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Abstract

Alias Analysis information is a prerequisite for most of the program analysis and the quality of this

information can greatly boost up the precision and performance of the program. Many recent works

in this area have focused on high precision and scalability, but still they lack an efficient and scalable

alias analysis. The inclusion based or Andersen style alias analysis is widely used to compute such

information. Andersen alias analysis is flow insensitive which make it highly precise and motivate

many modern optimizing compilers to deploy it. In this work, we have improved and implemented

the Andersen alias analysis in the latest version of LLVM.
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Chapter 1

Intoduction

Industrial program codes are getting bigger. Programs with billions of lines of source code are no

longer uncommon. Compilation of such huge programs typically takes several hours, even some time

days. The scalability of compilation is a minimum requirement for current compiler frameworks like

gcc [1] and LLVM [2]. Compilation of a program involves several static analysis which analyze

and optimize the program. A static analysis automatically analyzes the program without actually

running the program [3] because of static analysis we can achieve faster run time execution, less buggy

program and better program understanding. Since static analysis is an inseparable component of a

compiler, program analysis designer and compiler writers must try hard to make their analysis as

efficient as possible.

Alias Analysis is a static analysis which takes a program as input and compute points-to in-

formation about the program. To optimize the program, points-to information is used by static

analyzer called as Clients. The points-to information is depends on how various program elements

are modeled, but modeling these program elements in various way gives different points-to informa-

tion with varying analysis time and memory requirement (program elements are Known as analysis

dimension [4]). Some of the analysis dimensions are, context sensitive analysis, which is about

calling context of function, the flow sensitive analysis is nothing but control flow in the program,

Modeling of aggregates are covered by field sensitivity. The most important terms in alias analysis

are analysis time, memory requirement and precision which are the challenging factors of the alias

analysis researcher.

In this work we improve and implement the Andersen alias analysis [5] in LLVM. The Andersen

alias analysis is deprecated from the current version of LLVM because of buggy code, less efficiency

and less scalability. Andersen alias analysis was present in LLVM 2.6 version, but after this version

it was removed.

1.1 What is Alias Analysis?

Alias Analysis (aka Pointer Analysis) is a mechanism to statically determine whether two pointers

may point to the same memory locations at runtime. Suppose we have a program p to extract

pointer specific information and computes an internal representation of aliasing information present

in program, which is nothing but Points-to information. A Client to the alias analysis then queries

4



this information to obtain answers to its specific queries regarding the alias relationship between

pointers.

Several Points-to analysis algorithms exist in literature (see a survey in Chapter 3). However,

two of the most widely used algorithms are Andersen [5] and Steensgaard [6] alias analysis. In this

Andersen alias analysis is based on inclusion of points-to set which is more precise, but less efficient.

While in Steensgaard analysis, which is unification based is less precise, but more efficient.

1.2 Clients of Alias Analysis

Alias Analysis is not an optimization in itself, i.e., once alias analysis is run, it does not make the

program run faster. A Program transformation called Client need to query alias information from

alias analysis to create an optimized version of the program. Also, there are some other analysis

that don’t alter the code, but make use of alias analysis to compute better dataflow information

which can be used by other transformation. Examples of transformation clients include, Automated

bug correction, Parallelization, Common subexpression elimination. Examples of analysis clients

include, Slicing, Shape analysis.

1.3 Issues with Scalable Alias Analysis

The alias analysis causes the effectiveness of a Client’s optimization [4]. The Client’s execution time

will sharply reduced if alias analysis is highly precise. One direction to make alias analysis more

precise is to make it context-sensitive but it blowing up the space and time requirements of analysis,

the context sensitive version of Andersen alias analysis [5] runs out of memory if optimization is not

done. There have been several attempts to achieve a scalable context sensitive alias analysis, but

they have been only partially successful. As an example, Whaley and Lam [7] proposed a cloning

based context sensitive alias analysis using BDD. In another method Lattner et al. [8] proposed a

cloning based context-sensitive alias analysis (without BDD) which claims significant performance

benefits, but give precision only, equal to that of context-insensitive analysis. Considering above

aspects for the precision we have chosen Andersen analysis which is highly precise but less scalable.

To implement a best alias analysis in LLVM we need both precision and scalability hence, to use

Andersen we should have to make it scalable.

In this thesis, we have improved the Andersen alias analysis [5] for that we studied the code base

available in LLVM 2.6. The LLVM 2.6 Andersen analysis does not content any of the refinements

(such as offline variable substitution or online cycle elimination) to improve its efficiency, so it can

be quite slow in common cases, which makes algorithm to take O(N3) time. Considering these flaws

in Andersen analysis, one of the Texas Ph.D student named Jia Chen has used Online Cycle Elim-

ination and Offline Variable substitution functionality in Andersen [5], but still his implementation

lack’s several things such as External library functions, Exception handling, Mod/Ref, Extract and

Insert value, and test cases required for the algorithm also, his implementation is not compatible

with latest versions of LLVM. Considering above analysis we implemented Andersen analysis in the

latest version of LLVM including the Online Cycle Elimination and Offline Variable substitution for

efficiency. Further, we have included the functionality which was not there in the deprecated version

of Andersen.
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1.4 Our Contribution

The major contribution part of this thesis is implementing and improving Andersen alias analysis [5]

in the latest version of LLVM. In this, we have improved the functionality such as External library

functions, Exception handling, Mod/Ref, Extract and Insert value. Also, we have made Andersen

implementation compatible with most of the latest version such as LLVM 3.6 and LLVM 3.7. Further,

we have added extra test cases in our implementation to test the algorithm.

1.5 Organization of this Thesis

This thesis is arranged in following way. We describe the necessary definitions and terminologies

to understand the thesis in Chapter 2. Mainly, we explain various analysis dimensions like flow-

sensitivity, context-sensitivity and field-sensitivity with examples. We also mention the alias analysis

as a graph problem which gives clear understanding of constraint graph.

In Chapter 3 we survey various alias analysis methods. We divide the survey in five categories

which explain about the idea and algorithms of alias analysis.

In Chapter 4 we explain about the Andersen alias analysis implementation in LLVM. In this,

we covered each phase which we have followed in the code base. Also, we mention the flow of

implementation which gives the complete idea of code in LLVM.

In Chapter 5 we explain about the latest added modules and changes required for various versions

of LLVM. Further, we added experimental results for our Andersen alias analysis with basicaa and

cfl-aa which compares Andersen implementation.

