound, the optimal sensor positions for a fixed target location are ob-

tained by minimizing the lower bound of the determinant of covariance matrix, or maximizing the

determinant of Fisher Information matrix. Therefore, Equation 3.1 can be written as

q̂ = arg max
q
|I(s,q)| . (3.5)

This provides a framework for optimally placing sensors to localize a known target. Although this

does not have practical significance, the excersize was vital to develop a systematic framework that

is applicable in a practical setting. The sensor placement problem for a moving target is proposed

in the subsequent section.

3.2 Optimal sensor placement for known target location set

In practical situations, the location of the target is not fixed. However, it is possible to know the

set of locations the target is most likely to be present in. Using the prior distribution on the set of

target locations, it is possible to determine where the sensors are to be placed in order to provide

the lowest average localization error. The framework described previously is extended by averaging

the determinant of FIM over the set of target locations and then maximizing with respect to q.

Equation 3.5 is written as

q̂ = arg max
q
Es [|I(s,q)|] . (3.6)

It is often observed that Fisher Information Matrix admits a closed form expression. Section 3.3

provides the analytical expression for Fisher Information Matrix which is then used in the sensor

placement problem.

3.3 FIM determinant in closed form

Consider the distribution of the measured distance p(m; s,q) defined by Equation 2.4. The distances

are measured independent of each sensor and therefore it is justified to assume that the measured

distances have an independent distribution. We further assume that the measurements are identically

distributed. This assumption is valid and helps in obtaining a closed form expression for FIM
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determinant. Each of the measured distances mi follows a Gaussian distribution with mean di and

a variance of σ2
i

(
di/d0

)αi
, where αi is the path-loss exponent of the ith sensor, d0 is the path-loss

reference distance which is assumed to be 1 for simplicity, and σ2
i is a constant for the ith sensor. In

this regard, Equation 2.4 is first rewritten as

p(m; s,q) =
1

(2π)
N/2

N∏
i=1

1

(σ2
i d
αi
i )

1/2
exp

(
− (mi − di)2

2σ2
i d
αi
i

)
. (3.7)

Using the above to determine the Fisher Information Matrix, we obtain

∇s ln p(m; s,q) = kT∇sd, (3.8)

where kT is 1×N vector with the ith element given by

ki =

[
(mi − di)
σ2
i d
αi
i

+
(mi − di)2αi
σ2
i d
αi+1
i

− αi
di

]
. (3.9)

Substituting the above in Equation 3.4, FIM is given by

I(s,q) = (∇sd)TE
(
kkT

)
∇sd. (3.10)

On simplification, it can be observed that E(kkT ) is a diagonal matrix with ith diagonal element

given by

E(k2i ) =
αi

2

2d2i
+

1

σ2
i d
αi
i

= β2
i . (3.11)

Since mi is modeled to follow Gaussian distribution with mean di, the central moments of the

variable are given as follows:

E [(mi − di)] = 0

E
[
(mi − di)2

]
= σ2

i d
αi
i

E
[
(mi − di)3

]
= 0

E
[
(mi − di)4

]
= 3σ4

i d
2αi
i .

(3.12)

Also, E(kkT ) is an N ×N matrix given by

E
(
kkT

)
= E


k21 . . . k1kN
...

. . .
...

kNk1 · · · k2N

 . (3.13)

The (i, j)th element of the matrix is given by

E (kikj) = E


(

(mi−di)
σ2
i
d
αi
i

+ (mi−di)2αi
σ2
i
d
αi+1

i

− αi
di

)
×(

(mj−dj)
σ2
j
d
αj
j

+
(mj−dj)2αj
σ2
j
d
αj+1

j

− αj
dj

)
 . (3.14)
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The above expression can be simplified using Equation 3.12 and the fact that mi’s are independent

and identically distributed. When i 6= j, E
(
kkT

)
reduces to

E (kikj) =
1

4

[
2αiαj
didj

− 2αiαj
didj

]
= 0. (3.15)

When i = j,

E
(
ki

2
)

=
1

σ2
jd
αj
j

+
α2
i

2d2i
= γ2i . (3.16)

Therefore, E(kkT ) is a diagonal matrix with diagonal entries given by

E(k2i ) =
αi

2

2d2i
+

1

σ2
i d
αi
i

= β2
i . (3.17)

where i varies from 1 to N . The determinant of FIM is given by

|I(s,q)| = 1

6

N∑
i=1

N∑
j=1

N∑
k=1

β2
i β

2
j β

2
k‖((∇sdi)× (∇sdj)) .(∇sdk)‖2, (3.18)

where s = (x, y, z)T refers to the location of the target in 3D and q is a 3N dimensional vector

denoting the position of the sensors. However, when all the sensors are located on a plane, the

3rd dimension of the sensor locations would be insignificant. Therefore, the expression for FIM

determinant simplifies to

|I(s,q)| = 1

2

N∑
i=1

N∑
j=1

β2
i β

2
j ‖(∇sdi)× (∇sdj)‖2, (3.19)

where s = (x, y)T refers to the location of the target in 2D and q is a 2N dimensional vector

denoting the position of the sensors. For a fixed target location s, the optimal position of the

sensors is obtained by maximizing |I(s,q)| given by Equations 3.18 and 3.19.

