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Abstract

Most small scale industries and household complexes in developing countries face a financial

dilemma regarding installation of energy saving technologies like smart lighting. Given an initial

capital, it is often not clear whether to invest it in such technologies or elsewhere that gives

better returns on investment. For example, if the users of the building are sufficiently energy

conscious to turn off their personal appliances and lights before leaving a room, it can be argued

that the initial capital is better invested elsewhere.

We introduce a tool that helps concerned decision makers compare the savings due to instal-

lation of smart technologies against alternative investment that provide returns at (say) r

Our approach is summarized below:

1. For each user Ui of the building, we create the time sequence of occupancy in various

rooms. This is done using existing agent based building occupancy simulation techniques that

model the movement of each person as a Markov process.

2. User Ui turns off personal appliances with a probability of pi when leaving a room. Thus,

pi quantifies the energy consciousness of user Ui. We suggest methods for estimating pi. Had

smart technologies been installed, the appliances would have been necessarily turned off for the

interval the user remains out of the room. Therefore, if smart technologies are installed, energy

savings occur precisely during the intervals when the user leaves the room forgetting to turning

off personal devices and lights.

3. This saving is compared against the returns of the alternative investment.
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Chapter 1

Introduction

1.1 Background and Motivation

Non-renewable energy is depleting at an alarming rate today, and hence, it is necessary that we

take effective measures to save as much energy as possible. One major area where a lot of energy

is wasted is househould and office electrical power. Modern day homes have multitudes of power

consuming devices viz. fans, bulbs, etc. that are left in the state of power-consumption even

while there is no one to consume it.

There are many ways to save non-renewable energy, including avoiding the consumption of

energy when not in use, using a high-efficiency device to consume power efficiently, and using

alternative technology. Of these methods, the easiest and the most economical is to reduce power

consumption is avoiding consumption of power when not in use. And this is where the usage

of smart-technology comes into picture. Smart-homes today are equipped with smart-lighting

systems which automate the consumption of power, which inlcudes switching off the power when

not in use. But the usage of such smart technologies also often requires heavy investment. The

energy awareness of the consumers plays a major role in the when dealing with the problem of

installation of smart technologies to automate the consumption of power. Hence, the investment

dilemma.

1.2 Problem Statement

Given an initial investment of P units of money and a rate of return on investment r, the energy

awareness of each user, i.e., the average probability of each user switching off the power, and

the occupancy profile based on the average probability of movement of the occupants from one

location to another, is it a better option to invest the money in deployment of smart technology

(such as smart lighting and smat heating systems) or to invest it elsewhere.
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1.3 Related Work

In this section we breifly review some important recent work in the area of building occupancy

profile generation. Liao [1] presents an agent-based modeling approach to simulate the behavior

of all the occupants of a building. Richardson [2] presents a model that generates synthetic

active occupancy data, based upon survey data of people’s time-use in the UK [6] using the

Markov–Chain technique. Page et al [3] present a model that can generate a time series of the

state of presence of occupants within a specific zone of a building, and the transition probabilities

of the model,corresponding to arriving, leaving and staying in the respective states. However,

the model does not simulate the movement of occupants from one zone to another. Wang [4]

handles occupant movement as a Markov chain process, using which the model can generate the

location for each occupant at discrete time instants.

Although these approaches do give us the occupancy profile, they cannot be used to solve our

problem which requires us to answer queries like what is the expected saving if one deploys

smart-technology such as smart-lighting and heating systems. For this, we need a model checking

approach which will model the system, and check if the desired properties viz. occupancy profile

and the expected savings are within a certain range over a certain period of time.

1.4 Contribution of this thesis

Broadly speaking, this work is an attempt to solve the investment dilemma using a novel approach

- Statistcal Model Checking. We aim to provide answers to some very interesting questions arising

out of the dilemma such as the expected energy and hence, monetory savings, given the energy

awareness of the occupants and the probabilities associted with their movement about the various

locations in a building or office environment. We first use the simulation approach to get the

energy savings based on the energy awareness of the occupants, and then provide a Stastical

Model Checking approach to obtain energy savings due to deployment of smart technology. We

then proceed to answer some more non-trivial questions associated with this problem, and show

why plain simulation is not suitable to solve the problem at hand.