We conclude our work in Chapter 6 and also explain some future directions in which this work

can be extended.
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Chapter 2

Background

In this chapter we cover all key concepts that are necessary to understand the forthcoming chapters.

Here, we first define important terms and give various dimensions of alias analysis that affects the

precision of alias analysis algorithm. In section 2.4, we present alias analysis as a graph problem

which will give the idea of the structure of points-to information.

2.1 Definition and Important terms

A Pointer in a programming language like C/C++ is declared as T *ptr where ptr is the name of

the pointer variable and T is the type of the variable it points-to. Thus, a pointer declared as int

*ptr can point-to a variable of type integer.

Definitions

Pointer: A pointer is program variable whose r-value is either zero (null) or the address of

another variable.

Pointee: A Pointee is program variable or a location whose address is the r-value of a pointer.

Aliases: Two pointer are aliases if they point to the same pointee.

Aliasing: Relationship between two aliases is called aliasing relationship or aliasing. The

aliasing is defined as two expressions that evaluate to the same memory location.

Aliasing occur due to pointers, array indexing and union variables. aliasing is a reflexive relation,

i.e., p aliases with p. Also, aliasing is a symmetric relation, i.e., p aliases with q implies q aliases

with p.

Alias method responses: Must alias, No alias, May alias and Partial alias are the responses

return by alias method in LLVM.

The No alias may be return when there is never an immediate dependence between any memory

reference on pointer and memory reference.
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The Must alias may return if the two memory objects are guaranteed to always start at exactly

the same location. This implies that the pointers compare equal.

The May alias response is return whenever the two pointers might refer to the same object.

At last the Partial alias response when two memory objects are known to be overlapping in some

way, but not start at the same address.

Must alias: If it is guaranteed that two pointers p and q always (i.e., in all program execution)

alias with each other at a program point, then they are must alias of each other.

May alias: If two pointers p and q alias with each other at some program point in some

program execution, then they are said to be may alias. If we can identify must alias it will help in

reducing the number of variables tracked during the analysis and hence helps in an efficient alias

analysis.

Alias analysis, Pointer analysis: Alias analysis or Pointer analysis is the mechanism of

statically finding the aliasing relationship between pointer in a program.

Alias analysis may be exhaustive and compute the aliasing relationship for all possible pointer

pairs. Also, alias analysis is demand driven which computes the aliasing relation only for given set

of pointers pair. But we have to note here is an exhaustive pointer analysis could be very costly in

terms of memory requirement. Hence, alternative representation for storing alias pairs is used.

Points-to pairs, Points-to fact: Points-to pair is a pointer-pointee relationship between two

program variables or between a program variable and memory location which need not be distinct.

In this thesis we denote points-to pair using right arrow eg. ptr → {var} i.e., pointer ptr points-

to pointee var. Also, in some cases like flow sensitive analysis a points-to fact is defined at a program

point.

Example 2.1 : Consider a program with following statements,

p1 = &v;

p2 = p1;

∴ points-to facts derived from this program statements are,

p1 → v

p2 → v

Here we computed aliasing relation by checking a common pointee in points-to set of two pointers.

Points-to Analysis: The mechanism of statically computing the points-to set of pointers in

a program.

Typically there are three aspects of performance measuring for points-to analysis, analysis time,

memory requirement and analysis precision. Analysis time is measured in terms of analysis time

complexity (eg., O(n3)). Memory Requirement of an analysis is the total amount of memory in bytes

used to store the points-to constraints and points-to information. Precision of a pointer analysis is

a metric to compute the amount of conservativeness in the analysis.

Soundness: A static points-to analysis is sound if every realizable points-to fact (i.e., points-to

fact occur at least once in execution of program) is computed by the analysis.

8



Clients: A client can be a program analysis, a program transformation or an application that

quires the points-to information to the alias analyzer.

eg. Clients can be various dataflow optimizations like, common subexpression elimination, copy

propagation and analysis like, live variable analysis, Mod/Ref analysis [4], program slicing.

In short a client to points-to analysis X1 could be another points-to analysis X2 which could

make use of the information from X1 to improve precision.

Scalar, Non-Scalar variable: A Scalar variable is a variable of basic type. eg. int, int*,

char

A Non Scalar variable is a variable of an aggregate type. eg. array and structure

Intra-procedural analysis: The Intra-procedural analysis processes each function in isolation

making conservative assumptions about the external environment (i.e., callers and callees)

Example 2.2: Consider following program statement,

main ( )

{
s1 : ptr2=&z ;

s2 : fun(&x ) ;

s3 : fun(&y ) ;

}
fun ( int ∗ptr1 )
{}
In the example 2.2 the intra-procedural analysis processes function main and fun in isolation,

i.e. it computes the points-to solution for the statement in each function by approximating the

effect of external function. Hence, for each pointer that receives points-to information from outside

a function through function argument it assumes that the points-to information contains all the

address taken variables in the program.

∴ Points-to information computed by intra-procedural analysis is,

ptr1: ptr1 → {x, y, z}
As observe from the example the intra-procedural analysis is imprecise. However, all pointers

that are accessed outside function have the same points-to information hence such pointers can be

merged to reduce total number of variable tracked. Therefore intra-procedural analysis scales on the

basis of program size.

Inter-procedural analysis: The inter-procedural analysis is more precise and it includes flow

of information from one function to another. Thus, function processed collectively (not in isolation)

but it keeps the information of all callers and callees. Caller and Callee represented using Callgraph.

Each node in Callgraph is a function and a call from one function to another is denoted by directed

edge. A cycle in a Callgraph denotes the recursion.

∴ Thus Points-to information computed by inter-procedural analysis for example 2.2 is,

ptr1: ptr1 → {x, y}
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As analysis merged the information coming from two calls to fun and excluded the other address-

taken variable for ptr1.

2.2 LLVM

The LLVM[2] is a modern open source compiler infrastructure implemented in C++ and designed

as a set of reusable library with well defined interfaces. LLVM is a acronym for Low Level Virtual

Machine. It is designed for link time, run time and compile time optimization of programs written in

programming language. It has many supported front ends or languages such as C, C++, objective-C,

Ruby, Python and many more. Also, it supports many CPU architecture in back-end such as ARM,

Alpha, Intel x86, MIPS, PowerPC and SPARC. The LLVM is the framework which is separated in

compilation process in frontend or analysis and transformation or backend.