Although a closed form expression is obtained for the objective function, the optimization prob-

lem is not simplistic. It is observed that multiple maxima are obtained while optimizing the determi-

nant of FIM. Two sensors having the same value of FIM determinant do not necessarily localize the

target with the same accuracy. Therefore, among the set of all maxima, it is necessary to identify the

one that is optimal in terms of average localization error. If the global maxima of FIM determinant

coincides with the minima of the actual covariance, then the sensor placement problem simplifies

to determining the global maxima. However, it is not necessary that the above situation is valid.

Instead of the global maxima, the minima of covariance could correspond to one of the local maxima

of FIM determinant. Alternately, the minima of covariance could lie in the neighborhood of the

maxima of FIM determinant. Therefore, reaching the global maxima of FIM determinant does not

ensure that the optimal sensor locations are obtained. A further insight about the complexity of the

optimization problem is developed by considering an illustrative example in Section 3.4. Although

the example considered might seem simplistic, it portrays clearly the existance of multiple maxima

of FIM determinant and the difference in the behavior of each of the maxima in localizing a target.

Section 3.5 shows experimentally how the proposed technique can be applied to practical scenarios.
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3.4 Multiple Maxima: Illustrative Example

Consider the following toy example in 2D where the target location is known and sensors are placed at

the same distance d from the target. This implies that the sensors are aligned along the circumference

of a circle with the target located at its center. Incorporating this, the expression for |I(s,q)|
simplifies to

|I(s,q)| = 1

2
β4

N∑
i=1

N∑
j=1

sin2θij , (3.20)

with the assumption that all the sensors are identical, i.e. βi = βj = β. In Equation 3.20, θij

represents the angle between the ith and jth sensors with respect to the center. Since the distance

between the sensors and the target is fixed, the only parameter influencing FIM determinant is the

angle between the sensors.

If θi represents the azimuthal angle of the ith sensor (angle subtended by the ith sensor with

respect to the positive x-axis), Equation 3.20 can be writen as

|I (s, q)| = 1

2
β4

N∑
i=1

N∑
j=1

sin2 (θi − θj). (3.21)

Proposition 1: When sensors are placed along the circumference of a circle to localize a target

at the center, the following are observed-

1. The maximum value of |I(s,q)| is N2

4 β
4, that is obtained when the following conditions are

satisfied:

N∑
i=1

cos 2θi = 0 and
N∑
i=1

sin 2θi = 0.

2. The value of θij = |θi − θj | that maximizes |I(s,q)| is equal to kπ/N (module π), where k is

an integer and N represents the number of sensors.

Proof: Using trigonometric identity sin2x = 1−cos 2x
2 , the expression for FIM determinant reduces

to

|I(s,q)| = 1

2
β4

N∑
i=1

N∑
j=1

1− cos 2(θi − θj)
2

. (3.22)

However, cos(A−B) = cosA cosB + sinA sinB. Therefore,

|I(s,q)| = N2

4
β4 − 1

4
β4

[
N∑
i=1

N∑
j=1

(cos 2θi cos 2θj + sin 2θi sin 2θj)

]
. (3.23)

Rearranging the terms in Equation 3.23, we obtain

|I(s,q)| = N2

4 β
4 − 1

4β
4
N∑
i=1

cos 2θi
N∑
j=1

cos 2θj

− 1
4β

4
N∑
i=1

sin 2θi
N∑
j=1

sin 2θj .

(3.24)

The above expression helps in obtaining the maximum value of |I(s,q)|.
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Proposition 2: In particular,

1. When the number of sensors N is odd, the exhaustive set of sensor positions maximizing

|I(s,q)| is given by Proposition 1.

2. When the number of sensors N is even, |I(s,q)| is maximum when

• the angle between adjacent sensors is equal to kπ/N

• the angle between N/2 distinct pairs of sensors is equal to π/2.

