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Abstract

In this thesis, we present an abstract view of image quality assessment algorithms. Most of the

research in the area of image quality assessment is focused on the scenario where the end-user is a

human observer and therefore commonly known as perceptual image quality assessment. However,

we believe that we should extend the field of image quality assessment to the task specific scenario

where the end-user is not a human observer. The quality of image/video should be assessed based

on the end-system/user that we call task-based image quality assessment. In this thesis, we discuss

both perceptual image quality assessment and task-based image quality assessment with respect to

face recognition task.

In the case of perceptual image quality assessment, we present image quality assessment algo-

rithms in a full-reference setting and a no-reference setting. In both the settings, our algorithm

is inspired by the sparse representation of natural images in the human visual system (HVS). The

hypothesis behind the proposed method is that the properties of natural images that afford their

sparse representation are altered in the presence of distortion. We attempt to quantify this change

in sparsity and show that it is indeed a measure of the unnaturalness or distortion in an image.

We show that the proposed algorithms consistently correlate well with subjective scores over several

popular image databases.

In the case of task-specific image quality assessment, we present an image quality assessment

method that is aimed at the face recognition task. Face image Quality Assessment (FQA) plays

a key role in improving face recognition accuracy and increasing computational efficiency. In the

context of video, it is very common to acquire multiple face images of a single person. If one were to

use all the acquired face images for the recognition task, the computational load for Face Recognition

(FR) increases while recognition accuracy decreases due to outliers. This impediment necessitates

a strategy to optimally choose the good quality face images from the pool of images. To address

this, we propose two algorithms. One is based on the hypothesis that sparseness of the probe face

will be altered if the probe face is not similar to ideal face and the other is based on mimicking

the recognition capability of a given FR algorithm using a Convolutional Neural Network (CNN).

Preliminary results demonstrate that the proposed method is on par with the state-of-the-art FQA

methods in improving the performance of FR algorithms in a surveillance scenario.
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Chapter 1

Introduction

There is a massive and ubiquitous role of digital multimedia-based applications in our day-to-day

life ranging from medical diagnosis to security to entertainment. Often, this data passes through

different processing stages before it reaches the end-user/system. At each processing stage, data

is subjected to different distortions which degrades the quality. Hence, the efficient and reliable

evaluation of multimedia quality assessment has gained importance - especially given the massive

scale of multimedia data. Quality assessment is one of the basic and challenging problems in the field

of image and video processing as well as many practical applications, such as process evaluation,

bench marking of algorithms, optimization, testing and monitoring. The approach to evaluate

the quality of image/video is task dependent i.e., depends on end-user/system. There is extensive

research in the area of quality assessment which is largely focused on perceptual based quality since in

most of the cases end-users are human observers. In addition to perceptual image quality assessment,

I also worked on face quality assessment in the surveillance scenario where the end-user/end-system

is a face recognition algorithm.

Having understood the significance of quality assessment in various fields and the need to evaluate

the quality of image/video based on the end-user/system; the main contributions of my research

are in the areas of perception based quality assessment and face quality assessment in surveillance

settings. The approaches are briefly discussed in the following sections.
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1.1 Perceptual based quality assessment

The most accurate and reliable way for perception based quality assessment is through subjective

evaluations. But these evaluations depend on environmental settings, time of the day and evaluation,

utmost care needs to be taken that the ideal settings should not alter with time, proper representative

set of subjects has to be considered so that evaluations wont be biased. All these above factors have

made them expensive and time-consuming; therefore, these evaluations are highly impractical in real-

time settings. Hence, there is a necessity to design objective algorithms for estimating the quality

score of an image/video which needs to be highly correlated with the score given by average human

observer. The effectiveness of quality assessment algorithm is evaluated based on the correlation of

predicted scores with the subjective evaluations. When the correlation is high, algorithm is able to

mimic the average human observer with high probability. Based on the availability of reference image

which is considered to be pristine and distortion-free, image quality assessment (IQA) algorithms

are broadly classified into three categories viz., full-reference, reduced-reference, and no-reference

algorithms. In this work, I have primarily focused on the first and third categories.

1.1.1 Full Reference (FR) - IQA algorithm

Complete reference image of same scene is available and the quality of test image is evaluated with

respect to the reference image. The underlying principles of the state-of-the-art FR IQA algorithms

have ranged from attempting to model the physiology of the human visual system [1] to using

abstract notions from information theory [2]. An excellent exposition of these principles can be

found in [3]. The success of these varied principles leads one to believe that there could either be

several different approaches to solving the FR IQA problem or that these approaches are yet to

converge to the true solution. Recent works by Guha et. al. [4, 5, 6] provide yet another approach

to measuring image similarity that is based on sparse representations of natural images. This is a

promising approach given its close analogy with sparse representations in the human visual system

[7]. In this work, I used this approach to demonstrate the several useful properties to make it an

attractive FR IQA algorithm and will be discussed in detail in subsequent chapters.

1.1.2 Reduced Reference (RR) - IQA algorithm

Complete reference image is not available; however partial information like features of reference

image is available to evaluate the quality of test image.

2



1.1.3 No Reference (NR) - IQA algorithm

In most of the practical settings, the reference image is not available for quality assessment. Hence,

there is a need to evaluate the quality solely based on the test image. These algorithms generally

follow one or a combination of three approaches:

• Distortion-specific approaches: In this approach, algorithms quantify the distortions such as

blur[8], ringing effect [9], or blockiness [10] and evaluate the image accordingly.

• Training-based approaches: In this approach, the algorithm predicts the quality of an image

by training a model from the features extracted [11, 12].

• Natural scene statistics (NSS) approaches: These algorithms assume that undistorted/pristine

images occupy a small subspace of the space of all possible images and estimates the quality of

test image by calculating the distance between the test image and subspace of pristine images

[13].

In this work, I used a combination of the second and third approaches to predict the quality of

images. The proposed NR-IQA algorithm will be discussed in detail in subsequent chapters.

1.2 Face Quality Assessment in Surveillance Settings

In the past few decades, face recognition has received great attention not only due to its numerous

applications, including video surveillance, access control, entertainment and law enforcement but

also to understand the face recognition process in humans. Since face recognition is the natural way

of identification and verification, this field is rich with excellent literature [14, 15, 16]. In the last

two decades, various algorithms have been proposed for face recognition based on still images and

video sequences. However, in realistic scenarios, face recognition is limited by low quality images

and variation in pose, illumination, occlusion and expression in the acquired face image [15]. Such

problems are even more severe in surveillance systems where users may be uncooperative and the

environment is uncontrolled. Since poor quality images in the surveillance video sequences offer

very little information for face recognition, they not only increase the computational load because of

complex processes such as feature extraction and matching, but also reduce the recognition accuracy

because of outliers. Therefore, there is a need to develop an automated face quality assessment in

improving face recognition accuracy and the computational efficiency.

In the context of video, it is very common to acquire multiple shots of a single person. If we consider
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all the shots, computational complexity of face recognition algorithm increases while recognition

accuracy decreases due to outliers. So, we need a strategy to optimally choose the good quality

faces from the pool of shots in order to improve the performance of recognition algorithms.

The approach to choose good quality faces from video sequence will be discussed in detail in subse-

quent chapters.
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Chapter 2

Background Theory

2.1 Overview

In this chapter we provide the related theory used in this thesis. We first define the concept of sparse

representation, followed by the techniques used for obtaining sparse solution and dictionary learning.

The concept of sparse representation and dictionary learning is used in the work related to perceptual

quality assessment and face quality evaluation. Then, we define the concept of Convolutional Neural

Networks (CNN) that are used for face quality evaluation.

2.2 Sparse Representation of Signals

The objective of sparse representation of signals is to represent a signal with a few number of

representative elements. Using an overcomplete dictionary matrix D ∈ R
n×K that contains K

representative signal-atoms, a signal y ∈ R
n can be represented with linear combination of fewer

atoms.

The representation of y w.r.t dictionary may be exact y = Dx in a noiseless scenario [17]. But

in real-life situations, the representation can be approximated as ‖y −Dx‖p ≤ ǫ. The typical norms

used for measuring deviation are the lp norms where p varies from 1 to ∞ [18]. But in most of the

cases p is preferably considered as 2.