2.3 Analysis Dimensions

The accuracy of a program analysis depends upon how it models an input program’s data and

control-flow. For modeling, we have some key concepts such as flow-sensitivity, field-sensitivity, and

context-sensitivity this is known as analysis dimensions [9] 2.3. Although these dimensions are also

applicable to other program analyses and transformations, we explain these in the context of pointer

analysis.

2.3.1 Context-sensitivity

A context-sensitive analysis is an inter-procedural analysis. It distinguishes between different calling

context in which a function can be called.

A context-insensitive analysis on the other hand does not differentiate between calling contexts

of the analyzed function. Context-insensitive analysis allows values to flow from one call through

function to return to another caller.

Example 2.3: Consider the program given below,

main ( )

{
s1 : ptr2=&z ;

s2 : fun(&x ) ;

s3 : fun(&y ) ;

}
fun ( int ∗ptr1 )
{}
A context sensitive analysis distinguish between the two calls to function fun from function main

and computes a different points-to information for pointer ptr1 across each context,

ptr1 → x along s2,

ptr1 → y along s3.
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2.3.2 Flow-sensitivity

A flow sensitive analysis considers the control flow in the program while computing solution i.e., it

differentiates between different program points. Flow sensitive analysis computes points-to set for

pointers at each program points hence it is more precise than flow insensitive analysis.

On the other hand flow insensitive analysis ignores the control flow in program and assumes that

any basic block can be reached from any other basic block. Flow insensitive analysis computes single

points-to set for the entire program. It process all the program statements repeatedly in a sequential

order this makes analysis more efficient than flow sensitive analysis.

Example 2.4: Consider the following program, statement s1 and s2 denotes the program points.

s1 : a=&x;

s2 : a=&y;

Points-to information for the example 2.4:

using flow-sensitive analysis:

at s1 a → x,

at s2 a → y

using flow-insensitive analysis:

a → {x, y}

2.3.3 Field-sensitivity

Field sensitive analysis give how to modeled the aggregates. In aggregate we consider struct, union,

and array. Field sensitivity keeps track of individual members of an aggregate data type i.e., it

treats each field of an each aggregate separately [10].

Field insensitive analysis considers all members of the aggregate to be one.

Field based analysis modeled each field of an aggregate type separately and never distinguish

between different field instances for different aggregate variable of same type [10].

Example 2.5: Consider following program, where p and q are the aggregate of same type T

p.f1 = &x;

q.f1 = &y;

p.f2 = &z;

field-sensitive analysis computes: p.f1 → x, q.f1 → y, p.f2 → z

field-insensitive analysis computes: p → {x, z}, q → y

field-based analysis computes: T.f1 → {x, y}, T.f2 → z

2.4 Alias analysis as a graph problem

The inclusion-based analysis proposed by Andersen [5] iteratively computes the points-to solution

by using points-to constraints. However, iteratively going through all the points-to constraints is

not the most efficient way to compute the fixed points-to set of an inclusion based analysis. The

inclusion based analysis can be solved by using constraint graph (proposed by Fahndrich et. al. [11]).

The constraint graph gives a graphical representation to the points-to analysis problem and enable

its structural properties to optimize the analysis.
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Figure 2.1: Constraint graph for example 2.6

Example 2.6: Consider the program statements,

a = &x;

b = &y;

p = &a;

b = ∗p;
The Constraint graph G is a directed graph where each node represents a pointer and each

directed edge u → v represents the subset (or inclusion) relationship. Each node also maintains

its points-to set which gets updated as points-to information (flows along its incoming edges and

propagated along the outgoing edges). A constraint graph is not static and new edges get added to

it as complex constraints are evaluated, when no more edges can be added and no more points-to

information can be propagated a fixed point of points-to information is computed at the node in

graph.

The constraint graph given in the Figure shows the graph example. The graph contains three

nodes corresponding to each pointer a, b, p each node is associated with its points-to information

as shown in graph from Example 2.6 by curly-braces. A directed edge from a to b indicates the flow

of points-to information from a to b edge is added due to processing of the load constraint b = ∗p.
A points-to analysis using constraint graph is shown in algorithm 1

Algorithm 1 Points-to analysis using constraint graph

1. Initialize set C of points-to constraints

2. Process address− of constraints

3. add edge to constraint graph G using copy constraints

4. repeat

5. Propagate points-to information in G

6. Add edges to G using load and store constraints

7. do until fixed point reach

Here we have to note that, a naive analysis using a constraint graph does not give any additional

benefits over the iterative Andersen analysis. To make analysis efficient using constraint graph

the structure of constraint graph need to be changed. This is done using two methods, first by

dynamically collapsing cycles in a graph and second propagating points-to information in topological

12



Figure 2.2: Constraint graph for example 2.7

order.

Example 2.7: Consider the following set of points-to constraint,

a = &x;

b = &y;

p = &a;

b = ∗p;
a = b;

Final points-to information using constraint graph shown in Figure 2.2,

a → {x, y},
b → {x, y},
p → {a}

2.5 Chapter Summary

In this chapter we have studied the background needed to understand the rest of the thesis. We

defined various terms necessary to understand the alias analysis. Next, we have discussed analysis

dimensions who affect the precision. Finally, we presented alias analysis as a graph constraint

problem.
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Chapter 3

A Survey of Alias Analysis

Methods

In this chapter we present the survey of alias analysis methods. In this, we will try to cover most

interesting and important work on alias analysis. Typically, a survey contains a broader perspective

than individual algorithms and although it may not add a new innovation to the area, it helps in

understanding the higher level picture of the area.

We divide the survey in Five categories. Also, we try to cover related work into this category

instead of separate section.

1. Existing Surveys of Alias Analysis

2. Two key Points-to analysis methods

3. Algorithms which uses inclusion-based approach

4. Applications of alias analysis

5. Points-to analysis for other languages

3.1 Existing Surveys of Alias Analysis

In this section we discuss the various algorithms who give an idea about higher level picture of the

area in the form of trends, pitfalls and lessons.

To understand the overview of alias analysis we have tabulated all the possible alias analysis

algorithms on the basis on analysis and type, as shown in Table 3.1

Hind and Pioli’s [4] survey on alias analysis is the most cited survey. In this, they have mentioned

several dimensions which affect the trade-off between precision and scalability. The survey discusses

various dimensions like flow-sensitivity, context-sensitivity, heap modeling (it tells how allocation

sites are modeled). Also, it gives various issues like metrics of precision and reproducibility of

results. Finally, it gives several directions for future research.