Proof: (a) From equation 3.24, it can be observed that the maximum value of |I(s,q)| is

obtained when
N∑
i=1

cos 2θi

N∑
j=1

cos 2θj +

N∑
i=1

sin 2θi

N∑
j=1

sin 2θj = 0, (3.25)

resulting in a value of |I(s,q)| = N2

4 β
4.

Further, since
N∑
i=1

cos 2θi
N∑
j=1

cos 2θj can be written as

(
N∑
i=1

cos 2θi

)2

, Equation 3.25 can be sim-

plified as (
N∑
i=1

cos 2θi

)2

+

(
N∑
i=1

sin 2θi

)2

= 0.

Both the terms in the above expression are positive which implies that each of the terms has to be

equal to 0 to satisfy the condition specified above. Therefore, |I(s,q)| is maximized when

N∑
i=1

cos 2θi = 0 and
N∑
i=1

sin 2θi = 0.

(b) Consider the following set of equations

N∑
i=1

cos 2θi = 0

N∑
i=1

sin 2θi = 0.

(3.26)

On simplification, Equation 3.26 reduces to

N∑
i=1

cos 2(θi ∼ θj) = 0

N∑
i=1

sin 2(θi ∼ θj) = 0, ∀j ∈ {1, 2, . . . , N} .
(3.27)

The equation above can be represented in Euler’s form resulting in

N∑
i=1

e
√
−1×2(θi∼θj) = 0, ∀j ∈ {1, 2, . . . , N} . (3.28)

Using trigonometric identitis, the value of θi ∼ θj satisfying Equation 3.28 is given by

2 (θi ∼ θj) = 2πk
N , k ∈ Z

⇒ (θi ∼ θj) = πk
N .

(3.29)
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Therefore, the angle between adjacent pair of sensors is equal to kπ/N (k ∈ Z) when |I(s,q)|
is maximum. For example, when N = 4, |I(s,q)| is maximum when θ21 = θ32 = θ43 = kπ

4 (From

Proposition 1.(2)). If we partition the set of sensors in to two groups such that sensors 1 and 3

belong to one group, then |I(s,q)| is maximized if θ31 = θ42 = π
2 . This proves that there are several

orientations that result in the same FIM determinant.

Proposition 3: All the maxima of FIM determinant are equal, but do not necessarily result in

the same localization error.

Proof: Consider the case when N is even. The sensors can be partitioned into N/2 groups of 2 sen-

sors such that the choice of group is mutually exclusive and collectively exhaustive. If g1, g2, . . . , gN/2

represents the partition of sensors where each gi is a set containing the indices of the two sensors

belonging to the group, then by definition,

N/2⋃
i=1

g
i

= {1, 2, . . . N} ,
N/2⋂
i=1

gi = Φ.

(3.30)

If θgi represents the angle between the two sensors in the ith group gi, Equation 3.26 can be written

as
N/2∑
i=1

(cos 2θgi,1 + cos 2θgi,2) = 0,

N/2∑
i=1

(sin 2θgi,1 + sin 2θgi,2) = 0,

(3.31)

where θgi,1 represents the azimuthal angle of the first sensor in group gi and θgi,2 represents the

azimuthal angle of the first sensor in group gi. When θgi= θgi,1 ∼ θgi,2=π/2,∀i ∈ 1, 2, . . . , N/2 , the

condition specified by Equation 3.31 is satisfied.

To corroborate the propositions, consider a network with three sensors constrained to be located

at a distance of 2 units from the target. Figure 3.1 shows the variation of FIM determinant with

the angle between two sensors and clearly marks the 8 different maxima obtained. For ease of

illustration, the first sensor is assumed to subtend an angle of 0 with respect to the positive x-axis.

If θ21 represents the angle between sensors 2 and 1 and θ31 represents the angle between sensors 3 and

1, it can be observed from Figure 3.1 that the value of FIM determinant is maximum for 8 different

combinations of {θ21 ,θ31}. The orientation of the sensors corresponding to the 8 stationary points

Figure 3.1: Variation of FIM determinant with θij and indication of multiple maxima.
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Target

Figure 3.2: Orientations of the sensors corresponding to the maxima of FIM determinant.

Figure 3.3: Plot indicating the symmetry of FIM determinant.

is shown in Figure 3.2. For convenience, the azimuthal angle of the first sensor is assumed to be 0.