As D is overcomplete, there is a possibility of an infinite number of solutions to represent the

signal y and hence there is a need to set the constraints on solution set. To acquire a sparse

representation, the solution with fewest number of coefficient is certainly an appealing constraint on

solution set. This sparse representation is solution of either
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min
x

‖x‖0 subject to y = Dx (2.1)

or

min
x

‖x‖0 subject to ‖y −Dx‖2 ≤ ǫ (2.2)

where the operator ‖.‖0 counts the number of non-zero elements. A similar objective as mentioned

in (2.2) is alternately met by considering either

min
x

‖y −Dx‖2 subject to ‖x‖0 ≤ L (2.3)

or

min
x

1

2
‖y −Dx‖2 + λ‖x‖0 (2.4)

where the parameter L ≥ 1 controls the degree of sparsity and λ ≥ 0 balances the residual and

degree of sparsity.

In the following, we review the Orthogonal Matching Pursuit(OMP) algorithm [19] to solve for

approximate sparse solution and then K-SVD algorithm [20] for dictionary learning.

2.3 OMP algorithm for approximate sparse solution

Solving (2.1) and (2.2) is NP hard and computationally expensive. There are several algorithms

that have tried to approximate the objective function with alternatives and one such algorithm

is the OMP algorithm. It is a simple and effective approximation method among greedy pursuit

methods. It finds the locally optimum solution at each iteration by searching the basis that most

resembles a residual. Considering an overcomplete dictionary A and a compressible sample b, the

OMP algorithm is stated as follows:

Task: (P0) : minx‖x‖0 subject to Ax = b.

Parameters: We are given the matrix A, the vector b, and the error threshold ǫ0.

Initialization: Initialize k = 0, and set solution as x0 = 0, residual as r0 = b − Ax0 = b and

solution support as S0 = Support{x0} = 0

Main Iteration: Increment k by 1 and perform the following steps:

• Sweep: Compute the errors ǫ(j) = minzj‖ajzj − rk−1‖
2

2 for all j using the optimal choice

zj
∗ = aj

T rk−1/‖aj‖2
2
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• Update Support: Find a minimizer, j0 of ǫ(j) : ∀j /∈ Sk−1, ǫ(j0) < ǫ(j), and update

Sk = Sk−1 ∪ {j0}.

• Update Provisional Solution: Compute xk, the minimizer of ‖Ax− b‖2
2
subject to Support{x} =

Sk.

• Update Residual: Compute rk = b−Axk.

• Stopping Rule: Stop, if stopping criteria holds. Otherwise, apply another iteration.

Output:The proposed solution is xk obtained after k iterations.

Generally, there are two stopping criteria for the OMP algorithm. First, the iterative process is

performed for a fixed number of iterations. Second, the OMP algorithm stops when the bounded

noises are within the predefined thresholds (‖rk‖
2
< ǫ0).

2.4 K-SVD algorithm for dictionary learning

An overcomplete dictionary is used to approximate the given signal as a sparse signal. The types of

dictionary can be classified into analytic dictionary and learned dictionary. The atoms of analytic

dictionary is formulated analytically and is supported by optimally proofs and error rate bounds[21].

Examples of the analytic formulation include the Fast Fourier Transform (FFT) [22], the Discrete

Cosine Transform (DCT) [23] and the Gabor transform [24]. In contrast, the learned dictionary

tends to learn the dictionary from the given training data, which benefits from the finer adaptation

to the nature of the problem on hand. In general, learned dictionaries often demonstrate state-

of-the-art results in many of the applications[21]. In the past decade, a large volume of work

[25, 20] has been devoted to dictionary training methods focusing on l0 norm and l1 norm sparsity

measurements, which lead to the development of more efficient sparse coding algorithms[21]. Among

the dictionary training methods, the K-SVD algorithm[20], which takes its name from the Singular

Value Decomposition (SVD) process in the dictionary update stage, aims to train a dictionaryD with

a faster and more efficient algorithm. It first initialises a random dictionary D with l2 normalised

atoms and performs the iterative two-stage process until convergence is stated as follows:

Task: Find the best dictionary to represent the data samples {yi}, i = 1 to N as sparse compositions,

by solving

min
D,X

‖Y −DX‖
2
F subject to ∀i, ‖xi‖0 ≤ T0

Initialization: Set the dictionary matrix D(0) ∈ R
n×K with l2 normalized columns.

7



Repeat until convergence(stopping rule):

Step 1: Sparse Coding stage: Use any pursuit algorithm to compute the representation vectors

xi for each example yi,by approximating the solution of

minxi
‖yi −Dxi‖

2
2 subject to ‖xi‖0 ≤ T0

Step 2: Codebook Update Stage: For each column k = 1 to K in D,update it by

• Define the groups of examples that use this atom ωk = {i|1 ≤ i ≤ N, xk
T (i) 6= 0}.

• Compute the overall representation error matrix, Ek, by

Ek = Y −
∑

j 6=k

djx
j
T

• Restrict Ek by choosing only the columns corresponding to ωk,and obtain ER
k .

• Apply SVD decomposition ER
k = U∆V T . Choose the updated dictionary column dk to be the

first column of U. Update the coefficient vector xR
k to be the first column of V multiplied by

∆(1, 1).

Stopping Rule: Stop, if stopping criteria holds. Otherwise, apply another iteration.

2.5 Convolutional Neural Network (CNN)

A CNN comprises of one or more convolutional layers with subsampling layer as optional layer

(the purpose is to reduce the computational complexity) and then followed by standard multi-layer

neural network (NN) [26]. The architecture of a CNN is designed to take the advantage of the

two dimensional structure of an image. Also, a CNN is easier to train and have fewer parameters

compared to a fully connected NN with the same number of hidden units.

2.5.1 Architecture

A CNN consists of a number of convolutional and subsampling layers optionally followed by fully

connected layers. The input to a convolutional layer is a m × m × r image where m is the height

and width of the image and r is the number of channels. The convolutional layer will have k filters

of size n × n × q where n is smaller than the dimension of the image and q can either be the same

8



as the number of channels r or smaller and may vary for each kernel. The size of the filters gives

rise to the locally connected structure which are each convolved with the image to produce k feature

maps of size m− n+ 1. Each map is then subsampled typically with mean or max pooling. Either

before or after the subsampling layer an additive bias and sigmoidal nonlinearity is applied to each

feature map. The figure 2.1 illustrates a CNN consisting of convolutional and subsampling sublayers

followed by fully connected layers.

Figure 2.1: Architecture of CNN.

A CNN typically has three types of layers as defined above. The forward and backward propa-

gations differs depending on what layer data is propagating through.

2.5.2 Forward Propagation

The output of a neural network unit is the output of the last layer L. We use the following termi-

nology:

ul
i : ith neuron in layer l.

xl
i : The input to neuron ul

i.

yli : The output of neuron ul
i.

The input values to the neurons u0
i are fixed by input data. The neural network learns by adjusting

a set of weights, wl
ij , where wl

ij is the weight from some neuron ul
i’s output to other neuron in next

layer ul+1
j .

Fully connected Network

1. Compute activations for layers with known inputs: yli = f(xl
i) + bli

2. Compute inputs for the next layer from these activations: xl
i =

∑

j w
l−1
ji yl−1

j .

3. Repeat steps 1 and 2 until we reach the output layer and know the values of yL

where f is the activation function and applies nonlinearity. This function is typically a sigmoid or

tanh or RELU function. bli is bias unit connected externally to the network

9



Convolutional Layer Suppose that we have a N ×N square input to the convolutional layer. If

we use an m×m filter ω, the convolutional layer output will be of size (N −m+ 1)× (N −m+ 1).

The output of the convolution layer is computed as given below

yl = xl ∗ ω

where ∗ is convolution operator and then activation function is applied on the output.

Pooling/Sub Sampling Layer The pooling layers take k × k region from the input and output

a single value, which is the maximum or average value in that region. For instance, if their input

layer is a N ×N layer, they will then output a N/k ×N/k layer, as each k × k region is reduced to

just a single value.