Rayside [12] given a summary of various important aspects of pointer analysis. He classifies

several analysis on the basis of context-sensitivity and flow-sensitivity. In future direction he mention

demand-driven analysis, incremental analysis and handling incomplete program.
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Wu [13] presents a survey of pointer analysis. In this, he discussed various kinds of flow graphs

used in literature, namely, context-sensitive call graph, inter-procedural control flow graph, proce-

dural call graph. He also mentions abstract data representation used to model variables inaccessible

to a procedure. Further, he mentions various approaches used to model recursive data structure

such as 1-level, K-limiting, beyond K-limiting using symbolic access paths.

Ryder [14] given various approaches to reference analysis for object oriented programming based

on analysis dimensions. The analysis dimensions are, field-sensitivity, flow-sensitivity, program rep-

resentation, context-sensitivity and object representation. Further, author discussed various open

issues in the context of object oriented languages, reflections, methods, exceptions, dynamic class

loading and incomplete programs.

Raman [15] presents three methods, Unification based analysis, Pointer analysis using BDD and

application of pointer analysis in bug detection.
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3.2 Two Key Points-to Analysis Methods

In this section we present two important pointer analysis algorithms which compute approximate

points-to information. One of them is Andersen’s analysis, is based on set inclusion. It gives a

relatively higher precision, but has a higher running time. The other algorithm is Steensgaard,

is based on unification. It runs in almost linear time, but has relatively lower precision. Several

points-to analysis algorithms available are variants of one of these two algorithms. Therefore, these

algorithms are important. Both the algorithms are flow-insensitive.

3.2.1 Andersen Alias Analysis

The Andersen analysis [5]is a subset-based, flow-insensitive, context-insensitive, field-insensitive alias

analysis, and implemented for inter-procedural alias analysis hence, widely believed it as a fairly

precise.

Andersen [5] computes a single points-to set for each pointer, for the entire program. Let pts(p)

denote the points-to set of a pointer p. Then, the goal of analysis is to compute ∀p:pts(p). It processes
each statement in the program to update the points-to sets of one or more pointers or objects as

shown in Table 3.2. Since the analysis is flow-insensitive, there is no specific order in which the

statements need to be processed. All statements are processed until a fixed point, i.e., the analysis

stop when none of the points-to sets change. The order in which statements are processed does not

change the points-to sets computed. There are four kinds of statements: address-of, copy, load and

store. Load and Store statements are collectively called complex statements.

Table 3.2: Updating points-to sets (adapted from Rupesh Nasre [16])

Type of Statement Statement Update Explanation

Address-of x=&a {a} ⊆ pts (x) pts(x),is updated to include,a

Copy x=y pts(y) ⊆ pts (x) pts(x),is updated to include,pts(y)

Load x=*y ∀a ∈ pts (y) , pts(a) ⊆ pts (x) For each,a,that,y,may point to,,pts(x),is updated to include,pts(a)

Store *x=y ∀b ∈ pts (x) , pts(y) ⊆ pts (b) For each,b,that,x,may point to,,pts(b),is updated to include,pts(y)

Andersen inclusion-based analysis works by converting each of the four statements into a set-

constraint as shown in Table 3.2. Thus, a statement of the form LHS = RHS is handled by adding

set-constraint RHS⊆ LHS i.e., the points-to set of RHS is subset of LHS. Obtaining such a set

of n constrains, its solution can then be obtained using a constraint solver in O(n3) time [10]. The

constraint solver iteratively processes the set of constraints and updates the points-to set until a

fixed-point.

Example 3.1: Consider following program statement,

a = &x;

b = &y;

p = &a;

b = ∗p;
The points-to information computed for the above example using Andersen’s analysis is,

a → {x},
b → {x, y},
b → {a}
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3.2.2 Steensgaard Alias Analysis

Steensgaard’s unification-based analysis [6] employs the bidirectional similarity to merge the points-

to sets of LHS and RHS for a statementLHS = RHS. In unification based pointer analysis every

pointer has a single points-to edge. Thus, if a pointer points-to multiple pointees, all those pointee

are merged into the same set. In Andersen analysis multiple points-to edges per pointer are maintain

and, therefore, In Andersen analysis [5] it is possible that two pointers may have a comman pointee,

but different points-to sets, which is not true in Steensgaard’s analysis [6].

An alternative way of looking at unification is from the perspective of the aliasing relation.

Aliasing is a reflexive and symmetric relation but, it is not transitive [16], i.e., if pointers p and q

are aliases and pointers q and r are aliases, then p and r need not always alias with each other.

For instance, if p → {a} , q −→ {a, b} , r → {b} then p aliases with q and q aliases with r, but

p does not alias with r. This property is maintained by Andersen’s analysis (using the multiple

points-to edges per pointer). However, due to a single points-to edge, Steensgaard’s analysis [6]

conservatively adds transitivity to the aliases represented. Since the relation represented is reflexive,

symmetric and transitive, it becomes an equivalence relation forming partitions of alias-sets. Thus,

each pointer in an alias-set aliases with all the pointers in the set and does not alias with any pointer

outside the alias-set. Due to this key property, alias-sets can be very efficiently implemented using

a union-find data structure [17]. In fact, Steensgaard’s analysis runs in time O(mα(m)) where, m

is the number of constraints and α(m) is the inverse Ackermann’s function [17] , which is a small

constant. Thus, Steensgaard’s analysis scales almost linearly with the program size. But due to

transitive aliasing, it has significantly less precision compared to Andersen’s analysis.

Example 3.2: Consider following program statement,

a = &x;

b = &y;

p = &a;

b = ∗p;
The points-to solution obtained using unification is,

a → {x, y},
b → {x, y},
p → {a}

3.3 Algorithms which uses inclusion-based approach

This section discussed the work which uses the inclusion-based analysis.

Andersen [5] introduced the inclusion based points-to analysis. It is context-insensitive and

flow-insensitive points-to analysis that approximates the points-to information based on inclusion

of points-to sets. Andersen analysis adds the set inclusion constraints. In set inclusion, A pointer

assignment p = q it adds the points-to information of q into that of p. Achieving p ⊇ q which is

set inclusion constraint. Finally, it solves those constraints to achieve a fixed point, which is sound

approximates to the points-to information.

Hind et al. [18] propose an approximation algorithm for inter-procedural alias analysis. They also

propose a method that constructs a program call graph during alias analysis for function pointer
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analysis. Most important finding is that, flow-insensitive analysis with kill information does not

improve precision over without kill information.