The values of θ21 and θ31 that maximize |I(s,q)| are equal to 60 or 120 which is in agreement with

the claims of Proposition 1. Figure 3.2 shows the orientation of the sensors corresponding to each of

the maxima of FIM determinant. However, there are some orientations that are equivalent i.e. the

positions of the sensors are the same except that the labels of the sensors are interchanged. This is

a direct consequence of the symmetry of the function |I(s,q)| about the line θ21 = θ31 as shown in

Figure 3.3. Kindly note that the labeling of different orientations of sensors is consistent throughout

this section. Equivalent orientations have the same performance in terms of localization error which

is intuitive because the positions of sensors in the network are the same in both the orientations and
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Figure 3.4: RMSE of different sensor orientations. The CRLB and the RMSE of the optimal positions
are shown.

all sensors are assumed to be identical (same pathloss exponent). When each of these orientations is

used in localizing the target, the average localization error expressed in terms of Mean Squared Error

(MSE) is significantly different despite the fact that all these orientations have the same value of

FIM determinant. This is because maximizing FIM determinant only implies that the lower bound

on the localization error is minimized. This does not mean that the average localization error is

the same for all the orientations. Figure 3.4 depicts graphically how the performance of different

orientations vary on an average. The figure indicates the CRLB on the localization error and how the

average MSE of each orientation varies in comparison. The average MSE of orientations (4) and (5)

are comparable to the lower bound as opposed to the other orientations. In these two orientations,

tFhe angle between consecutive sensors is equal to 120. This proves that the multiple maxima of

FIM determinant behave differently in a practical setup. It is also observed that a network with

well distributed sensors is more efficient compared to a network with clustered sensors.

In a real life situation, the likelihood of the existance of several global maxima of FIM determinant

is low. However, several local maxima of FIM determinant could perform as good as or better than

the global maxima. This paper proves experimentally that the sensor position resulting in the lowest

localization error is not necessarily a global maxima of FIM determinant.

3.5 Experimental Results

Optimal position of sensors is determined on a section of the terrain of Ananthagiri Hills located

near the city of Vikarabad, Telangana in India. The terrain and GPS information of Ananthagiri

Hills was collected on site and using the information collected at discrete points in the region, the

terrain map of the entire region was estimated by Kriging based interpolation technique. The target

is assumed to be present anywhere on a particular section of the road located in Ananthgiri Hills

and the sensors are not allowed to be placed on the road. In order to experimentally validate the

claims of the the paper, the following two scenarios are considered-

1. The target is stationary and the sensors are located on the ground terrain (3D)

2. The target is moving along the road and the sensors are located on the ground terrain (3D)
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Figure 3.5: Section of Anathagiri Hills consider for practical experiments

The global and local maxima of FIM determinant in both the cases are determined using genetic

algorithm and among the set of maxima, the one that provides the lowest average localization error

is identified.

3.5.1 Stationary target and sensors located on the ground terrain

A section of a road located at Ananthagiri hills along with the surrounding terrain is considered.

The target is assumed to be located on the road and the sensors are placed on a 3 dimensional

terrain. The position of the target is fixed and known apriori and the optimal network of sensors

corresponding to this target location is determined. Oweing to the irregularities in the terrain, it

is not possible to determine the optimal sensor positions analytically. The possibility of existance

of multiple maxima of FIM determinant is also high. Therefore, several runs of genetic algorithm

based optimization is conducted and the results are recorded. Table 3.1 shows some of the results

obtained using genetic algorithm along with the corresponding sensor orientations. This table shows

how different local maxima of |I(s,q)| result in a different sensor network compares the localization

performance of each. Although, one might expect the localization error to be miminum for the global

maxima of FIM determinant, there are some orientations of sensors with lower FIM determinant

that result in a more accurate localization system. Figure 3.6 shows the difference in distribution of

sensors with maximum FIM determinant and one that corresponds to minimum average localization

error. Clearly, the two sets of sensors have different orientations. This proves experimentally that
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the best network of sensors is not necessarily the global maximum of FIM determinant. Figure 3.7

shows graphically the difference in the performance of the two networks shown in Figure 3.6. The

variation in mean squared error (MSE) of the two networks over several iterations is shown in the

figure. The plot in blue corresponds to the network with maximum FIM determinant while the plot

in red corresponds to the network with the lowest average localization error.