2.5.3 Back Propagation

In order to update the weights, error E(yL) is computed. This error can be computed in different

ways such as cross-entropy or sum of squared residuals and selection of error computation technique

depends on the application. The purpose of being able to compute the error is to be able to optimize

the weights to minimize the error; that is, the process of learning. We learn via an algorithm known

as back propagation, which we can derive in a similar manner to forward propagation.

Fully connected Network

1. Compute errors at the output layer L: ∂E
∂yL

i

= d
dyL

i

E(yL)

2. Compute partial derivative of error with respect to neuron input at layer l that has known

errors: ∂E
∂xl

j

= f
′

(xl
j)

∂E
∂yl

j

3. Compute errors at the previous layer (back propagate errors): ∂E
∂yl

i

=
∑

wl
ij

∂E

∂x
l+1

j

4. Repeat steps 2 and 3 until errors are known at all but the input layer

5. Compute the gradient of the error (derivative with respect to weights): ∂E
∂wl

ij

= yli
∂E

∂x
l+1

j

Pooling Layer The pooling layers do not actually do any learning themselves. Instead, then

reduce the size of the problem by introducing sparseness. In forward propagation, k × k blocks

are reduced to a single value. Then, this single value acquires an error computed from backwards

propagation from the previous layer. This error is then just forwarded to the place where it came

10



from. Since it only came from one place in the k×k block, the back propagated errors from pooling

layers are rather sparse.

Convolutional Layer It is almost identical to the back propagation algorithm for fully connected

network. The only difference to take into account is the weight sharing in the convolution layer. If

the lth layer is convolutional layer, then the error is computed as follows given that error for next

layer is known:

∂E

∂xl
ij

= f
′

(xl
ij)

∂E

∂ylij

Since we know the errors at the current layer, we now have everything we need to compute the

gradient with respect to the weights used by this convolutional layer. In addition to compute the

weights for this convolutional layer, we need to propagate errors back to the previous layer.

∂E

∂yl−1
ij

=
∂E

∂xl
ij

∗ ω

Knowing the errors at all layers, error gradient with respect to weights is calculated.
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Chapter 3

Full Reference Quality Assessment

3.1 Introduction

The vital role that digital multimedia plays in our lives (ranging from medical diagnosis to security

to entertainment to online society) is no longer a question for debate but rather a well-accepted

norm. This change to our lifestyle has led to a rapid proliferation of multimedia content that needs

to be managed (compressed, stored, and communicated) efficiently and effectively. The role of auto-

mated or objective multimedia quality assessment to manage multimedia cannot be overemphasized

- especially given the cost of subjective evaluation and the massive scale of multimedia data.

Automated or objective image and video quality assessment algorithms have made giant strides

in the past decade. The invention of the Structural SIMilarity (SSIM) index [27] heralded a wave of

significant improvements in the automatic assessment of image quality and in turn video quality as

well. Several excellent full-reference (FR) [28, 2], reduced-reference (RR) [29], and no-reference (NR)

[30] image quality assessment (IQA) algorithms have since been proposed. Each of these algorithms

take us a step closer to the ultimate goal of being able to mimic the human visual system’s assessment

of image quality. Given the context of the proposed work, we will restrict our focus to full-reference

IQA algorithms.

The underlying principles of the state-of-the-art FR IQA algorithms have ranged from attempting

to model the physiology of the human visual system [1] to using abstract notions from information

theory [2]. An excellent exposition of these principles can be found in [3]. The success of these varied

principles leads one to believe that there could either be several different approaches to solving the

FR IQA problem or that these approaches are yet to converge to the true solution. Recent work by
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Guha et. al. [4, 31, 32] provide yet another approach to measuring image similarity that is based on

sparse representations of natural images. This is a promising approach given its close analogy with

sparse representations in the human visual system [7].

In this chapter, we consider one flavor of the sparsity-based similarity measure – the SDM, and

attempt to determine its efficacy as an FR IQA algorithm. A preliminary evaluation of the SDM as

an FR IQA has been carried out by Guha et. al. [4]. The main contributions of this work are: (i) a

comprehensive statistical performance evaluation of the SDM on the LIVE image database [33, 34],

and (ii) a demonstration of several useful properties of the SDM that make it an attractive FR IQA

algorithm. This work is appeared in [35].

3.2 Sparsity-Based Distance Measure (SDM)

An interesting trend seen in image similarity measurement is the use of Kolmogorov complexity-

inspired [36] formulations. An information distance between the two strings x and y can be defined

as max{K(x|y),K(y|x)} where K(x|y) is the Kolomogorov complexity of x relative to y and vice-

versa for K(y|x). To convert it to a normalized symmetric metric, a novel normalized information

distance (NID) measure was defined by Li et. al. [37] as follows:

NID(x, y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)}
(3.1)

where K(x|y) is the conditional Kolmogorov complexity of x relative to y. While NID has nice

analytical properties, it is not practical since computing the Kolmogorov complexity is an NP-hard

problem. Recent methods attempt to approximate Kolmogorov complexity using quantities that

can be computed using fast algorithms. To the best of our knowledge, the first such approach to

measure image similarity was introduced by Nikvand et. al. [38] where the size of the encoded

bitstream from a lossless image coder was used to approximate Kolmogorov complexity.

Guha et.al. [4] related sparsity and Kolomogorov complexity based on the inference that the

number of components required to represent a signal increases with signal complexity. The SDM

was then defined to measure image similarity as follows.

SDM(X,Y ) =
N(X|Y ) +N(Y |X)

N(X) +N(Y )
. (3.2)

where X is the reference image; Y is the test image; N(X) and N(Y ) represents the number of
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components required to represent the image from the dictionary learnt from the patches of X and

Y respectively. N(X|Y ) and N(Y |X) represent the number of components required to represent

the image from the dictionary learnt from the patches of Y and X respectively. N(X) < N(X|Y );

since number of components required to represent the current image X from the dictionary learnt

from the patches of X is always less than the dictionary learnt from the patches of Y . Hence lower

values of SDM indicate better similarity between images under consideration and is always greater

than or equal to one.

In this work, the SDM has been implemented using the K-SVD algorithm [39] to findN(X), N(Y )

and the cross term N(X|Y ), N(Y |X). A randomly chosen set of 3000 8×8 images patches were used

for learning a dictionary containing 128 atoms.

3.3 Statistical Evaluation

One of the main contributions of this work is to perform a statistical evaluation of the SDM as

an FR IQA algorithm. The results of the statistical evaluation and an intuitive explanation of the

performance are presented in the following subsections.

3.3.1 Evaluation

The SDM was evaluated over the LIVE database [40] that consists of 779 images covering a range of

5 types of distortions. There are 29 reference images and distortion types include fast fading, white

noise, JPEG, JPEG 2000 and gaussian blur. SDM is compared with the state of art full reference

algorithms such as SSIM [27], MSSSIM [28] and VIF [2]. The SDM scores were fit to the subjective

scores (DMOS) using the four parameter exponential logistic function specified in [41].

The results of the statistical evaluation are presented in Fig. 3.1 and Table 3.1. Fig. 3.1 shows the

scatter plots for each of the distortion types in the database along with an overall scatter plot. It is

clear that the SDM performs best when the distortion type is either blur or additive white noise and

performance drops for JPEG and fast fading distortions. We present an intuitive explanation for this

performance in the following subsection. From Table 3.1, we see that the SDM performs fairly when

compared to the state-of-the-art using Spearman Rank Ordered Correlation Coefficient (SROCC).

However, we show in Section 3.4 that the SDM has several useful properties that the state-of-the-art

IQA algorithms lack. These properties make the SDM a very promising IQA algorithm.
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(a) Fast fading. (b) Gaussian blur. (c) JPEG2000.

(d) JPEG. (e) White noise. (f) All distortions.

Figure 3.1: Scatter plots of SDM vs DMOS for various distortions. The blue line represents the best
fit function.

FF Blur JPEG JP2K AWGN All
SSIM 0.9629 0.9481 0.9266 0.8711 0.9903 0.9298

MSSSIM 0.8499 0.9274 0.9445 0.962 0.9865 0.924
VIF 0.9587 0.976 0.9025 0.9355 0.8852 0.8677
SDM 0.8277 0.9102 0.8188 0.843 0.8913 0.7885

Table 3.1: Performance of the SDM on the LIVE image database measured using SROCC. Also
shown are state-of-the-art IQA algorithms.