1.5 Organization of thesis report

This thesis report is organized into multiple chapters. Chapter 2 gives an overview of the various

concepts, viz. Probabilistic Timed Automata, Probabilistic Timed Computation Tree Logic,

Statistcal Model Checking, etc involved in this work, along with suitable examples. Chapter 3

of the report explains the two approaches namely, Simulation and Model Checking, in detail,

as well as the results obtained from each of the approaches. The results obtained from the two

approaches are compared in the last chapter and appropriate conclusions drawn.
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Chapter 2

Preliminaries

There are numerous ways of testing a system for its correctness. Simulation is the most widely

used method for testing the correctness of the system [5]. However, simulation alone cannot

cover all the possible scenarios in the system, and hence some errors may remain undetected.

This is where formal methods come into play. Formal methods employ mathematical techniques

to check the system behaviour covering all the possible scenarios. Model checking is a formal

method used to verify the correctness of a program or system. For complex stochastic systems,

probabilistic model checking is a feasible approach.

Numerical model checking algorithms that employ location space exploration, although give the

correct answer, suffer from location-space explosion. That is, they can only be used to verify

small systems with preferably less no. of locations. The statistical model checking algorithms, on

the other hand, are scalable, and give approximate answers. Statistical model checkers combine

testing techniques with statistics based algorithms. Statistical Model Checking techniques (SMC)

[6, 7], are thus, some kind of a trade-off between testing and formal verification. SMC differs from

Monte Carlo simulations used in industries in that it employs a formal model of the system. SMC

based verification technique monitors several simulations of a system that behaves in a stochastic

manner, i.e., the locations and the events that the system goes into is determined based on some

probability associated with each event. The results obtained from such simulations are then used

together with statistical methods to get an overall estimate of the probability of the system’s

behaviour. SMC allows us to check some very complex behavioural properties of the system, such

as “Does the system reach some location within certain time limit?”, which can not be (easily)

inferred from Monte Carlo simulations. As opposed to the exhaustive approach (eg. numerical

model checking), the statistical model checking does not guarantee a result with 100% confidence.

But, the error-probability can be bound by using sufficient number of runs. Simulation-based

methods are known to be far less memory and time intensive than exhaustive ones, and are

sometimes the only option [8].

Our approach employs the statistical model checking approach which requires that the model be
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constructed as a newtork of Stochastic (or Probabilisitic) Timed Automata. The properties to be

checked are represented in the form of Probabilistic Timed Computation Tree Logic (PTCTL),

which is an extension of TCTL for querying systems that exhibit both timed as well as stochastic

behaviuor. The following section discusses PTA and PTCTL, and finally Statistical Model

Checking (SMC). But before that, let discuss the basics of building occupancy simulation.

Building Occupancy Simulation

The building consists of several rooms. Occupancy of each occupant successive time intervals

is modeled as a Markov process. The occupancy profile represents which occupant is in which

room at what time. This is obtained using p-matrix, which denotes the probability of movement

of each occupant from one location to another. The p-matrix is defined for what is called as

an event. There are three events, viz. Coming to office, Walking Around, and Going back from

office.

2.1 Probablistic Timed Automata - PTA

The Probabilistic Timed Autamata (due to Beauquier [9]) are basically extension of Timed

Automata (due to Alur and Dill) [10]) used to model systems that exhibit both timed and

stochastic behaviour.

Definition

Before we define PTA, let us see what Timed Automata is. A timed automaton is a finite location

machine extended with finite set of real-valued clocks. All the clocks are synchronized and thus

increase at the same speed. The transitions of the automaton are enabled upon satisfaction of

constraint(s) on clock values and/or integers. Clocks can be reset. PTAs are probabilistic version

of timed automaton obtained by assoiciating a set of actions with each location. Each of these

actions define the probabilistic distribution of the next locations if this action is chosen.