Cheng and Mei [19] propose a modular inter-procedural pointer analysis based on access paths

for pointers.

Yong et al. [20] given a points-to analysis to handle type casting and structure. They observe

that supporting field-sensitivity can improve the analysis precision.

Pearce et al. [10] propose a field-sensitive points-to analysis for modeling aggregate and function

pointers. They observe that field-sensitive analysis is more expensive to compute, but more precise

over a field-insensitive analysis.

Lattner et al. [8] Propose a heap cloning based context sensitive points-to analysis to achieve a

scalable implementation they are using a unification based analysis and flow-insensitive and left the

context-sensitive analysis within strongly connected component.

Fahndrich et al. [11] given a context sensitive flow analysis using instantiation constraint. They

show that flow information can be computed efficiently considering only well defined call-return

sequence path even for higher order program.

Whaley and Lam [7] use Heintze and Tardieus [21]points-to analysis and Cheng and mei’s [19]

access path to develop an efficient reference analysis for JAVA. They shown the effectiveness of

their field sensitive and intra-procedural method by computing static call graph for very large JAVA

program.

Hardekopf and Lin [22] propose a semi sparse flow sensitive analysis for strong update handling.

They convert top-level variables (or non address taken) to static single assignment (SSA) to improve

analysis.

3.4 Applications of Alias Analysis

Alias analysis is not an optimization itself, it required a client to use the computed points-to in-

formation for performing optimizations over the program, In this section we will see various clients

which make use of alias analysis.

1. The extended form of SSA called IPSSA given by Livshits and Lam [23] tracks the pointer and

use it for format string violation and finding buffer overrun in C program.

2. A call-graph construction given by Milanova et al. [24] uses pointer information.

3. Wu et al. [25] propose an element-wise points-to mapping for loop based dependence analysis.

An element-wise points-to mapping summaries the relation between a pointer and heap object

it points to for every instance of the pointer inside a loop. They mention that, element-

wise points-to information can significantly improve the precision of loop-based dependence

analysis.

4. To detect security vulnerability in C program Avots et al. [26] use a field-sensitive, context-

sensitive points-to analysis.

5. The dynamic points-to information is used by Mock et al. [27] to improve the precision of

static slicing in C.
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6. The use of pointer information to develop a shape analysis for C programs is given by Ghiya

and Hendren [28].

7. Tonella et al. [29] use flow-insensitive and context-insensitive points-to analysis for C++ to

reaching definitions analysis and slicing.

8. The use client-driven pointer analysis for C programs to several error detection problems Guyer

and Lin [30].

9. More Clients which uses pointer analysis are, Mod/Ref analysis, live variable analysis, reaching

definitions analysis, conditional constant propagation and dead code elimination Hind and

Pioli [4].

3.5 Alias Analysis for other languages

In this section we will cover various Alias analysis (or Points-to) algorithms for other languages such

as Python [31], JavaScript [32], JAVA [33].

The commonly alias analysis is used for C and C++ but its also developed for JAVA. Since

pointers in JAVA are known as references hence, the analysis is termed as reference analysis. some

of the work which are done for JAVA is given below, Whaley and Lam [7] and Berndl et al. [34] who

propose variants of points-to analysis algorithm using BDD for JAVA. Sridharan et al. [35] propose

a demand-driven analysis for JAVA. Also, they build upon their previous work to propose a client

driven context sensitive points-to analysis.Sun et al. [36] present a probabilistic points-to analysis

for object oriented programs. Lhotak and Hendren [37]present a framework of BDD based context

sensitive points-to analysis.

Tonella et al. [29] propose a context-insensitive and flow-insensitive points-to analysis for C++,

Which handles various object oriented features.

The JavaScript [32] has dynamic features such as runtime modification of object. Jang and

Choe [38] propose the first points-to analysis for JavaScript. Their analysis can identify the use of

structure field, to improve precision over a traditional Andersen analysis.

Gorbovitski et al. [39] propose alias analysis for a dynamic object oriented language for program

optimization by incrementalization and specialization. They instantiate their work flow-sensitive

and context-sensitive analysis for Python [31].

3.6 Chapter Summary

In this chapter we discussed a survey of various alias analysis methods. We classified them in seven

categories and briefly discussed the work in each category.
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Chapter 4

Implementation of Andersen Alias

Analysis in LLVM

In this chapter we present Andersen alias analysis implementation details in LLVM. The section 4.1

gives the idea of Andersen analysis like what and why Andersen analysis is important. In next

section we have explained flow of Andersen code base. Finally, we have given summary of chapter.

4.1 What and Why of Andersen Alias Analysis

What is Andersen Alias Analysis

Andersen’s algorithm is a famous pointer-analysis algorithm proposed in L.O. Andersen’s 1994 Ph.D

thesis. The core idea of his algorithm is to translate the input program with statements of the form

p = q to constraints of the form “q’s points-to set is a subset of p’s points-to set”, hence it is

sometimes also referred to as inclusion based algorithm. The analysis is flow insensitive and context

insensitive, meaning that it just completely ignores the control-flows in the input program and

considers that all statements can be executed in arbitrary order.

Why Andersen Alias Analysis is important

In this implementation, we are reusing the existing code base from LLVM 2.6 by staying in the

same inclusion based analysis framework. Because of its high-precision as a flow insensitive pointer

analysis, Andersen’s analysis has been deployed in some modern optimizing compilers.

Andersen’s analysis is more precise than Steensgaard’s unification based analysis. In most of the

modern compilers pointer analysis is no longer unification based, but rather inclusion based and the

overall pointer analysis framework remains context insensitive. These properties are important, and

widely used by industrial-strength implementation available.
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4.2 Alias Analysis in LLVM

The LLVM AliasAnalysis class [40] is the primary interface used by clients and implementations

of alias analyses in the LLVM system. This class is the common interface between clients of alias

analysis information and the implementations providing it, and is designed to support a wide range

of implementations and clients (but currently all clients are assumed to be flow-insensitive). In

addition to simple alias analysis information, this class exposes Mod/Ref (Modified/Referenced)

information from those implementations which can provide it, allowing for powerful analyses and

transformations to work well together.

4.2.1 Alias Analysis Class Overview in LLVM:

The AliasAnalysis class defines the interface that the various alias analysis implementations should

support. This class exports two important enums: AliasResult and ModeRefResult which represent

the result of an alias query or a mod/ref query, respectively.

