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Abstract

With India focusing even more on Aerospace applications, research and development in
compressible flow has received a boost in the country. We aim to develop a general-purpose
and robust compressible flow solver to help in the research of Aerospace problems. The
present work aims to extend the Euler Solver developed by previous post-graduate students
as part of the general purpose AnuPravaha Solver to Navier-Stokes solver and develop it
as a stand-alone compressible flow solver. The solver has been extended for laminar flows,
and in this present work viscous terms have been implemented successfully. Boundary
conditionsare are also implemented successfully for viscous flows. The Navier-Stokes solver
is tested successfully for subsonic and supersonic cases for flow over a flat-plate and other
problems and compared with analytical or numerical results from previous researchers.
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Chapter 1

Introduction

Compressible flow effects are encountered in numerous engineering applications involving
high speed flows, e.g. gas turbines, steam turbines, internal combustion engines, rocket
engines, high-speed aerodynamics, high speed propellers, gas pipe flows, etc. Special phe-
nomena such as compression shocks, entropy layers, expansion fans, flow induced noise etc.
are of fundamental scientific importance and directly affect the performance and endurance
of these engineering applications. Taking this as the motivation, the task of incorporating a
density-based solver in the Anupravaha - General purpose CFD solver was undertaken two
years ago. This solver, which was initially only for incompressible flows, has been under
continuous development since 2004 in the research group of Prof. Vinayak Eswaran. It
already has the Pressure-based solver having modules for turbulence, multiphase flows, ra-
diation problems, MHD, Solidifications and Melting, etc. To cater exclusively to aerospace
applications and for the ease of management of the solver, we have now tried to separate
out the density-based solver in a stand-alone code.

Compressible flows (in contrast to variable density flows) are those where dynamics (i.e
pressure) is the dominant factor in density change. Generally, fluid flow is considered to be
compressible if the change in density relative to the stagnation density is greater than 5%.
Significant compressible effects occur at Mach number of 0.3 and greater.

Compressible flow is divided often into four main flow regimes based on the local Mach
number (M) of the fluid flow

• Subsonic flow regime (M ≤ 0.8)

• Transonic flow regime (0.8 ≤M ≤1.2)

• Supersonic flow regime (M > 1)

• Hypersonic flow regime (M > 5)

Compressible flow may be treated as either viscous or inviscid. Viscous flows are solved
by the Navier-Stokes system of equations and inviscid compressible flows are solved by Euler
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equations. The physical behavior of compressible fluid flow is quite different from incom-
pressible fluid flow. The solutions of Euler equation are different (due to their hyperbolic
wave-like nature) from the solutions of the elliptic governing equations of incompressible
flows. Compressible flow can have discontinuous solutions in certain cases e.g vortex sheets,
contact discontinuities or shock waves. So, for compressible flows special attention is re-
quired for solution methods which will accurately capture these discontinuities.

In compressible fluid flows, properties are not only transported by the flow, but also by
the propagation of waves. This requires the construction of flux interpolations, that take
into account that transports can occur in any direction.

Thus, a major difference between solution methods for compressible flow and incompress-
ible flow lies in the boundary conditions implementation. In compressible flows, boundary
conditions are imposed based on the characteristic waves coming into the domain boundary,
which is very different from the elliptic-type boundary conditions used for incompressible
flows.

1.1 Literature review

Hirsch [1], has discussed the general methodology to analyze the nature of systems of partial
differential equations. This systematic procedure to determine the nature of equations
and the propagation of their solution is key to the understanding the implementation of
boundary conditions. Euler equations are solved in conservative form but require imposition
of boundary condition in primitive form; in Chapter 19 [2] discusses the implementation
of boundary conditions (both physical and numerical) from characteristic extrapolation for
conservative and primitive variables, along with different extrapolation methods.

All the boundary conditions have been implemented to incorporate curved surface, based
on the book of Blazek [3], and the work done in [4].

The second focus of this thesis has been the incorporation of High Resolution schemes
into the solver. The second volume of [2] discusses almost all basic numerical schemes
pertaining to Euler and Navier-Stokes equations.

Discretization of the Navier-Stokes equation using the MacCormack method can be
found in previous work [5] but it was using a finite-difference scheme, with discretization of
viscous fluxes which are forward differenced in the predictor step and backward differenced
in the corrector step. In this present work, a finite-volume method is used with central
discretization of viscous terms in both the predictor and corrector steps, compared with
the standard MacCormack discretization. The final code is a 3D structured solver using
finite-volume method.