Sensors Attributes Sensor locations Attributes

FIMd= 1.2× 10−10 m−6

E[|xs − x̂s|]= 3.4m

E[|ys − ŷs|]=1.6m

E[|zs − ẑs|]=13.4m
RMSE= 8.06 m

FIMd= 1.1× 10−10 m−6

E[|xs − x̂s|]= 3.5 m

E[|ys − ŷs|]=1.7m

E[|zs − ẑs|]=13.1 m
RMSE=7.9113 m

FIMd= 0.5× 10−10 m−6

E[|xs − x̂s|]= 65.31 m

E[|ys − ŷs|]= 68.29 m

E[|zs − ẑs|]=24.28 m
RMSE= 56.3295 m

FIMd= 0.6× 10−10 m−6

E[|xs − x̂s|]= 12.27 m

E[|ys − ŷs|]=9.58 m

E[|zs − ẑs|]=26.8 m
RMSE= 17.8943 m

FIMd= 0.9× 10−10 m−6

E[|xs − x̂s|]= 3.03 m

E[|ys − ŷs|]=2.28m

E[|zs − ẑs|]=14.7 m
RMSE= 8.7627 m

FIMd= 0.8× 10−10 m−6

E[|xs − x̂s|]=1.56 m

E[|ys − ŷs|]=1.96 m

E[|zs − ẑs|]=7.35m
RMSE= 4.489 m

Table 3.1: Maxima of |I(s,q)| and performance comparison

Figure 3.6: Figure depicting the position of sensors that maximize FIM determinant and provide
lowest localization error when the target is stationary and located on the road.
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Figure 3.7: MSE comparison of the two sets of sensor positions that localize a target on the road
shown in Figure 3.6

3.5.2 Moving target and sensors located on the ground terrain

The following practical scenario is considered where a target is moving along the road and the

sensors are placed on either side of the road to localize the target at any time instant. Although

the target location is not precisely known, using the knowledge about the probable locations of

the target on the road, the optimal sensor positions are now determined for that section of the

road. In this situation, Equation 3.5 cannot be maximized directly since the location of the target

is unknown. Hence, we assume a prior distribution on the position of the target and use Equation

3.6 to determine the optimal positions of the sensors. When a uniform prior is assumed, the target

is equally likely to be present anywhere on that section of the road. The objective function for

optimization is the expected value of |I(s,q)| (the expectation taken over the prior distribution on

location of the target).

Similar to the previous situation, the network of sensors resulting in the lowest localization error

is not the global maxima of Es [|I (s,q)|]. Figure 3.8 and 3.10 show how the optimal sensor network

differs from the network with maximum Es [|I (s,q)|] for two different sections of the road. Despite

the fact that the network shown in red is not the global maxima of the objective function, the average

localization error given by the root of the expected mean squared error obtained using that network

is the lowest. Figure 3.9 and 3.11 provides the graphical comparison of the two networks in terms

of localization error for the two sections of the road in Figures 3.8 and 3.10 respectively. About 100

points on the section of the road were picked randomly and localized using both the networks.

Although directly maximizing FIM determinant is computationally simplistic, the local maxima

provides a solution that performs nearly 50% better than the global maxima. This, however, comes

with a computational overhead which is negligible because the process of sensor placement is con-

ventionally offline. The proposed algorithm brings out the computational elegance of FIM based

optimization as well as the accuracy of exhaustive enumeration.
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Figure 3.8: Figure depicting the position of sensors that maximize FIM determinant and position of
sensors that provide lowest localization error when the target could be located anywhere on a small
stretch of the road.

0 20 40 60 80 100 120
20

30

40

50

60

70

80

90

Index of the point on the road

R
M

S
E

 i
n

 m
 

 

 

Sensors corresponding to minimum RMSE

Sensors corresponding to maximum FIM
d

Figure 3.9: MSE comparison of the two sets of sensor positions that localize a target on the trajectory
shown in Figure 3.8
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Figure 3.10: Figure depicting the position of sensors that maximize FIM determinant and position
of sensors that provide lowest localization error when the target could be located anywhere on a
small stretch of the road.
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Figure 3.11: MSE comparison of the two sets of sensor positions that localize a target on the
trajectory shown in Figure 3.10
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Chapter 4

Vision-based tracking of objects in

3D

4.1 Introduction

Object tracking is a very important technique that is often applied in robotics vision, surveillance

systems and other industrial applications. Basically object tracking is conducted through the com-

parison of the characteristics of the target object and video images in the search region. Most of the

tracking algorithms are some form of optimization which are tackled using either deterministic or

stochastic methods. Deterministic methods usually involve a gradient descent search to minimize a

cost function. Compared with the deterministic counterparts, stochastic methods are usually more

robust, but they suffer a large computational load, especially in high-dimensional state space.

The main challenge to robust tracking is the lack of visibility of the object in crowded scenes.