Methods in AliasAnalysis Class:

The alias method

The alias method is the primary interface used to determine whether or not two memory objects alias

each other. It takes two memory objects as input and returns MustAlias, PartialAlias, MayAlias,

or NoAlias as appropriate.

The getModRefInfo methods

The getModRefInfo methods return information about whether the execution of an instruction can

read or modify a memory location. Mod/Ref information is always conservative: if an instruc-

tion might read or write a location, ModRef is returned. The AliasAnalysis class also provides a

getModRefInfo method for testing dependencies between function calls.

Other useful AliasAnalysis methods

• The pointsToConstantMemory method: This method returns true if pointer only points to

unchanging memory locations (functions, constant global variables, null pointer).

• The doesNotAccessMemory method: This method check whether function reads or writes to

memory. If it never read/write to memory then it returns true.

• The onlyReadsMemory method: This method returns true for a function if analysis can prove

that the function only reads from non-volatile memory.

4.2.2 Existing alias analysis implementations and clients in LLVM:

Available AliasAnalysis

• The -no-aa pass: An alias analysis that never returns any useful information. this pass can

be useful if you think that alias analysis is doing something wrong and are trying to narrow

down a problem.
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• The -basicaa pass: This pass is an aggressive local analysis that knows many important facts.

such as different fields of a structure do not alias.

• The -globalsmodref-aa pass: This pass implements a simple context-sensitive mod/ref and

alias analysis for global variables.

• The -scev-aa pass: This pass implements AliasAnalysis queries by translating them into

ScalarEvolution queries.

Available Clients for AliasAnalysis

• The -print-alias-sets pass: This pass is use to print out the Alias Sets.

• The -count-aa pass: This pass is useful to see how many queries a particular pass is making

and what responses are returned by the alias analysis.

• The -aa-eval pass: This pass simply iterates through all pairs of pointers in a function and

ask an alias analysis whether or not the pointer alias. This gives an indication of the precision

of the alias analysis.

• Memory Dependence Analysis: This is able to answer what preceding memory operations a

given instruction depends on, either at an Intra or Inter-block level.

4.3 Flow of Andersen Alias Analysis code base in LLVM

This project is an implementation of Andersen’s analysis in LLVM. The entire algorithm is broken

down into three phases:

• Phase 1 Translating from input LLVM IR into a set of constraints:

– Here we treat struct in LLVM-IR field insensitive. This will yield worse result, but the

analysis efficiency and correctness can be more easily guaranteed.

• Phase 2 Rewriting the constraints into a smaller set of constraints whose solution should be

the same as the original set:

– In this two constraint optimization techniques called HVN and HU are used. The basic

idea is to search for pointers that have equivalent points-to set and merge together their

representation. Details can be found in Ben Hardekopf’s [41].

• Phase 3 Solving the optimized constraints:

– Two constraints solving techniques called HCD and LCD are used. The basic idea is to

search for strongly connected components in constraint graph. Details can be found in

Ben Hardekopf’s [42].
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Implementation details:

This algorithm is implemented as four stages:

1. Object identification.

2. Inclusion constraint identification.

3. Offline constraint graph optimization.

4. Inclusion constraint solving.

Object identification: The object identification stage identifies all of the memory objects in the

program, which includes globals, heap allocated objects, and stack allocated objects.

Inclusion constraint identification: The inclusion constraint identification stage finds all in-

clusion constraints in the program by scanning the program, looking for pointer assignments and

other statements that affect the points-to graph. For a statement like “A = B” , this statement

is processed to indicate that A can point to anything that B can point to. Constraint can handle

copies, loads, store and address taking.

Offline constraint graph optimization: The offline constraint graph optimization portion in-

cludes “offline variable substitution algorithm” intended to compute pointer and location equiva-

lences.

Pointer equivalences are those pointers that will have the same points-to sets, and location

equivalences are those variables that always appear together in points-to sets. It also includes an

Offline cycle detection algorithm that allows cycles to be collapsed sooner during solving.

Inclusion constraint solving: The inclusion constraint solving phase iteratively propagates the

inclusion constraint until a fixed point is reached. This is an O(N3) algorithm.

Function constraints: Function constraints are handled as if they were structs with X fields.

Thus, access to argument X of function Y is access to node index getNode(Y ) + X. This repre-

sentation allows handling of indirect calls without any issues. To which, an indirect call Y(a,b) is

equivalent to ∗(Y + 1) = a, ∗(Y + 2) = b. The return node for a function is always located at

getNode(F ) + CallReturnPos. The arguments start at getNode(F ) + CallArgPos.

4.4 Chapter Summary

In this chapter we have given detail information about Andersen alias analysis in LLVM. This

includes Flow and implementation details of Andersen alias analysis in LLVM.
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Chapter 5

Improvement in Andersen Alias

Analysis in LLVM

This is the most important chapter in our thesis. In this, we have explained all major changes in the

section 5.1 here, we have covered required changes with respective to the version of LLVM. Further,

we have mentioned newly added functionality in latest version of Andersen analysis in section 5.2.

Finally, we have concluded the chapter in summary section.

5.1 Changes for different LLVM versions

The basic idea taken from LLVM 2.6 code base, which is remain same, but we have to make it

convenient for latest versions of LLVM. Hence, we have added some of the improved techniques who

made it more useful and scalable.

LLVM 2.6:

As mentioned in LLVM 2.6 the Andersen alias analysis [5] was available as a pass, they mentioned

that it is implemented for inter-procedural alias analysis. Also, it is a subset-based, flow-insensitive,

context-insensitive, and field-insensitive alias analysis that is widely believed fairly precise. Unfor-

tunately, this algorithm is also O(N3). The LLVM 2.6 implementation does not implement any

of the refinements (such as offline variable substitution or online cycle elimination) to improve its

efficiency, so it can be quite slow in common cases.

Considering the flaws in LLVM 2.6 Andersen analysis, one of the Texas Ph.D student named

Jia Chen has added Online Cycle Elimination and Offline Variable substitution functionality to

Andersen [5], but still his implementation lack’s several things such as External library functions,

Exception handling, Mod/Ref, Extract and Insert value, and test cases required for algorithm also,

his implementation is not compatible with latest versions of LLVM. We have added mentioned

functionality in the Andersen.
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LLVM 3.4:

In LLVM 3.4 we have isolated and added important functions as a separate files which make it easier

to understand and improve. In this following are the major phases which we have made in separate

files.

1. Constraint Collect: In this, we scan the program, adding a constraint to the constraints

list for each instruction in the program that induces a constraint, and setting up the initial

points-to graph.