3.3.2 Intuition

We present an intuitive explanation for the performance of the SDM using images distorted with

white noise. Fig. 3.2 and Table 3.2 corroborate the inference made in [4] about requiring a large

number of dictionary elements to represent complex signals (for e.g., images corrupted with noise).

The loss in sparsity is clearly seen in Table 3.2. As the noise variance increases, N(Y ), N(Y |X),

and N(X|Y ) increase suggesting (expectedly) that noise cannot be sparsely represented. We also

observed the opposite effect for blurred images i.e., a decrease in the aforementioned quantities. The

other distortion types (fast fading, JPEG and JPEG2000) do not bring about changes to the images

that significantly affect their sparsity, there explaining the average performance. These qualitative

observations combined with the statistical evaluation in the previous subsection suggest that the

SDM is able to quantify departure of images from “naturalness” that correlates fairly well with

subjective evaluation.
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(a) Original. (b) σ = 0.117. SDM = 1.38. (c) σ = 0.187. SDM = 1.43. (d) σ = 1.0. SDM = 1.75.

Figure 3.2: Intuition behind SDM’s performance.

Noise σ N(X) N(Y ) N(X|Y ) N(Y |X) SDM
0.117 8.441 23.3747 15.2877 43.1803 1.8377
0.187 8.4407 23.9843 16.6767 46.654 1.9531
1.0 8.2673 24.0303 26.8163 50.3037 2.3878

Table 3.2: An intuitive explanation of the SDM’s ability to measure image similarity. These values
correspond to the images in Fig. 3.2.

3.4 Salient Properties of the SDM

In this section, we demonstrate salient properties of the SDM that make it a very attractive IQA

and distinguish it from the state-of-the-art IQAs. Specifically, we demonstrate SDM’s robustness to

rotation, scaling, and combinations of distortions. The top row of Fig. 3.3 shows various distortions

and corresponding SDM, VIF, and MSSSIM scores. It is clear from Figs. 3.3b, 3.3c, and 3.3d that

the SDM outperforms both VIF and MSSSIM for the mentioned distortion types. Fig. 3.3 is an

illustrative example. This robustness has been consistently observed over a much larger dataset.

From Fig. 3.3c, it is worth highlighting that unlike MSSSIM and VIF, the SDM does not require

the reference and distorted image sizes to match. It is to be noted that a score close to 1 means low

distortion for all the algorithms considered.

We present an empirical explanation of the robustness of SDM to rotation, scaling, and combi-

nations of distortions. The bottom row of Fig. 3.3 shows the histogram of the maximum pair-

wise correlation between the atoms of the reference and distorted image dictionaries. Let DR

and DD be the reference and distorted dictionaries respectively. Let DR = [aR1 , a
R
2 , . . . , a

R
128],

DD = [aD1 , aD2 , . . . , aD128] where aRi is the column vector of size 64 representing the ith atom of

the reference dictionary DR, and aDj is the column vector of size 64 representing the jth column of

DD. We construct the correlation matrix R where Rij is the correlation between the aRi and aDj .

The maximum value of row i in R represents the best matching atom in DD to aRi . The histograms

in the bottom row of Fig. 3.3 correspond to the row-wise maximum correlation for each distortion

type. Note that the histograms in Fig. 3.3 correspond to the images directly above them.
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From these histograms, we see that there are a large number of atom-pairs with high correlation

(> 0.9) for the distortions where SDM is robust. This can be interpreted as the dictionaries DR and

DD being composed of atoms that are “similar”. This in turn implies that the cross terms in the

SDM index (N(X|Y ), N(Y |X)) would be small and therefore the robustness of the SDM.

(a) AWGN. SDM = 2.0765,
VIF = 0.0303, MSSSIM =
0.0024.

(b) Rotation. SDM =
1.1026, VIF = 0.0158,
MSSSIM = 0.0473.

(c) Scaling down. SDM =
1.1311, VIF, SSIM require
size match.

(d) Combo. SDM =
2.2032, VIF = 0.0075,
MSSSIM = 0.1725.

(e) White noise. (f) Rotation by 180o. (g) Scaled down by 0.8. (h) FF and rotation by 180o.

Figure 3.3: Robustness of the SDM to rotation, scaling, and a combination of distortions. Top row
showing various distortion types. Bottom row showing histogram of maximum correlation between
atom pairs formed from reference and distorted image dictionaries.

3.5 Conclusions and Future Work

We have presented a statistical evaluation of the SDM and shown that it performs fairly when

compared to the state-of-the-art. However, we have shown that the SDM possesses several useful

properties such as robustness to rotation, scaling and distortion combinations that make it appealing

in a wider variety of applications than most popular full-reference image quality assessment algo-

rithms. The strength of the SDM as an objective function has already been demonstrated in image

classification, clustering and retrieval applications [4].

We believe that the SDM opens up interesting avenues for further investigation in the measure-

ment of image similarity with potential extensions to video similarity as well. As future work, we

plan to explore these avenues with a particular emphasis on video similarity measurement.
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Chapter 4

No Reference Quality Assessment

4.1 Introduction

The role of automated or objective measurement of image and video quality in today’s multimedia-

centric society cannot be overemphasised. Algorithms that accurately predict the subjective quality

of multimedia data can be used to improve the performance of a wide gamut of multimedia systems

ranging from codecs to cross-layer optimization techniques to display design, to name a few. In

a majority of settings, the pristine or undistorted content is unavailable for comparison. Blind

or no-reference (NR) quality assessment algorithms attempt to estimate the perceptual quality of

multimedia content in such a setting. Specifically, we focus on opinion-unaware and distortion-

unaware algorithms. By opinion-unaware, we mean algorithms that do not use mean opinion scores

(MOS) of subjective evaluation for training. By distortion-unaware, we mean algorithms that are

not tailored to specific (known) distortion types.

BIQA algorithms have received a lot of attention in the recent past and several excellent algo-

rithms have been proposed. A non-exhaustive list of the current state-of-the-art methods includes

Quality Aware Clustering (QAC) [42], Sparse representation for blind image quality assessment

(SRNSS) [43], Natural Image Quality Evaluator (NIQE) [44], Blind/Referenceless Image Spatial

Quality Evaluator (BRISQUE) [45], probabilistic latent semantic analysis (pLSA) [46], BLind Image

Integrity Notator using DCT Statistics-II (BLIINDS-II) , [47], and Distortion Identification-based

Image Verity and INtegrity Evaluator (DIIVINE) [48]. The performance of several of these BIQA

algorithms is comparable to the state-of-the-art full-reference IQA (FRIQA) algorithms. The most

common approach to BIQA relies on constructing “reference” features of images using a training set
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consisting of either pristine images or a mixture of pristine and distorted images – for e.g., NIQE

[44] (distortion agnostic), QAC [42], BRISQUE [45], pSLA [46], DIIVINE [48], BLIINDS [49] (all

distortion aware). Features derived from a test image are compared with these “reference” features

to compute a quality score. Several BIQA approaches also attempt to learn the relationship between

the “reference” features and corresponding subjective scores during the training process – for e.g. in

BRISQUE [46], DIIVINE [48], BLIINDS [49], SRNSS [43]. In such methods, the learnt relationship

is used to predict the score of a test image given its features.

We briefly discuss two recent state-of-the-art opinion-unaware methods in order to place our

algorithm in context. QAC [42] is an opinion-unaware and distortion-aware BIQA algorithm that

achieves its opinion-unawareness by replacing subjective scores with FSIM [50], a state-of-the-art

FRIQA algorithm. FSIM is applied on overlapping blocks of a small set of pristine images along

with their distorted versions to assign quality scores to the distorted blocks. The distorted blocks

are clustered into different quality levels and difference of Gaussian features extracted for each block.

These features are then clustered in a quality aware manner and their centroids saved in a lookup-

table. The quality of a test image is inversely proportional to the Euclidean distance of its features

vectors with the centroids of the quality aware clusters. We would like to note that the structure of

quality aware clusters corroborate the local oriented receptive fields of area V1 of the visual cortex.