Formally, a probabilistic timed automaton is a tuple A = (S, Si, C, E, F, A, ρ) where

� S is a finite set of locations,

� Si ∈ S is the initial location,

� C is a finite set of real-valued clocks,

� E⊂ S × S(C)× guard(C) is the set of edges between locations, each edge being labeled by

a set of clocks and by a clock constraint.

For the edge (s, s′, X, δ) ∈ S from s to s′, the set X⊂ C gives the set of clocks to be reset

to zero and is a clock constraint in guard(C) to be satisfied when using this edge. P(C) is

the power set of C.
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Figure 2.1: Example PTA

� F is the set of accepting locations which is used to define acceptance conditions;

� Associated with each location s is a non-empty set of actions As which gives the set of

actions that can be scheduled when the automaton is in location s. The sets As are disjoint;

� ρ : A×E �[0,1] is the probability transition function, such that for all s ∈ S and a ∈ As,

∑
e∈Es

ρ(a, e) = 1

where Es is the set of outgoing edges from s.

Informally, the maximum time an automaton can remain in a location is determined by the

invariant condition(s) associated with the clock variables in that location. A guard on the other

hand, determines the earliest the automaton can make transition to another location. Such

automata can be constructed to model real time reactive systems. Queries can then be framed

in temporal logic to investigate the temporal behaviour of such an automata. Model checking

algorithms are designed to answer such queries.

An example PTA explaining the various aspects, viz. invariant, guard and updates is shown in

figure 2.1. The system starts in the location a, and makes transition from one location to another

based on the probabilistic weight assigned to the transition. For a detailed explanation of PTA,

see [9].

2.2 Probabilistic Timed Computation Tree Logic - PTCTL

Computation tree logic (CTL) is a branching-time logic used in formal verification of software

or hardware systems, which determines if a given system possesses safety or liveness properties.

These properties are expressed in CTL. PTCTL is an extension of TCTL or Timed Computation
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Tree Logic, that enables us to answer such queries for systems that exhibit both timed and

probabilistic behaviour. PTCTL is obtained by extending TCTL with probabilistic operator �⋊⋉p

[.] used in PCTL(Porbabilistic Computation Tree Logic). Armed with this operator, PTCTL

can be used to ask queries like ‘With probability at least 0.96, does the system reach location

s’ within time period 5?’. In PTCTL this query/property to be checked can be expressed as

: �≥0.96[x≤ 3 and System.s’], where System is the name of the PTA representing the system.

Some example PTCTL queries are listed below for the PTA shown in figure 2.1.

� �[≤ 5] System.a, enquires about the probability of the system being in location a within

time 5.

� �[≤ 4] System.c ≥ 0.98, asks if the probability of the system being in location c within

time 4 is at least 0.98.

� �[≤ 6] System.c ≥�[≤ 4] System.c or System.b, asks if the probability of the system

being in location c within time 6 is at least as much as that of it being in either location

b or location c within time 4.

Let us now discuss Statistical Model Checking using UPPPAL.

2.3 Statistical Model Checking using UPPAAL SMC

UPPAAL is a toolbox for verification of real-time systems. Uppaal models the systems as net-

work of timed automata extended with integer variables, structures, and synchronization signals.

Classical SMC model checkers are incapable of handling timed systems. UPPAAL SMC not only

handles timed systems but also implements those tests that can compare two probabilities with-

out computing them. Moreover, the UPPAAL SMC extension allows the user to visualize the

results in the form of probability distributions, computation of expected values, etc.

Uppaal SMC is used to represent systems that may behave both stochastically and non-deterministically

using networks of timed automata whose clocks may have different rates of progress.

2.3.1 Model Formalism

Let us look at a concrete example depicting how stochastic systems are formulated using Uppaal

SMC. We consider the Train-Gate example, that illustrates the crossing of a finite number of

trains over a bridge. Figures 2.2 and 2.3 are the templates representing the PTAs for train and

gate systems, respectively .