2. Constraint Optimization: In this two constraint optimization techniques called HVN and

HU are used.

3. Cycle Detector: Any concrete class that does cycle detection should inherit from this class,

specify the Graph Type, and implement all the abstract virtual functions. Also, it offers

functionality of detecting strongly connected components (SCC) in a graph.

4. Constraint Solving: In this, we iteratively processes the constraints list propagating con-

straints (adding edges to the Nodes in the points-to graph) until a fixed point is reached. We

use a variant of the technique called Lazy Cycle Detection which is described in the Hard-

ekopf’s paper [42]. The paper describes performing cycle detection one node at a time, which

can be expensive if there are no cycles, but there are long chains of nodes that it heuristically

believes are cycles (because it will DFS from each node without state from previous nodes).

Instead, we use the heuristic to build a worklist of nodes to check, then cycle detect them all

at the same time to do this more cheaply. This catches cycles slightly later than the original

technique did, but does it make significantly cheaper.

5. External Library: We have included external library call identification in this implementa-

tion.

LLVM 3.6:

We have made many change to move to LLVM 3.6 among them two major changes due to change

in LLVM version are given as follows:

1. We have to change some code from ConstraintOptimize.cpp as LLVM 3.6 has changed error

message format in file include/llvm-3.6/Support/ToolOutputFile.h

2. Another major change in AndersenTest.cpp at line 134 to 145, which is due to change in

LLVM-3.6 file llvm-3.6/unittests/Analysis/CFGTest.cpp

LLVM 3.7:

• In LLVM 3.7 the major changes are in DataLayout as in this version LLVM made DataLayout

as mandatory part of LLVM framework. For more information please refer LLVM DataLay-

out [43].

• Also, in LLVM 3.7 we have to change location of PassManger.h as it is moved to llvm-

3.7/IR/PassManager.h
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Because of above changes in LLVM 3.7 we have to modify following files in our implementation:

1. AndersenAA.cpp

2. Andersen.cpp

3. AndersenTest.cpp

4. ConstraintCollect.cpp

5.2 Latest Included Modules in Andersen AA

Andersen [5] Implementation available for LLVM 2.6 is buggy and lacks many functionalities which

make the code impractical to find out alias pairs efficiently. Hence, to make the implementation

powerful and efficient we have added following major parts into the Andersen implementation.

Second important part of our implementation is, it is supported by all latest LLVM versions such

as LLVM 3.4, LLVM 3.5, LLVM 3.6 and LLVM 3.7 Hence, it will be useful to all those who are

working on alias analysis and want to study Andersen Alias analysis.

1. External Library functions

2. Mod/Ref method

3. Atomic instruction handling

4. Exception Handling (Landingpad)

5. Including functionality of Extract value and Insert value instruction

6. Added Extra Test cases

External Library Functions

What is External Library Functions:

In this, we have added more than 250 external library functions which are useful for instruction to

look through and analyze the functions for possible pointers.

What we have added:

In this, we have added more than 250 external library functions which are useful for instruction to

look through and analyze the functions for possible pointers.

Mod/Ref Method

What is Mod/Ref:

The Mod/Ref method returns information about an instruction execution whether it can read or

modify a memory location. Mod/Ref information is always conservative if an action may read a

location.
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Mod/Ref also use for testing dependencies between function calls. Like in LLVM method get-

ModRefInfo who takes two callsites cs1and cs2 returns,

noModRef if neither call writes to memory read or written by other.

Ref if cs1 reads memory written by cs2.

Mod if cs1 writes to memory read or written by cs2.

ModRef if cs1 might read or write memory written by cs2.

What we have added:

Added Mod/Ref code.

Atomic Instruction

What is Atomic Instruction:

In general atomic operations are useful to use multiple threads to correctly manipulate an object

without using mutex lock. To be able to write correct concurrent programs atomic instruction are

needed. Atomic instructions are designed to provide readable IR and optimize code generation.

LLVM has various atomic instructions which are Load and Store instructions LLVM offers a set of

different atomic orderings for these instructions.

LLVM atomic instructions:

load atomic obtains value from atomic object.

store atomic replaces value of an atomic object.

atomicrmw replaces value of an atomic object and obtain the previous value. This instruction

is used to automatically modify memory.

atomicmpxchg replaces value of an atomic object and obtains the previous value if equal

otherwise performs atomic load. This instruction loads a value in memory and compare it to a given

value if they are equal it tries to store a new value into the memory.

What we have added:

Both atomicrmw and atomicmpxchg code added.

Exception Handling (Landingpad)

What is Exception Handling:

In Exception handling most commonly used technique is “zero cost exception handling”. To support

exception handling one must change the semantics of a function call and this call fork the execution

flow. One branch is taken when everything is fine and second branch is taken in case of an exception.

In LLVM IR there is invoke instruction to call functions that may throw. When second branch is

taken several kinds of actions may be performed

• call destructor (cleanup)

• continue stack unwinding (resume)

• enforce throw specifications (filter)
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• restore normal control flow (catch)

Hence, LandingPad instruction will use to perform these actions. In LandingPad all data like

personality routine, catched types, throw specifications and cleanup actions are already specified so,

no additional data should passed to the backend to generate exception related information in object

file.

The LandingPad instruction is used by LLVM exception handling system to specify that basic

block is a landingpad (one where the exception lands) and corresponding to the code found in the

catch portion of a try/catch sequence. It defines value supplied by the personality function upon

re-entry to the function. The result value has the type resultty.

What we have added:

We have added Landingpad code which is available in cfl-aa analysis implementation.

Extract value and Insert value instruction

What is Extract Value:

LLVM support several instructions for working with aggregate values. Aggregate types are subset

of derived types that contain multiple member types. arrays and structures are aggregate types.

Extract Value:

The Extract Value instruction extracts the value of a member field from a aggregate value.

Syntax:

< result >= extractvalue < aggregatetype >< val >,< idx > {, < idx >} ∗
The result is the value of the position in the aggregate specified by the index operands.

eg:

< result >= extractvalue {i32, f loat} %agg, 0 ; yields i32

What we have added:

Added extract value code.

What is Insert Value:

Insert Value:

The Insert Value instruction inserts a value into the member field in an aggregate value.

Syntax:

< result >= insertvalue < aggregatetype >< val >,< ty >< elt >,< idx >

{, < idx >} ∗; yields < aggregatetype >
The result is an aggregate of the same type as val. Its value is that of val except that the value

at the position specified by the indices’s is that of “elt”.

eg:

agg1 = insertvalue {i32, f loat} undef, i32 1, 0; yields {i32 1, f loat undef}
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What we have added:

Added Insert value code.