This problem can be overcome to an extent by the use of multiple cameras that monitor the same

Figure 4.1: Graphical representation of multi-view tracking
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scene at different angles. The probability that the object is not visible in all the cameras is low

and the effect of occlusion will therefore be reduced to a great extent. This can help in tracking

the object seamlessly. Figure 4.1 shows a typical multi-camera network that is used to track the

object in 3D. Each of these cameras do not function independently in providing an accurate 3D

track. Therefore, the knowledge of multiple camera networks and camera geometry is necessary to

locate the object in all the views and fuse the total information.

Calibration of the camera network is a vital step towards 3D representation of objects and

tracking. Calibration is a process of determining the intrisic parameters of the camera including its

local length, aspect ratio and skew and the extrinsic parameters like the rotation and translation of

the camera center with respect to a reference coordinate system. The details of camera geometry

and calibration is provided in Appendix A.

This work considers a network of stereo cameras monitoring the same object from different angles.

The use of stereo cameras exhibits two fold advantage: Firstly, the process of calibration is made

independent of extraneous objects due to the baseline restriction in the stereo pair. The second

advantage is that the use of stereo cameras provides information that can be correlated with human

perception because the human eyes can be modeled as a stereo camera. For ease of illustration, this

work demonstrates the tracking of object in 3D by the use of a single pair of stereo cameras. Once

the track of the object due to a single stereo pair is obtained, it is possible to fuse the information

from the other stereo pairs to obtain a complete 3D track of the target of interest. The basics of

stereo geometry and the autocalibration technique proposed by Kiran et al. [44] adopted is explained

in Appendix A. Using a set of calibrated cameras, the object is tracked using Kanade-Lucas-Tomasi

(KLT) point tracking algorithm. The details of the tracking algorithm is described in the subsequent

section with the corresponding experimental results.

4.2 Sparse point-cloud generation using Stereo pair

Once the camera matrices P1 and P2 of the stereo pair are computed, it is possible to obtain a 3D

point cloud of certain feature points that are common across both the views. The feature points are

identified using ASIFT (Affine Scale-Invariant Feature Transform) [45] and are projected back on

to the 3D space. If a set of point correspondences in two views determine the fundamental matrix

uniquely, then the scene and cameras may be reconstructed from these correspondences alone. This

process is known as triangulation.

Figure 4.2 shows pictorially how triangulation is used to obtain a sparse 3D point cloud. If vL

and vR represent the images of a 3D point P , it is possible to obtain the coordinates of the point P

with the knowledge of the focal lengths of the two cameras and the baseline separation between the

stereo cameras.
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Figure 4.2: Triangulation using stereo pair

4.3 Kanade-Lucas-Tomasi Point tracking algorithm

The point tracker algorithm tracks the set of detected feature points using the Kanade-Lucas-Tomasi

(KLT), that is basically inspired by the concept of optical flow. It was originally designed to

address the issue of image registration [46]. It was later used for video stabilization, camera motion

estimation, and object tracking. It works particularly well for tracking objects that do not change

shape and for those that exhibit visual texture.

If F (x) and G(x) represent the image intensity of a point in subsequent frames, this algorithm

aims to estimate the disparity h that matches the two points with maximum accuracy. In other

words, the disparity is calculated such that the difference in the some measure between F (x + h)

and G(x) is minimized for all the feature points x in region of interest R. The following are the

most commonly used measures of difference:

• L1 norm=
∑
x∈R
|F (x+ h)−G(x)|

• L2 norm=
√∑
x∈R

[F (x+ h)−G(x)]
2

KLT tracker is based on two papers: The first one uses a gradient-based approximation to determine

the disparity h. The second paper provides a generalized extension to the first by not restricting

the kind of displacment to just translation.

If h is the displacement between the two images F (x) and G(x) = F (x + h), the following

approximation is made

F ′(x) ≈ F (x+ h)− F (x)

h
=
G(x)− F (x)

h
. (4.1)

Therefore,

h ≈ G(x)− F (x)

F ′(x)
(4.2)
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Considering all the feature points, an average estimate of disparity is obtained as follows

h ≈
∑
x

G(x)− F (x)

F ′(x)
. (4.3)

The accuracy of the estimate is further improved by incorporating a weighting function that is

derived from the second derivative of F (x). If the weighting function w(x) is defined as

w(x) =
1

|G′(x)− F ′(x)|
, (4.4)

the average weighted disparity is given by

h ≈

∑
x

w(x)[G(x)−F (x)]
F ′(x)∑

x
w(x)

. (4.5)

As the point tracker algorithm progresses over time, points can be lost due to lighting variation,

out of plane rotation, or articulated motion. To track an object over a long period of time, you

may need to reacquire points periodically. The second paper proposed by Tomasi and Kanade [47]

provides a framework for identifying the feature points that are suitable for tracking. The detected

features are selected if both the eigen values of the gradient matrix are larger than some threshold.