The PTA models the system of the crossing of a number of trains over a bridge that has

only one track. The passage of trains over the bridge is controlled by a controller which utilizes

timing constraints like guards and invariants to stop the trains when necessary and to allow

them to pass through when feasible. Figure 2.2 shows the Uppaal SMC model for the train

component of the train-gate system. The location Safe doesn’t have any invariant and has a rate
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Figure 2.2: Train PTA [13]

Figure 2.3: Gate-Controller PTA [13]

of exponential distribution associated with it as (1 + id)/N2, where id is the identifier of the

train and N is the number of trains. Trains delay according to this rate and then approach the

gate by synchronizing with the gate-controller on signal appr[i]. The time at which the transition

occurs from locations with invariants but without any assoicated rate(s), e.g. Cross, Appr and

Start, is determined by a uniform distribution over the time interval defined by the invariant.

For example, the time a transition takes place from the location Cross is picked uniformly and

randomly between 3 and 5 time units. The gate controller shown in Figure 2.3 is used to track

the trains by queuing them in a queue data structure (when the bridge is occupied by some

other train), and dequeuing them when the bridge is free. the bridge using an internal queue

data structure.

2.3.2 Query Formalism

Uppaal SMC provides a number of new queries (in addition to reachability, liveness, safety,

and implies) to analyze the stochastic behaviour of timed automata. The Simulator Module of
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Figure 2.4: Gate Controller PTA

Uppaal SMC allows the user to visualize the values of expressions obtained from the simulation

runs. This enables the user to get useful insight on the behavior of the system and ask more

relevant queries through the Verifier Module. The syntax to get this done in Uppaal SMC is :

simulate N [≤ bound ] Q1 , .., Qk , where N is the number of simulations, bound is the time

bound on the simulations, and Q1 , .., Qk are the k (location-based) expressions to be monitored

and visualized. For example, simulate 1[≤ 500]Train(0).Cross, Train(5).Cross, Gate.len runs

one simulation over a time bound of 500, and checks at what times Train0 and Train5 cross the

bridge as well the length of the train queue. The result is shown in Figure 2.4.
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Chapter 3

Methodology

In this section we discuss our approaches towards solving the problem at hand. But before we

discuss the methodology, it is important to go through the assumptions made.

3.1 Assumptions and Inputs

� The no. of rooms is fixed and known.

� The no. of occupants is fixed and known.

� Each occupant is assigned an initial room.

� Maximum capacity of each room is equal to the total no. of occupants.

� Energy consumed per device per unit time is fixed and is a constant across all the devices.

� Each occupant uses only one device, and hence consumes only that amount of energy as is

consumed by a single device in one unit time.

Some of the assumptions listed above, viz. capacity being equal to the total no. of occupants, or

the energy consumption rate of each device being equal seem to be too ideal or unrealistic, but

can be relaxed without any significant change in our methodology. This will become clear once

we discuss our methodology.

Let us now look at the methodology being proposed.

9



3.2 The Setting

As discussed in earlier section, following are the two approaches our methodology is comprised

of:

� Simulation Based Approach

� Model Checking Based Approach

In either of the approaches, following are the inputs:

� Number of rooms

� Number of occupants

� Probability matrix of movement of occupants between locations

� Average energy awareness of each occupant

With the inputs listed as above, each approach generates the occupancy profile and the energy

consumption profile for each occupant at discrete steps of time, known as a timestep over a

period of time from morning 7:00 am to evening 9 pm. Thus, there are a total of 84 timesteps.

The observation period is divided into 3 parts, known as events. The first event is coming

to office, which takes place from morning 7:00 am to 8;30 am. The event succeeding this event

is walk-around which lasts from 8:30 am to 5:00 pm, during which the occupants move from one

location to another based on the movement probability matrix. The last event is going to home,

which starts after 5 pm and lasts till 9 pm by which time none of the occupants is allowed to

remain in the office.