QAC also provides a coarse quality map of the image – a first among BIQA methods (to the best

of our knowledge).

NIQE [44] is an opinion-unaware and distortion-unaware algorithm that attempts to quantify the

unnaturalness in an image. It is based on the hypothesis that the pixel statistics of natural scenes

are altered in the presence of distortion. A generalized gaussian density (GGD) is used to model

the statistics of mean-subtracted-contrast-normalized pixels of a set of pristine images (chosen from

a source that is completely different from the test datasets). The GGD parameters are the features

that are in turn modeled using a multivariate gaussian (MVG) model to form the “reference” fit.

The quality of a test image is computed by comparing its MVG fit to the “reference” MVG fit.

NIQE can be classified as a truly blind BIQA algorithm.

While our proposed algorithms are similar in philosophy to these techniques, it uses a funda-

mentally different approach to quantify unnaturalness that is based on the sparse representation of

natural images.

We proposed two algorithms based on the hypothesis that the HVS perceives distortions when

it detects a change in the sparse representation pattern of an image relative to the average sparse

representation pattern of pristine natural images. Further, we attempt to quantify this change in
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the sparse representation pattern of test images. The hypothesis for both the algorithms is same,

however the method to quantify the change in sparse representation differs. First we start with a

brief discussion on the sparse representation of natural images and then we discuss the proposed

algorithm, Sparsity based Image Quality Evaluation-1(SBIQE-1) followed by SBIQE-2 (improvized

version of SBIQE-1) in subsequent sections.

4.2 Sparse Representation of Natural Images

The role of natural scene statistics in the understanding of the visual system has been studied by

several researchers. It has been conclusively shown that the receptive fields of V1 neurons are tuned

to the statistics of natural scenes [51] (and references therein). It is now well-accepted that the

primary visual cortex adopts a sparse-coding strategy to represent visual stimulus. The coefficients

of such sparse representations of natural scenes are typically uncorrelated, thereby maximizing the

amount of information they convey. In their seminal paper, Olshuasen and Field [52] proposed

an algorithm to construct overcomplete linear codes or dictionaries that sparsely represent natural

scenes. They showed that that the primary visual cortex is modeled well using such overcomplete

dictionaries and is used in Full Reference IQA – for e.g. Sparsity based Distance Metric (SDM)

[53, 54] and BIQA – for e.g SRNSS [43] algorithms. While SRNSS is an opinion aware method, we

focus on an opinion unaware algorithm.

4.3 SBIQE-1

4.3.1 Dictionary Construction

As mentioned in the previous section, we attempt to mimic the behavior of the HVS to measure the

amount of unnaturalness or distortion in an image. The first step in our algorithm is the construc-

tion of an overcomplete dictionary to sparsely represent natural scenes. While the overcomplete

dictionary construction technique in [52] gives good results, we chose to work with the more recent

K-SVD [55] algorithm for dictionary construction. The K-SVD algorithm has been shown to out-

perform other overcomplete signal representations such as wavelets in terms of reconstruction error.

Further, the efficacy of the K-SVD algorithm has been demonstrated in a myriad of applications

including pattern recognition, denoising and restoration, super-resolution, to name a few.

We construct an overcomplete dictionary consisting of 162 atoms with each atom being an 81-

dimensional vector (corresponding to 9×9 image patches). The number of atoms was chosen to be
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Figure 4.1: The dictionary of atoms constructed from pristine images. Each atom is of size 9×9,
with 18 atoms per row and 9 rows in all.

twice the dimensionality of the atoms. The dictionary is constructed using all the patches chosen

from 70 pristine images. The patch size (9×9) is chosen to avoid the standard block size of 8×8 used

in popular image and video codecs. Each of the 70 images is divided into overlapping patches of size

9×9 with an overlap of 3 pixels in each dimension. Also, these images are chosen from a dataset [56]

that has no overlap with any of the popular datasets used for testing (LIVE [33], CSIQ [57], TID

[58]). The dictionary construction happens once and can be performed offline. The dictionary with

all atoms concatenated is shown in Fig. 4.1. We clearly see the oriented nature of a majority of the

atoms along with a few atoms containing lower spatial frequencies.

4.3.2 “Reference” Feature Extraction

The next step in the algorithm is the extraction of “reference” features that are representative of

pristine natural images. To this end, we choose images from a set of pristine image at

http://live.ece.utexas.edu/research/quality/pristinedata.zip. Again, this source is chosen so as to

avoid any overlap with the datasets used for algorithm evaluation. The chosen images are sparsely

represented using the constructed overcomplete dictionary. The orthogonal matching pursuit (OMP)

[59] algorithm is used for generating the sparse representations. As with dictionary construction,

9×9 patches (with overlap of 3 pixels in both dimensions) from the pristine images are sparsely

represented.

The feature vector fr is constructed as follows. A histogram of the atoms is constructed and

divided by the total number of patches. In other words, we count how many times every atom in

the dictionary occurs in the sparse representation of the pristine patches and divide by the total
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Figure 4.2: Motivation behind SBIQE. Feature vectors of pristine images and images distorted with
AWGN. The y-axis represents the magnitude of the feature point while the x-axis represents feature
point index. Three noise levels (σ = 1, σ = 0.035, σ = 0) are shown to illustrate the discriminability
of the feature choice.

number of patches used in this training stage. The feature vector is normalized to get

nr =
fr − µr

σr

, (4.1)

where µr and σr are the mean and variance of fr respectively. As with the dictionary construction,

the “reference” feature vector extraction happens only once and can therefore be done offline as well.

The motivation for this choice of feature is that it provides a pattern of natural image representation

in the HVS. Further, it possesses good distortion discriminability as illustrated in Fig. 4.2. The

figure shows the magnitude of a subset of feature points (i.e., normalized histogram points) from

images subject to different levels of additive white Gaussian noise. In this illustration, noise standard

deviation σ is chosen to be 1, 0.035 and 0. It is clear that our choice of features is able to differentiate

noise levels – especially so when the magnitude of the feature vector element is high. We found this

to be true for other common distortions including blur, and compression-induced artifacts.

4.3.3 Image Quality Measurement

Given a test image, it is divided into overlapping blocks (as in Section 4.3.2) and each block is

represented using the dictionary constructed in Section 4.3.1. The test feature vector ft is constructed

from the sparse representation of the overlapping blocks by counting the number of occurrences of

each of the dictionary atoms in them. This count is divided by the total number of patches in the

images. As with the “reference” feature vector, ft is normalized to get

nt =
ft − µt

σt

, (4.2)
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where µt and σt are the mean and variance of ft respectively. Finally, the quality score is computed

as

Qt = 1−
||nt − nr||2

||nt||2 + ||nr||2
. (4.3)

The error norm between the test and reference vectors is normalized by the sum of norm of the

reference and test vectors. From the triangle inequality, it follows that

0 ≤ Qt ≤ 1. (4.4)

Higher values of Qt (close to 1) correspond to better quality while lower values (close to 0) reflect

poor quality or high distortion. We would also like to note from the definition of our feature that

each of the feature points is non-negative.

4.4 SBIQE-2

4.4.1 Dictionary Construction

Same as dictionary construction in SBIQE-1.