4.4 Experimental Results

In this work, the set of point correspondences are obtained using Affine SIFT in both the views of

the stereo camera. Using the camera parameters and the point correspondences, a sparse 3D point

cloud is obtained. Figure 4.3 shows the common feature points that are detected in both the views

Figure 4.3: 3D point cloud using a pair of calibrated stereo cameras
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and the point cloud generated using triangulation.

Using the feature points detected, the KLT tracker is run on the video sequence of the left

camera. The corresponding location of the points in the other view is mapped using Fundamental

matrix. The tracked locations are further projected on to the 3D continuum using triangulation.

Figure 4.4 shows the results of the algorithm both in 2D as well as 3D.

Figure 4.4: Point cloud tracking from a stereo pair: Frames 1, 20 and 40 (Left to Right)
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Chapter 5

Summary and Discussion

The two main areas of this work include localization and tracking of objects in 3 dimensions. Lo-

calization involves estimating the location of an object with respect to some reference points and is

analogous to detection in case of videos. In this regard, a novel algorithm is proposed that has a

computational advantage over traditional algorithms and provides significantly better results. Addi-

tionally, the problem of optimal placement of sensors is considered in order to improve the efficiency

of the proposed localization system. Finally, the problem of object tracking is addressed using visual

data from a stereo camera network. In the course of these studies, several interesting insights were

obtained. This chapter summarizes the work in each field and discusses limitations and future scope

in this direction.

5.1 Object Localization in 3D

In this thesis, PSO-based localization is proposed to estimate the location of a target in 3D. We

introduce a novel modification that is demonstrated to be computationally faster compared to stan-

dard PSO. The proposed modification also eliminates the flip ambiguity inherent in the standard

version. A cluster-based approach is adopted to ensure that the initialization of PSO is accurate

enough to eliminate flip ambiguity. The cluster with lower volume is identified to be the right cluster

and therefore, the particles of the PSO algorithm are initialized around the centroid of that cluster.

The notion of the minimum volume of cluster stems from experimental observations and it lacks a

mathematical explanation. Therefore, the next step would be to provide an analytical explanation

for the observation to highlight the need for a cluster-based initialization.

5.2 Sensor Placement Problem

A mathematical framework to determine the optimal position of sensors to localize an unknown

target in 3D is proposed. In order to ensure that maximum localization accuracy is obtained, a

statistical measure of inaccuracy i.e. covariance is used. Due to the computational complexity of

covariance, the bound on covariance, provided by Cramer Rao Lower Bound, is computed instead.

CRLB relates the covariance of the estimated location to Fisher Information matrix that exhibits

a closed form expression. Maximizing the determinant of Fisher Information matrix reduces the
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volume of the error ellipsoid which in turn minimizes the variance of the estimated location. A

keen analysis of the expression of FIM determinant reveals that there are several orientations that

maximize FIM determinant. This is experimenatally verified by considering a toy example where

the location of the target is known and the sensors are restricted to lie on the circumference of a

circle with the target at the center. This example also reveals that the localization performance

of each of the maxima of FIM determinant is significantly different. This is because maximizing

FIM determinant only ensures that the lower bound on the variance is minimized, not the actual

variance. Therefore, a two-step optimization algorithm is proposed that first determines all the local

and the global maxima of FIM determinant and then exhaustively determines the sensor orientation

with the lowest average localization error. The proposed algorithm is corroborated using practical

examples. When the optimal position of the sensors to localize a specific target on the road was

determined, it was observed that the global maxima of FIM determinant (value= 1.237× 10−10

m−6) resulted in an average RMSE of 8.08 m whereas the sensor positions corresponding to the FIM

determinant value of 0.8701× 10−10 m−6 provided the lowest average RMSE of 4.489 m. Therefore,

our proposed algorithm provides improved results that comes with an additional computational cost.

However, considering the fact that the sensor placement problem is usually addressed offline and

the improvement in the results obtained is about 50%, the additional computational overhead is

admissible. In this thesis, the objective function is considered to be isotropic i.e., the errors along

the x, y and z-direction are considered to be the same. In several applications, especially terrestrial

tracking, the error along the z-direction could be neglected. This means that a weighted objective

function could be considered instead so that the effect of the z-error could be neglected. In addition,

this framework is for deploying range-based sensors. It could be extended to video cameras because

similar to sensor-based tracking, the position of the cameras play a significant role in the accuracy of

visual tracking. Therefore, this work can serve as a platform for a systematic framework to detemine

the optimal position of cameras with suitable modification to the objective function considered. The

details will be available in my forthcoming paper.