The occupancy profile of each occupant is maintained in the form of a 3-dimenstional array, rep-

resenting which room each occupant is in at each time. Similarly, the energy consumption profile

tells us whether energy was being consumed by a particular person at a particular timestep. The

occupancy profile of each occupant is updated at each time step according to the movement of

each occupant across various locations. Alongwith the occupancy profile, we maintain a sincerity

profile for each occupant, which tells us if the occupant switched off the power being consumed

by them upon leaving the room or not. Using these two arrays, we can easily obtain the energy

consumption profile for each occupant in each room at each timestep. Once we have the energy

profile, we can easily compute the total energy consumed by the occupants of the building in a

single day over the aforementioned period of time, which in turn will tell us how many energy

units, if any, will be saved if smart technology is deployed.

The following sections describe the two approaches in detail.
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Figure 3.1: Model Checking Approach

3.2.1 Model Checking Based Approach

In this approach, we model the system as PTAs or Probabilistic Timed Automata described in

earlier sections. Figure 3.1 presents an overview of the model checking approach.

The Model Checking Algorithm takes as input, the mathematical description of the system

(Timed Automata in our case), and the requirements or property that need to be satisfied by

the system, and outputs a yes or a no with certain probability.

In the section below we discuss how the system is modeled as a network of Timed Automata.

And in the section that follows next describes some of the important properties that were checked

against the system. The properties are expressed in the form of PTCTL queries as discussed

before.

Modeling the System

This is the broad strategy of the model checking approach. The system is modeled as three

timed automata.

� Timer Automaton

� Person Automaton

� Control Automaton

Let us discuss each automaton in detail.

Timer Automaton

The Timer Automaton maintains the timestep for each event. At the end of all transitions, it

computes the energy saved if smart technology is used. The automaton works as follows:

The automaton moves from initial state start to the wait state at the end of each 10-minute

11



Figure 3.2: Timer Automaton

interval. This is ensured by the guard t≥10. A synchronization signal “go ”is sent across to the

Person Automaton to indicate that the occupant can now move to some other location or stay

at the same place, depending on the probability of movement of that occupant to other locations

including his own location. The invariant t≤10 is added to the start state to ensure that the

transition (from start to wait) happens no later than 10 time units. There is one more guard on

the edge going from start to wait - ts < numTimeSteps which indicates that this automaton will

run only till the number of timesteps equivalent to one day observations. When ts becomes equal

to or exceeds numTimeSteps, the automaton moves from start state to done state, and during

this transition, the function to compute the energy saved in terms of timesteps is called. This

function returns the energy saved based on the energy consumption pattern and the occupancy

profile of the occupants as described in earlier sections.

Person Automaton

This automaton models the movement of the occupants from one location to another. There

are 3 rooms, and an outside location. Each occupant starts from outside (represented by the

“Outside ”state) and moves in to the room assigned to them after receiving the go signal from

the timer automaton. The guard ts < evening ensures that this transition happens only before

the last event, ie. evening. This is ensured by the guard (pid == 0 or pid == 1) going from

state OutToIn to state Room0, and so on. This ensures that only person with the id=0 or 1,

can move to room 0. Similarily the guards (pid == 2 or pid == 3) and (pid == 4 or pid == 5)

ensure that each occupant only goes to their own room when they come from outside. The up-

date roomPat[pid][0][ts] = 1 updates the room occupancy info of room0 in the matrix roomPat

which basically captures the occupancy profile of each occupant at each timestep. This captures

the first event - Coming to Office.

12



The next event is walking around in which the occupants move from one room to another based

the probabilty of movements. The go signal from the timer automaton sets this event in mo-

tion, and the automaton moves to the state WalkAround from either of the three states viz.

Room0, Room1, or Room2. From this state, the automaton either transits to sate LeaveRoom

or RemainInside based on the probability weights on the dashed-edges (2/5 and 3/5, here).