Added Extra Test cases

What is Extra Test Cases:

The extra Test cases are added to the Andersen implementation, which contains all test cases

available from LLVM unittest test cases. The result for all these test cases are passed by our

Andersen algorithm.

What we have added:

Added Extra test cases from LLVM test cases for analysis.

5.3 Experimental Result Analysis

We present results and analysis for two set of programs one of them contain 17 test programs which

are the loops from the GCC [1] vectorizer example given by Dorit Nuzman [44] and another one

contains 8 C/C++ programs.

The results shown in the Figure 1, 2 and 3 are the graph showing percent of May, No, and Must

aliases return by the alias analysis algorithms i.e., andersen, basicaa, and cfl-aa. In alias analysis

algorithm we used alias method which gives whether two memory object alias to each other or not

and returns May alias, No alias, Must alias or Partial alias. For more details please see section 2.1.

We have given results for Eight common programs which contains external function call, exception

handling, extract and insert value instruction. Mentioned examples are taken to test the added

functionality in our Andersen algorithm. Like in example 1 we have external function call, named,

get time and put time which is useful to test added external function in Andersen analysis same

about the remaining examples each of them are taken to test specific functionality which is included

in our implementation.

In Figure 5.1, we have shown the percentage of No alias response tracked by all three algorithms

such as basicaa, cfl-aa and Andersen. In the graph all three algorithms are tested under all examples

in this, the results shown by cfl-aa are the best among the reaming two algorithms as the response

return by algorithm is not able to find out exact alias set. If we compare our algorithm with basicaa

algorithm from LLVM which is assume to be most close analysis algorithm we can say our algorithm

is as efficient as basicaa.

In Figure 5.2, we have given percentage of May alias response generated by all three algorithms

such as basicaa, cfl-aa and andersen. As described on the LLVM alias analysis page [40], “A more

precise alias analysis algorithm will have a lower number of may aliases”. Our algorithm shows

less number of aliases as compared to cfl-aa and it is nearer to basicaa. Which indicates that our

algorithm is more precise than cfl-aa and equal to basicaa.
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Figure 5.1: No Alias Analysis

Figure 5.2: May Alias Analysis
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Figure 5.3: Must Alias Analysis

The Figure 5.3 graph shows the percentage alias response for Must alias. Here, our implemen-

tation shows the response same as basicaa algorithm. While cfl-aa gives very less Must alias result

which indicate that our analysis should check aliases throughly so that our points-to set should be

exact.
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Figure 5.4: Mod/Ref Information

Figure 5.4 mentions the Mod/Ref information which we already explain in section 5.2. In this

graph our implementation shows the average results compare to remaining two algorithms.

Improvement in vectorization due to alias analysis:

The vectorization example contains total 18 C/C++ test programs given by Dorit Nuzman [44].

The vectorizer test cases demonstrate the current vectorization capabilities. In this, we like to

mention the basic block vectorization aka SLP, which is enabled by the flag -ftree-slp-vectorize and

requires the same platform dependent flag as loop vectorization. The SLP is enabled by default

at -O3 optimization. SLP (Superword Level Parallelism) is a vectorization technique based on

loop unrolling and basic block vectorization. The examples included in vectorization are, gfortran,

unknown misalignment, multidimension arrays, data type of different sizes, summation reduction,

induction, double reduction, basic block SLP, basic block SLP with multiple types, etc.

In Figure 5.5, we have produced the results for vectorization examples with and without enabling

-O3 optimization. Here, while enabling -O3 option we assume that default alias analysis will call.

To demonstrate the effect of alias analysis on the client like vectorization we can see the promising

results in the graph.
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Figure 5.5: Improvement in vectorization due to Alias Analysis

Analysis of all three algorithms with vectorization examples:

As mention in the Figure 5.5, the vectorization examples show the optimization after applying

alias analysis. In Figure 5.6, we have shown results for vectorization examples after applying each

algorithm such as Andersen, basicaa and cfl-aa. In this, to produce the results we have enabled

optimization level three (-O3 ) for with optimization. While for results using Andersen, basicaa and

cfl-aa we have applied separate optimization option such as, for Andersen algorithm we have used

-fresh-andersen-aa option with optimizer tool opt-3.7. Also, for cfl-aa we have used -cfl-aa option

and for basicaa -basicaa option in LLVM.

The result shown for all three algorithms unable to give good results as compare to with opti-

mization option, the reason behind this, is we have used -O3 optimization which also contains other

optimizations. Our results are comparable and depict that analysis is nearly equal to basicaa and

in some cases cfl-aa.
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Figure 5.6: Time required for vectorization after applying fresh-andersen alias analysis

5.4 Chapter Summary

This chapter describes the actual improvement and changes in Andersen alias analysis for latest

version of LLVM. Further, In this section we have given some result graph who compare fresh-

andersen alias analysis with existing algorithms.
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Chapter 6

Conclusion and Future Work

Conclusion

In this thesis, we proposed approach to improve the scalability and effectiveness of Andersen alias

analysis. For that we have reused Andersen code base available in LLVM 2.6, to improve the scala-

bility and efficiency we have used online cycle detection and offline variable substitution methods in

Andersen analysis. Also, we have included some functionality such as, External functions, Exception

handling, Mod/Ref, Extract and Insert value, with more test cases, which make it more efficient.

In our experimental result analysis section we have given comparison between our improved algo-

rithm with basicaa and cfl-aa algorithms available in LLVM up to some extents. Andersen alias

analysis has been removed from LLVM since version 2.7 hence, our implementation will be useful

to the researcher who is interested in the alias analysis and want to understand the Andersen alias

analysis.

Future Work

In this section, we describe a few directions along which our work can be extended.

• Making Andersen alias analysis context sensitive: The Andersen alias analysis can be moved

to context sensitivity which will improve the scalability of the analysis and we can find out

more accurate points-to pairs.

• Making Andersen alias analysis scalable to large program: The current implementation of

Andersen alias analysis is not scalable to millions of lines of code. The main issue is we are not

able to summarize the side effects of procedure. If we are able to find out the way to do this

then, we can scale our algorithm to larger programs like millions of lines of code. The context

sensitive version of Andersen scalable to millions of lines of code can be deployable in modern

optimizing compilers to provide advanced optimization.
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