4.4.2 “Reference” Parameters

The next step in the algorithm is the evaluation of “reference” parameters that are representa-

tive of pristine natural images. To this end, we choose images from a set of pristine image at

http://live.ece.utexas.edu/research/quality/pristinedata.zip. Again, this source is chosen so as to

avoid any overlap with the datasets used for algorithm evaluation. The chosen images are sparsely

represented using the constructed overcomplete dictionary. The orthogonal matching pursuit (OMP)

[59] algorithm is used for generating the sparse representations. As with dictionary construction,

9×9 patches (with overlap of 3 pixels in both dimensions) from the pristine images are sparsely rep-

resented. Then the empirical distribution of sparse representation evaluated from the pristine images

corresponding to each atom is constructed and we found that a generalized Gaussian distribution

(GGD) can be used to effectively capture the statistics of sparse representation corresponding to

each atom, which often exhibit changes in the kurtosis of the empirical coefficient distributions [60]

where the GGD with zero mean is given by

p(x;α, σ2) =
α

2 ∗ β ∗ Γ(1/α)
exp

(

−
( |x|

β

)
α)
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where

β = σ

√

Γ(1/α)

Γ(3/α)

and Γ(.) is the gamma function:

Γ(a) =

∫ ∞

0

ta−1e−tdt a > 0

The shape parameter α controls the shape of the distribution while σ2 control the variance. We

choose the zero mean distribution, since sparse coefficients are symmetric centered around zero. The

parameters of the GGD (αi, σi
2),where i = 1...M and M is the number of atoms in the dictionary,

are estimated using the moment-matching based approach proposed in [60]. As with the dictionary

construction, the “reference” parameters evaluation happens only once and can therefore be done

offline as well.

4.4.3 Image Quality Evaluation

Given a test image, it is divided into overlapping blocks (as in Section 4.4.2) and each block is

sparsely represented using the dictionary constructed in Section 4.3.1. Probability of this sparse

representation corresponding to each atom is calculated given the reference parameters obtained as

discussed in Section 4.4.2. Then the final probability of each block in the image is the product of

individual probabilities corresponding to each atom and is given as below.

pbj =

M
∏

i=1

pij

where pbj is final probability for each block in the image, pi is probability corresponding to each

atoms and M is number of atoms in the dictionary.

Quality is evaluated as mean of probabilities of all overlapping blocks in the image as given

below.

Q =
1

N

N
∑

j=1

pbj

where N corresponds to number of overlapping blocks in the given test image.

Higher values of Q correspond to better quality while lower values reflect poor quality or high

distortion. We hypothesize that if the sparse representation of the block is drawn from the probability

distribution of “reference” space, then the probability of drawing that block from the “reference”

space is higher.
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With this algorithm, we can have block level quality map. To the best of our knowledge, we are

the first one to evaluate the quality map in NR setting in opinion and distortion unaware scenario.

Local Quality Estimation

Our algorithm measures the quality on image patches, so it can be used to detect low/high quality

local regions as well as giving a global score for the entire image. To demonstrate, we select an

image from LIVE dataset [33] and the corresponding distorted images including WN, BLUR, JPEG

and JP2K. We then perform local quality estimation on these images using our algorithm. Figure

4.3 shows estimated quality map on these images. We can see that our algorithm distinguishes the

clean and the distorted parts of each image.

4.5 Results and Discussion

We present the results of our algorithms and compare it with state-of-the-art BIQA methods.

BRISQUE [46], an opinion-aware distortion-aware method, QAC [42] an opinion-unaware distortion-

aware method and NIQE [44] an opinion and distortion unaware method are used as the benchmarks

for our comparison. The numbers for BRISQUE are quoted for the case of 80% samples used training

and the rest used for testing.

The performance of the algorithm on the LIVE [33], CSIQ [57], TID [58] datasets are presented

in Tables 4.1, 4.2, 4.3 respectively. For brevity, we only present Spearman rank ordered correlation

coefficient (SROCC) values.

AWGN Blur JPEG JP2K All
BRISQUE 0.99 0.98 0.92 0.94 0.94

QAC 0.96 0.91 0.94 0.85 0.88
NIQE 0.97 0.93 0.94 0.91 0.91

SBIQE-1 0.96 0.89 0.73 0.83 0.76
SBIQE-2 0.98 0.94 0.82 0.86 0.87

Table 4.1: Performance (SROCC) on the LIVE database.

From these results we see that the proposed method compares reasonably with the current state-

of-the-art. We also studied the effect of the atom size on performance and found no significant

change when atom size was varied from 9×9 to 15×15. At this point, we would like to note (again)

that we excluded the block/atom size of 8×8 on purpose so as to avoid overlapping with the typical

block size used in standard image codes and therefore attempting to capture quantization artifacts

at block boundaries.
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(a) Pristine Image

(b) JPEG Compression

(b) JPEG2000 Compression

(c) AWGN

(d) Gaussian blur

Figure 4.3: Local Quality Estimation Results. Brighter pixels indicate distortion.
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AWGN Blur JPEG JP2K All
BRISQUE 0.92 0.87 0.88 0.86 0.87

QAC 0.86 0.85 0.91 0.87 0.86
NIQE 0.81 0.87 0.86 0.89 0.88

SBIQE-1 0.96 0.89 0.73 0.83 0.76
SBIQE-2 0.93 0.84 0.80 0.85 0.84

Table 4.2: Performance (SROCC) on the CSIQ database.

AWGN Blur JPEG JP2K All
BRISQUE 0.92 0.79 0.88 0.90 0.85

QAC 0.70 0.85 0.89 0.88 0.87
NIQE 0.78 0.82 0.86 0.90 0.78

SBIQE-1 0.96 0.89 0.73 0.83 0.76
SBIQE-2 0.69 0.83 0.71 0.92 0.81

Table 4.3: Performance (SROCC) on the TID database.

We would like to highlight features of the proposed method that make it an interesting and

promising direction for exploration. Firstly, the proposed method is both opinion-unaware and

distortion-unaware and is inspired by the sparse representation of natural scenes in the HVS.

4.6 Conclusions and Future Work

We presented a novel sparsity-based blind image quality assessment algorithm that is inspired by

the sparse representation of natural scenes in the HVS. We hypothesized that a change in the sparse

representation pattern of a given image relative to pristine image sparse patterns is a measure of

unnaturalness or distortion. We quantified this change in sparsity and showed that it is indeed

a measure of the perceptual quality of an image. We do recognize that in its current form, our

algorithm is subpar (overall) relative to the state-of-the-art. However, we strongly believe that the

initial results are promising and the proposed method has a number of attractive features.

As future work, we plan to improve the performance of the algorithm by fine-tuning the features

and score computation metrics. Also, we intend to extend this hypothesis to no-reference video

quality assessment.
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Chapter 5

Face Quality Assessment

5.1 Introduction

Face Recognition has received substantial attention due to its value both in understanding how

the face recognition process works in humans as well as in addressing many applications, including

access control, video surveillance, entertainment and law enforcement. Since face recognition is the

natural way of identification and verification, this field is rich with excellent literature [14, 15, 16].

In the last two decades various algorithms have been proposed for face recognition based on still

images and video sequences. However, in realistic scenarios, face recognition is limited by low quality

images and variation in pose, illumination, occlusion and expression in the acquired face image [15].

Such problems are even more severe in surveillance systems where users may be uncooperative and

the environment is uncontrolled. Since poor quality images in the surveillance video sequences offer

very little information for face recognition, they not only increase the computational load because of

complex processes such as feature extraction and matching, but also reduce the recognition accuracy

because of outliers. To address this problem, many algorithms have been proposed in recent years

to select the subset of high quality faces and avoiding outliers.

To the best of our knowledge, Berrani et al. [61] were the first one to address this issue by

using statistical approaches to remove outliers. However, this approach does not work when all the

images are of poor quality and is a common scenario in surveillance. There are many algorithms

proposed based on the facial properties such as estimating the pose [62] to evaluate the quality

of face, calculating the asymmetry of the face by estimating out of plane rotation and non-frontal

illumination to quantify the degradation of the quality [63, 64, 65]. The above methods consider only

28



a subset of factors affecting face recognition and hence not suitable for robust image selection. Instead

of considering the factors affecting face recognition and fusing the scores, Wong et al. proposed

the definition of ideal face as frontal faces with uniform illumination and there by simultaneously

considering the variations in pose, sharpness and alignment errors [66]. Inspired by this definition

we propose a sparsity-based face quality assessment algorithm to quantify the quality of faces, that

allows us to select the best subset of high quality images for further processing. But we realized

this definition of quality has limited applications since it is based on assumptions on standard face.

Also, these algorithms do not leverage the strengths of FR algorithms i.e., the above algorithms

do not fully utilize the abilities of FR algorithms that may be good at even recognizing faces with

occlusions, pose variations or non-uniform illumination.