These weights are directly taken from the movement matrix discussed earlier, and represented

as ratio of weights. For example, if the probability of moving from locationA to locationB and

to locationC are 0.4 and 0.6 respectively, then it is represented as the probability weights 2 and

3, becuase the ratio the probabilities is 0.4:0.6, which is 2:3. Now based upon which Room the

occupant was in before leaving his room, the automaton transits to either location A, or B or C.

From each of these locations, the automaton transits to either of the states Room0 or Room1 or

Room2 depending again, on the probability weights. This transition sets out the signal goout[pid]

to the control automaton indicating that the person is leaving the room. The update function

update(pid, x, y) is called to update the occupancy matrix indicating that the person has moved

from room x to room y. The guard ts≤evening on the edge going out from WalkAround ensures

that walk-around happens no later than evening, after which the occupant has to go home or

remain inside the room. If the automaton moves to the state RemainInside from the state

WalkAround, then it will transit to the location it was earlier in. This is ensured by the guard

room[pid] == x, checking if the person was in room x earlier or not. This is indicated by sending

out the signal noChange to the control automaton. Along the transition from RemainInside to

either of the states representing the rooms, roomPat matrix is upadted to denote that person is

still in that room by setting roomPat[pid][x][ts] to 1, where x is the room number, and ts is the

timestep.

The last event is going to home. This event is captured by the signal eve received from the

timer automaton. The automaton upon receiving the eve signal, moves to either Outside or

RemainInside state denoting that the person has gone home or has remained inside the room

he was in. If the person goes out, then the signal goout is sent to the control automaton, and

the nochange signal is sent if he stays inside him room. The loop between the locations Outside

and OutToOut is to indicate that all the events are over and the person stays outside. This is

achieved through the synchrnonization channels eve and noChange. Thus we have seen how the

Person Automata captures each of the three events. Let us now discuss the Control Automaton

13



Control Automaton

The control automaton (Figure 3.3)basically deals with the energy part of our problem, that is, it

updates the energypattern array which captures the information about the energy consumption

by the occupants at each timestep in each room. The automaton works as follows.

Initially the automaton is in the start state and then it moves to either the switchOff or

forgetBeforeLeaving based on the energy awareness of the occupant indicated by off [pid] and

14



on[pid]. In either case the sincerity array sincerity[pid][ts] is updated to indicate if the power

being utilized was switched off or not. Again, the propabilities of switching off or leaving it on

are represented by the probability weights, off [pid] and on[pid].

These three automata thus represent the system and work in synchronization with each other

to emulate building occupancy and energy consumption. Let us now discuss the second part of

model chceking approach - checking the model against required properties.

Figure 3.3: Control Automaton

Checking the Model

As described earlier, the model checking is done by expressing the properties to be checked in

the form of PTCTL queries. Some of the most relevant and important queries that were checked

against the system are represented in the following table. The first two queries simply enquire

about the probability of savings (in terms of timesteps) being in a ertain range of values. The

next two queries As described earlier, the model checking is done by expressing the properties to

be checked in the form of PTCTL queries. Some of the most relevant and important queries that

were checked against the system are represented in the following table. The first three queries

simply enquire about the probability of savings (in terms of timesteps) being in a ertain range of

values, and that of count of forget being more than or equal to that of remember. The last three

queries are to get the expected maximum values of the vaiables forget, rememeber, and savings.
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PTCTL Query Meaning Result

Pr [≤1000] (saving≥50 and sav-

ing ≤100 )

Prob. that saving is between 50 and

100 within 1000 time period

[0.3898, 0.4898]

Pr [≤1000] (saving≥100 and sav-

ing ≤150 )

Prob. that saving is between 100 and

150 within 1000 time period

[0.0, 0.09738]

Pr([100,600]

(forget≥remember))

Prob. that the total no. of times occu-

pants forgot to switch off was at least as

much as the no. of times they remem-

bered to switch off within time period

100 and 600

[0.9500,1.0000]

E[≤1000,100] {max:saving} With avg. sincerity 0.7, what is the ex-

pected max. saving within time period

1000 in a total of 100 simulations

(100 runs)

E(max:saving)