5.3 Vision-based tracking of objects in 3D

Stereoscopic vision has helped in reconstruction and tracking of an object in a multicamera system.

This thesis aims to provide a platform for 3D object tracking. KLT feature tracker is used to identify

and track certain feature points present on the object. Using a set of calibrated stereo cameras, the

feature points are mapped in 3D and also projected on to the other view. It also paves way for several

improvements. Most of the cameras are equipped with Autofocus facility. In order to incorporate

the effects of autofocus, it is necessary to update the camera parameters with time along with the

motion vectors. In addition, the information from multiple stereo pairs has to be fused in order to

obtain a more accurate location information and faithful reconstruction. Finally, the object can be

tracked in 3D directly using 3D variation of algorithms like Particle Filter.
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Appendix A

Theoretical Background

Multi view geometry is used to map the points (loaction of the object) in one view to the other

views. This can be done by considering a pair of cameras at a time. One of the cameras (where the

object remains unoccluded throughout) is fixed as a reference and the mapping to the other views

is done with respect to that. Therefore the multi view network can be interpreted as a series of

pairs of cameras. Therefore we will first consider the geometry of two perspective views only. The

following steps are involved in mapping points from one view to another.

• Calibration of the individual cameras

• Finding the homography matrix that maps pixel locations in one view to the other

A.1 Camera Model and Need for Calibration

Figure A.1: Pinhole model of a camera

Figure A.1 represents the process of image formation in a camera using a pin hole model. Using
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the laws of optics, the process of image formation is represented mathematically as,
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1

 (A.1)

In order to invert the process of image formation to obtain a 3D representation of the object from

2D images, it is mandatory to know the parameters of the camera matrix. Camera calibration is a

necessary step in 3D computer vision in order to extract metric information from 2D images. Image

is nothing but the projection of a 3 dimensional scene on to a 2d plane. Camera calibration helps

us identify the transformations that map the 3d world coordinates to the 2d image coordinates.

Conventional techniques use an extraneous object for calibration. These technique requires to ob-

serve a planar pattern shown at a few different orientations to estimate the projection matrix. The

simplest would be the chess board pattern where the dimensions of each square is known. Using this

knowledge and the images of the chess board pattern in different orientation, the projection matrix

can be obtained. The assumption made in this type of calibration is that the model plane is on Z=0

of the world coordinate system. To overcome the burden of using an external object for calibration,

Kiran e al. proposed a calibration technique that eliminates the need for a calibration object. In

the proposed method, calibration is performed without imposing any restriction on the scene.

Figure A.2: Camera calibration using extraneous objects
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A.2 Auto Calibration

An non-intrusive calibration technique proposed by Kiran et al. eliminates the need for manual

intervention and provides a faithful Euclidean reconstruction of the scene. The authors propose

a three camera network which comprises of a stereo pair. The fixed baseline separation between

the stereo cameras facilitates the unique estimation of the camera parameters, both intrinsic and

extrinsic. This technique could be extended to a network consisting of more than 3 cameras with

ease. In this framework, the authors consider a three-camera configuration, where two of the cameras

form a stereo pair with parallel optical axes with known baseline separation. Consider N points on

the object in 3D which are visible in all the three cameras. The camera model equations are written

for all the three cameras with the left camera of the stereo pair as reference. The rotation matrices

of the stereo pair is hence identity and the translation vector of the stereo right with respect to left

is equal to the baseline separation. If the jth 3D point is given by X̄j = [Xj , Yj , Zj , 1]
T

and the

corresponding image on the ith camera is denoted as x̄ij = [xij , yij , 1]
T

, the camera equations of the

stereo cameras are given as follows:

s1j

 x1j

y1j

1

 =

 f1 0 0

0 f1 0

0 0 1


 1 0 0|0

0 1 0|0
0 0 1|0



Xj

Yj

Zj

1

 (A.2)

Figure A.3: Euclidean Autocalibration
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s2j

 x2j

y2j

1

 =

 f2 0 0

0 f2 0

0 0 1


 1 0 0| − l

0 1 0|0
0 0 1|0



Xj

Yj

Zj

1

 (A.3)

The equation of the mono cameras can be written as

sij

 xij

yij

1

 =

 fi 0 0

0 fi 0

0 0 1


 ri1 ri2 ri3|tx

ri4 ri5 ri6|ty
ri7 ri8 ri9|tz



Xj

Yj

Zj

1

 (A.4)

Using the above, the authors determine the parameters of the camera network by means of a multi-

objective optimization.
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