Chen et al. [67] proposed an algorithm based on multiple feature fusion and learning to rank

were the first one to address the above issue. In this algorithm, they considered three databases

with faces acquired in a controlled environment, an uncontrolled environment, and with non-face

images respectively. Then they ranked the databases based on the recognition performance and

assumed the faces in the same database to have equal rank. Their algorithm is implemented in two

levels. In the first level, they learned the weights for the feature vector of face images from the

above-mentioned datasets by using a linear kernel such that the sum of weighted feature resembles

the ranking of databases. For this, they considered five different feature vectors and learned the

corresponding weights. In the second level, they combined five first level scores with respect to each

feature vector by using a second order polynomial kernel to give the final quality score for the given

probe face image.

The motivation of our algorithm is fundamentally similar to learning to rank based algorithm,

however it uses a different and novel approach that is based on modelling the system response of an

FR algorithm using CNN.

The chapter proceeds as follows: Section 5.2 describes our proposed algorithms(Sparsity-based,

CNN based FQA) in the framework of FR System. Section 5.3 discusses our experiments on Choke-

Point dataset [66] and compares our algorithm with other face selection algorithms. Section 4.6

concludes the discussion and gives the direction for future work.

5.2 Face Recognition System

A typical FR system comprises of face detection, face localization, face subset selection (optional),

face feature extraction and face matching components as shown in the Fig.5.1 [15]. In the proposed
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algorithm, the face subset selection component is analysed and the best subset of faces are selected

for further processing in order to enhance the performance of FR. The details of each component is

presented below.

Figure 5.1: FR System

5.2.1 Face Detection and Localization

To detect and localize the face in each frame, we used Viola Jones Haar feature based cascade

classifier [68]. We omitted the faces where the Haar cascade classifier is not able to detect the face.

After detecting the facial region from the aforementioned classifier, localization is done by fixing the

center and cropping the facial region by omitting borders. The final cropped images are then resized

to 64× 64 pixels.

5.2.2 Face Subset Selection

It is quite common in a video surveillance scenario to acquire multiple face images of same person.

Selecting the subset of faces with high quality improves the performance of recognition algorithm

by removing the outliers. It also reduces the complexity of FR algorithm, considering the fact that

face feature extraction process is computationally expensive and complex. As discussed in section

5.1, it is difficult to define the quality of a face image. Several researchers have defined the quality

in different ways. In this chapter we consider two definitions of quality for subset selection. One is

based on standard/ideal face assumption and we called it as sparsity based FQA. Another one is

adaptive i.e with respect to the FR algorithm under consideration and we called it as CNN based

FQA. We show the supremacy of performance of later definition to former one.

A. Sparsity based FQA

For the face in a sequence to be selected for further processing, the face must be of high quality

i.e the face should be comparable with “ideal” face. Here, “ideal” face means the frontal face with

uniform illumination and neutral expression. The given test face is compared with “ideal” face as
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specified above and assigned a rank of face in a video sequence. Finally the faces with high rank are

chosen for feature extraction and matching. In order to achieve this, we propose a sparsity-based

face quality assessment algorithm.

The proposed algorithm is based on the hypothesis that average sparseness of the probe face

will be altered if the probe face is not similar to “ideal” face. This hypothesis is inspired from our

previous work sparsity-based image quality assessment algorithm [69] . We describe our algorithm

in the following subsections starting with a discussion of construction of “ideal” face and “reference”

feature. These two steps are one time processes and can be done offline. For this, we make use

of ’fa’ subset of FERET database which contains frontal faces with neutral expression and uniform

illumination [70]. This subset is further divided into two sets with 80% of faces for construction

of “ideal face” and remaining faces for construction of “reference” feature. The motivation for this

choice of feature vector is to represent a pattern for “ideal” face.

Construction of “ideal” face: The first step in our algorithm is to construct the “ideal” face.

To construct the “ideal” face, faces of ’fa’ subset of FERET database are properly aligned using

the eye coordinates and are closely cropped and then resized to 64 × 64 pixels. All faces are log

transformed to reduce the dynamic range of pixel intensities. In order to remove the person specific

content and to get the holistic information of “ideal” face, high frequency component needs to be

removed. To achieve this, we used Daubechies db1 wavelet to decompose the image and consider the

low frequency region of the face for further processing. Then the low frequency region of the face is

divided into overlapping patches of size 8× 8 pixels with overlap of 5 pixels in each dimension. By

considered patches from all faces, an overcomplete dictionary consisting of 128 atoms of dimension

64 (corresponding to 8 × 8 patches) is constructed to sparsely represent the patches and hence in

total we have N overcomplete dictionaries for N patches. For this, we chose to work with the

K-SVD algorithm [71] which performs well in many applications including super-resolution, image

quality assessment, denoising, pattern recognition, to name a few. The whole process of constructing

dictionaries related to “ideal” face is shown in the Fig.5.2.

Construction of “reference” feature: The next step in the algorithm is the extraction of

“reference” features that are representative of “ideal” face and the whole process is shown in the

Fig. 5.3. To this end, we choose the remaining 20% of faces from fa subset of FERET database. The

chosen images are log transformed and considered low frequency region after wavelet decomposition.

As with dictionary construction, 8×8 patches (with overlap of 5 pixels in both dimensions) from
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Figure 5.2: Construction of “ideal” face

the chosen images are sparsely represented using the orthogonal matching pursuit (OMP) algorithm

[19] with the corresponding constructed dictionary. Then the feature vector (frn, where n = 1 . . . N

and N is number of patches) for each patch is constructed by averaging the sparse coefficients over

all the chosen images and in total we have N “reference” feature vectors.

Figure 5.3: Construction of “reference” feature vector

Face Quality Evaluation: This is the final step in subset selection. Here, we make use of the

N dictionaries and N “reference” feature vectors obtained from the training to assign the rank of

face in a probe video sequence. The whole process of quality evaluation is shown in the Fig. 5.4.

A given face image is log transformed first followed by a wavelet decomposition. The low frequency

subbands are divided into overlapping patches are mentioned previously. Each patch in the face is

sparsely represented using OMP with corresponding constructed dictionary and in total we have N

test feature vectors (ftn) where n = 1 . . . N and N is number of patches. The assumption is that if

the patch is sparsely represented using dictionary of “ideal” face, then the corresponding patch is

similar to corresponding patch of “ideal” face. Finally, the quality score is computed as

Q =
1

N

N
∑

n=1

‖frn − ftn‖
2
2.
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Figure 5.4: Overview of Face Quality Evaluation Algorithm

Image with low quality score indicates high quality image and vice versa. Then, according to the

quality scores of each face in the video sequence, ranking will be given. After ranking the faces in

video sequence, we select only top M faces for further processing and is shown in the Fig. 5.5.

Figure 5.5: Face Selection based on quality of face w.r.t “ideal” face

B. CNN based FQA

As discussed in section 5.1, it is difficult to define the quality of a face image. We define the quality

with respect to the FR algorithm. The motivation behind our definition of the quality is explained

as follows by considering an example. If an FR algorithm is good at recognizing the faces with pose

variations but not able to recognize the faces with non-uniform illumination, then the faces with

pose variations should be considered high quality and faces with non-uniform illumination should

be considered low quality. Since different FR algorithms work better in different aspects such as

occlusion, pose variations, illumination variations, hence fixing the definition of quality doesn’t take

the full advantage of the FR algorithm under consideration. So, we propose a novel take on face

quality definition and choose to define the quality of the face image with respect to the FR algorithm.

For convenience, we categorize the FR system into two modules. The first module consists of
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face detection and face localization. The second module is the FR algorithm that consists of face

feature extraction and face matching. As an FQA algorithm, we need to predict the face images

that performs best in the second module of the given FR algorithm and this is not a trivial problem.

Toward this end, we considered the second module as an unknown system (or a black box) and have

attempted to model its system response using a CNN. To achieve this, we first used a training set

of images to evaluate the system performance of the FR algorithm. Thus, by knowing the input

and output to the black box, we model its performance such that it is able to predict the quality of

test images a priori. By this, we could select the high quality face images that are best recognized

by the FR algorithm. A CNN is used to model the performance of the FR algorithm due to its

strengths over other modelling techniques. Since a CNN accepts the entire 2D image as input, there

is no need for complicated image transformation or feature extraction. This feature is particularly

useful in our case where the definition of quality of face image is not fixed. So, the CNN learns its

parameters and defines the quality of the face image depending on the FR algorithm. The proposed

algorithm is depicted in figure 5.7 and framework of CNN is explained as follows.