=316.31

E[≤600,100] {max:remember} With avg. sincerity 0.3, what is the ex-

pected max. no. of times the occupants

remember to switch off within time pe-

riod 600 in a total of 100 simulations

(100 runs)

E(max:remember)

=40.96

E[≤600,100] {max:forget} With avg. sincerity 0.3, what is the ex-

pected max. no. of times the occupants

forget to switch off within time period

600 in a total of 100 simulations

(100 runs)

E(max:forget)

=99.51

The plot shown in Figure 3.4 depicts the probability distribution of expected maximum

savings (in timesteps) when the average energy awareness of the occupants is 0.3. The x-axis

denotes expected values of savings, and the y-axis denotes the probability.

The next plot shown in Figure 3.5 represents the values of difference between the no. of

times the occupants forget to switch off with the no. of times when they don’t when the average

sincerity is 0.3. The horizontal axis denotes time period. The plot was generated with the query:

simulate 365 [≤850] forget-remember]. It is clear from the plot that the count of forget exceeds

that of remember when the sincerity is as low as 0.3.

Lastly, the plot in Figure 3.6 shows the plot of the difference in the counts of remember and

forget when the average sincerity value is 0.9. As is expected, the difference comes out to be

positive after a certain time period owing to high value of average sincrity of the occupants.
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Figure 3.4: Probability Distribution Plot for savings with p = 0.3
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Figure 3.5: Plot showing forget-remember with p = 0.3
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Figure 3.6: Plot showing remember-forget with p = 0.9

Again the query used to generate this plot is: simulate 365 [≤850] remember-forget]
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1 2 3
1 0.2 0.3 0.5
2 0.4 0.4 0.2
3 0.2 0.7 0.1

Table 3.1: P-matrix row,col=roomId

1 2 3
1 0 1 0
2 0 0 1
3 1 0 0

Table 3.2: Location Matrix
row=roomId, col=personId

OFF ON
1 0.2 0.8
2 0.4 0.6
3 0.7 0.3

Table 3.3: Sincerity Matrixrow=personId

1 2 3 ... 84
1 0 1 0 1
2 0 0 1 0
3 1 0 0 1

Table 3.4: Person 1 Energy Matrix
row=roomId, col=timestep

3.2.2 Simulation Based Approach

Broad Strategy

� Generate occupancy profile using existing building occupancy simulation algorithms. Through

this, we get to know the times when a user leaves the room.

� Whenever an occupant leaves the room, he/she remembers to switch off his/her devices

with probability p.

� We are interested in those time intervals when she leaves her room without switching off

her devices until she returns because power would have been saved in this interval if smart

technologies had been deployed.

Data Structures

� P-matrix (Table 3.1)

� Location Matrix (Table 3.2)

� Sincerity Matrix (Table 3.3)

� Energy Consumption Matrix (Table 3.4)
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1 2 3
2 0.4 0.4 0.2

Table 3.5: C = LP

1 2 3
2 0.4 0.8 1.0

Table 3.6: C’

The first step towards obtaining the occupancy profile for each occupant is to get the next

location or the current location at a particular timestep. This is explained as follows.

Predicting Next Location

Given the location matrix L, and the p-matrix P, we compute matrix C = LP [Table 3.5 ] which

is the movement probabilities of occupant 2 from their initial location to other rooms.

Next, we compute the cumulative matrix C’ [Table 3.6].

The next step is to generate a random number r between 0 and 1, and compare it with each of

the values in C’. If the random number generated is 0.6, for example, then the next location of

occupant 2 is returned as 2. Similarly if it is 0.3, then the next location will be 1. This approach

gives us a complete occupancy profile of each occupant at each timestep.

Based on a single run of the program, the occupancy profile for room 1 shown in Figure 3.7

was obtained:

Figure 3.7: Room 1 Occupancy

Computing Energy Saved

Recall that, the amount of energy saved is computed as depicted in Figure 3.8 Therefore, Power

saved per room per timestep if smart technolog is deployed = (no. of persons leaving a location

- no. of persons switching off their devices)*W, where W is the average power consumed by one

device in one timestep, in kWh. For example, a Laptop/desktop of 20 watts if run for 10 min,

consumes W=20*(10/60)/1000 kWh.
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Figure 3.8: Computing Energy Saved

Based on the occupancy profile and the energy profile thus generated, we have the energy saved

as depicted in Fig. 3.9.

Figure 3.9: Energy Saved

This figure depicts one day savings in terms of the total no. of timesteps in which the occupant

forgot to switch off the power they were using just before leaving the room. The x-axis is the

simulation number, and the y-axis is the savings in timesteps. The graph is plotted with dif-

ferent values of avg. sincerity level or energy awareness of the occupants. As is clear from the

plot, energy savings is quite high when the avg. sincerity level is less. But as the sincerity level

increases, the energy saved decreases, which is as expected.
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Conversion of timesteps to money

Initial Investment: INR 5108.80 ($80 1) x 3 rooms = INR 15326.4

Cost per unit: 1kWh costs INR 5. (7 for commercial)

No. of Units Consumed = (Watt x Hour) / 1000

Average wattage per device: 20 W (Assumption)

Since we are calculating saving per TimeStep of 10 min each, no of hours = 10/60.

Average One Day Savings = Power Consumption corresponding to number of TimeSteps (in

which the power wasn’t switched off when not in use).

Having obtained the energy savings from the simulations, and given the initial capital and the

rate of return on investment, we can now answer whether the money should be invested in

deployment of smart technology or not.

Table 3.7 given below draws a comparison between the investment in smart technology and

elsewhere.

Avg. Sincerity,p 1 day TimeSteps 5 year savings r=6%, ST? r=8%, ST? r=10%, ST?

0.1 901.14 50159.70 y y y

0.3 694.24 38643.13 y y y

0.5 502.61 27976.53 y y y

0.7 299.05 16645.87 y y y

0.9 103.56 5764.41 y n n

1.0 0 0 n n n

Table 3.7

Pros & Cons of this approach

This approach is easy to implement and is scalable, in that the size of the system (viz. number

of rooms, number of persons, etc.) can be increased easily without any significant changes. But

since a simulation covers only one random trace of the system, the accuracy relies heavily on the

number of simulations performed. Also plain simulation can be used only to study straightforward

properties. For example, queries like “What is the probability of saving P amount of money in

the first 1000 Time units due to the deployment of energy aware technology?”cannot be (easily)

annswered from the results obtained from simulation.

Before we conclude, it is important for us to compare the two approaches discussed, viz. sim-

ulation and model checking. The following section presents a comparison of the two approaches.

1http://www.pocket-lint.com/news/130002-smart-lighting-solutions-here-are-seven-options-to-choose-from
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3.3 Simulation v/s Model Checking - A comparison

The table below shows the comparison between the two approaches. The comparison is based

upon the values of energy saved in terms of timeteps for varying values of avg. sincerity level of

the occupants.

Sincerity

Level

Simulation

(Expected 1 day savings)

Model Checking

(Expcted max savings in

1 day)

0.1 901.14
965.68

0.3 694.24
766.32

0.5 502.61
536.71

0.7 299.05
316.31

0.9 103.56
105.36

1.0 0
0

As is apparent from the comparison, the values of savings in both the approaches are comparable

and close to each other as expected.
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Chapter 4

Conclusion

Small scale businesses and households face a dilemma regarding investment in smart technologies.

A deciding factor in making this decision is the average energy awareness of the users of the

building. Based on this observation, and using the occupancy profile of the users over different

time intervals in a day, we report two decision making approaches - Statistical Model Checking,

and Plain Simulation. The results obtained from both the approaches seem to complement each

other. However, Statistical Model Checking has an edge over simulation in that it answers a

wide variety of queries pertaining to the stochastic behaviour of the system, which cannot be

(easily) asnwered using plain simulation.

We have thus seen that the model checking approach can be applied to solve the dilemma of

investment given the parameters discussed above and earlier.
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