Figure 5.6: Our CNN Architecture

Experimental Setup For FQA: The proposed algorithm uses CNN for face image quality esti-

mation. Given the face image, it is resized to 64 × 64 pixels and PCA whitening is done to make

it less redundant such that face image is less correlated and then input to the CNN to estimate the

quality.

As a preliminary implementation, our CNN has three convolution layers with sub sampling. The

first convolutional layer has 6 kernels with each of size 11 × 11 and produces 6 feature maps with

size 54 × 54, followed by sub sampling layer. The second convolutional layer has 59 kernels with

size 8× 8 and produces 59 feature maps with size 20× 20 and then followed by sub sampling layer.

Third convolutional layer has 6 kernels each of size 10 × 10 and then followed by linear regression

with one dimensional output that gives the quality score of the face image. The architecture of our

CNN is shown in the figure 5.6.

34



In our experiments, we use the ChokePoint dataset [66] that is ideally suited for face recogni-

tion/verification in the surveillance scenario. The dataset consists of 25 subjects (19 male and 6

female) with 64,204 face images. We divide the images into training and testing sets. Set 1 contains

image sequences of 13 subjects for training the CNN and Set 2 contains the rest of the images

sequences to evaluate the performance of the FR algorithm.

1. Training: For training, we assign each face image with a quality score. This score is evaluated

based on how the FR algorithm is able to recognize the input face image given the faces in the gallery

set. Without loss of generality, we consider the FR algorithm with LBP for feature extraction and

MSM for face matching. Since the MSM score depicts the performance of recognition algorithm, we

assign the quality of the given input face image with MSM score to train the CNN.

Let In be the preprocessed input face image, qn be the quality/MSM score and f(In,W ) be the

predicted score of the input face image where W is the weight matrix of the network. Then, back

propagation and stochastic gradient descent is used to minimize the following cost function:

S =
1

N

∑

‖f(In,W )−Qn‖
2
,

where N is the total number of images in the training set. We used a batch size of 50 and ran the

CNN for 50 epochs. The entire training process is depicted in Fig. 5.7.

Figure 5.7: Training

2. Testing: The preprocessed face images in the probe sequence is given as the input to the

trained CNN and quality scores are predicted for each face image in the sequence. The CNN model

is trained such that these scores resemble the MSM scores of the FR algorithm. Subset selection is

done by sorting the predicted quality scores of face image sequence and taking the top N images from

the sorted list. Then these selected N images are given to the FR algorithm for further processing.

The subset selection process is illustrated in Fig. 5.8.
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Figure 5.8: Testing

5.2.3 Face Feature Extraction

After the subset of faces are selected, features are extracted for each face using Local Binary Pattern

(LBP) [72], which makes use of both shape and texture information of the face. Each face region is

sub-divided into small regions and LBP features are extracted for each region and is concatenated

to form the feature vector of the face. This feature vector is able to achieve three levels of locality

by considering patterns at pixel level, features at regional levels and concatenated feature vector at

global level.

5.2.4 Image Set Matching

We make use of Mutual Subspace Method (MSM) for face image set matching [73]. The two image

sets are considered similar if the canonical angle between two image sets is within the threshold.

For each video sequence in the gallery set, feature vectors are calculated and compared with feature

vectors of probe sequence using MSM. In MSM, the probe sequence and each video sequence in

gallery set is considered as separate subspaces and similarity between the subspace is measured by

calculating the mean canonical angle between the two subspaces. Let the probe sequence be N

dimensional subspace and each video sequence in the gallery set be M dimensional subspace. The

canonical angle for each element of the probe sequence is defined as the maximum angle between

the given element and all the elements of the M dimensional subspace for a given video sequence

in the gallery. The final similarity score is calculated by taking the mean of canonical angle of all

the elements of the probe sequence. The score is then compared to a threshold and final decision is

made whether the probe and the gallery sequence pair is matched/mismatched pair. The threshold

is obtained from a labeled set at which the total number of false positives and false negatives is

minimum. This is referred as Minimum Error Rate (MER).
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5.3 Results and Discussion

In this section, we present the performance of proposed algorithms for good quality subset selection

to improve the performance of face recognition algorithm. As a preliminary experiment, we used

LBP as a facial feature and MSM for face matching. To reiterate, any face recognition algorithm can

be used in conjunction with proposed face quality assessment algorithm for improved accuracy and

the computational efficiency. For FR algorithm, the test set for evaluating the performance of FR

algorithm is split further into two sets G1 and G2 where each dataset plays the role of development

and evaluation set. The subjects which are used for training the CNN model is not used here to

evaluate the performance of the FR algorithm. We performed our experiment in two phases. In first

phase, G1 is considered as development set and G2 as evaluation set and roles of G1 and G2 are

reversed in second phase. By considering one group as development set (labeled set), we calculated

matched and mismatched scores. Then, we find the threshold where the sum of False Acceptance

Rate (FAR) and False Rejection Rate (FRR) is minimum i.e Minimum Error Rate. By applying

this threshold on the scores of pairs of evaluation set, recognition rate(RG2) is calculated as follows

RG2 = 0.5× [(1− FAR) + (1− FRR)]

In second phase, Recognition rate(RG1) is calculated in similar fashion and final recognition rate

(Ravg) is calculated as follows

Ravg = 0.5× (RG1 +RG2)

For subset selection, we selected a N high quality images for face recognition based on different

selection metric and characterized how different metrics improve the recognition performance. Along

with the proposed selection methods, we have considered four selection methods to compare the

performance: (1) sequential selection, (2) random selection, (3) quality assessment based on patch-

based probabilistic approach [66], (4) Learning to Rank based quality assessment[67], (5) Sparsity

based FQA (6) CNN based FQA. After face selection, the aforementioned protocol is used to compare

the results by varying N from 4 to 16 and the results are presented in Table 5.1.

From the results, we can infer that high verification performance is still achieved with subset

of faces which means that the proposed method is able to select the best subset of faces from

the sequence of faces. In patch-based probabilistic approach and Sparsity based FQA, the subset

selection assumes the face images that can be recognized by FR algorithm only when they resembles

standard faces which may not be true in all cases. Rank based approach makes use of five feature
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extraction algorithm which is an expensive step (the step which motivated the researchers to work

on subset selection). Also, they considered the same rank for all the images in a single database

which may not be the true in all cases. In the proposed CNN based FQA algorithm, we can use our

FQA implementation in conjunction with any FR algorithm and fully leverage the ability of the FR

algorithm.

Table 5.1: Video-based FR performance on the ChokePoint dataset, using LBP and MSM (higher
is better).

Subset Selection Method N=4 N=8 N=16
Sequential 0.6114 0.6174 0.6278
Random 0.6825 0.691 0.704

Probabilistic based [66] 0.7027 0.7139 0.7234
Rank based [67] 0.7328 0.7511 0.7645

Sparsity based FQA 0.701 0.7144 0.726
CNN Method FQA 0.7231 0.7519 0.7601

5.4 Conclusions and Future Work

In this chapter, we presented a novel sparsity based face quality assessment algorithm. In this,

We hypothesized that the face images that are not similar to “ideal” face loses its sparseness when

represented by dictionary constructed from “ideal face”. We quantified this change in sparsity and

assigned the ranks to faces. But we realized that quality definition should be adpative and we

were motivated by the fact that since different algorithm have different capabilities in recognition,

quality of the image should be defined with respect to the FR algorithm. To achieve this, a CNN is

used to define the quality by training its network with the score/value that depicts the performance

of the FR algorithm in consideration. By using this quality measure to sort the input sequence

and taking only high quality images we successfully demonstrated that it not only increases the

recognition accuracy but also reduces the computational complexity. From the initial results, we

strongly believe that the proposed algorithm is promising and has attractive features. As part of

future work, we plan to improve the performance of the algorithm by fine-tuning the parameters.
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