In discretization of viscous fluxes by the old method we need gradients at the faces,
which are obtained by constructing an auxiliary control volume centered at the face [3]. An
alternative approach would be that the gradients are first evaluated for each cell (similar
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to the convective fluxes) and then averaged to obtain the gradient at the cell faces. Al-
though this approach may appear more attractive than the current methodology, it is not
recommended since it leads to strong odd-even decoupling.

Chandrasekhar [6] in his thesis explained the finite-volume discretization of viscous terms
for the momentum equations, which was also used in this work. We have discretized the
energy equation in a similar manner. In this formulation there is no odd-even decoupling.

Finding the gradients at the center can be done either by Green-Gauss or least square
cell method [3], but as the least-square cell method is more accurate than the Green-Gauss
method, this present work uses the least square method.

However, for better stability and accuracy, Assam [7] implemented the upwind-based
scheme AUSM+[8] with second order accuracy. This scheme was first presented by Liou in
1993 as Advection Upstream Splitting Method (AUSM) [9]. The scheme has went through
several revision since then, which can be found in [10].

1.2 Objective of present work

• Expanding the inviscid Eular solver to viscous laminar Navier-Stokes solver.

• Incorporating the MacCormack and AUSM+ algorithms for this solver and expanding
the boundary conditions for viscous flows in the Compressible Anupravaha solver.

• To validate this solver for different regimes of flow i.e. subsonic, transonic and in
supersonic regime.
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Chapter 2

Mathematical Nature Of Equations

And Boundary Conditions

Let us consider the system of governing differential equations for inviscid compressible flow
in primitive variable form, also known as the Euler equations, describing the conservation
of mass, momentum and energy.

u
∂ρ

∂x
+ v

∂ρ

∂y
+ ρ

∂u

∂x
+ ρ

∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂y
(2.1)

However, for the special case of irrotational compressible flow we can equivalently write
the potential flow equation as,(

1− u2

c2

)
∂2φ

∂x2
− 2uv

c2

∂2φ

∂x∂y
+
(

1− u2

c2

)
∂2φ

∂y2
= 0 (2.2)

where φ is the potential function defined by,

u =
∂φ

∂x
; v =

∂φ

∂y
(2.3)

These two sets of PDE’s describe exactly the same physics for steady irrotational flow.
But looking at the forms of the equations, they appear to be quite different, with the first
set of equations (2.1) seeming to be convection dominated, whereas the second Eq. (2.2)
seemingly diffusion dominated. Convection and diffusion are two important phenomena
in fluid mechanics, and relate to very different physical behavior. But as we know, both
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Eq. (2.1) and Eq. (2.2) describe the same physics.
So, it is clear from the above discussion that one cannot predict the behavior of the

solutions of differential equation by just looking at the form of the equations. It is not
the form of the governing equation which decides the behavior of solutions; rather, it is
the eigenvalue matrix (discussed in the next section) which determines this, and provides a
tool to analyze the nature of governing equations, independent of physical form, to tell us
something about the nature of their solutions. Thus, in these chapter we try to learn these
tools and others to develop our understanding of hyperbolic equations.

2.1 Domain of dependance and zone of influence

2.1.1 Scalar Conservation Law

To understand the propagation of information in the solutions of governing equations, con-
sider a single equation describing a conservation law:

∂w

∂t
+
∂F

∂x
= 0 w(x, 0) = w0(x) (2.4)

∂w

∂t
+

dF
dw

∂w

∂x
= 0 (2.5)

Introducing wave speed as, dF
dw = λ in the above Eq. (2.5) can also be written as,

∂w

∂t
+ λ

∂w

∂x
= 0 (2.6)

An analytical solution to above equation exists and can be found using the method of
separation of variables, and can be written as,

w(x, t) = w0(x− λt) (2.7)

The analytical solution of this equations for a constant and positive wave-speed shows
that solution is constant along the line satisfying satisfying the condition dx

dt = λ; this line is
called the characteristic. For linear PDEs the solution is constant along the characteristic,
while for non-linear PDEs the solution may vary along characteristic but it will be purely
a function of the curvilinear co-ordinate describing the characteristic. Now from Eq. (2.7),
the solution at a point for the hyperbolic systems is dependent on the previous solutions
at points lying on the same characteristic, and ultimately on the initial condition at that
characteristic at t=0. So, for a single first-order hyperbolic equation all the points on a
particular characteristic line form the domain of dependence and zone of influence of any
point on that characteristic.
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2.1.2 System of PDEs

Now, moving one step forward, consider a general 1-D unsteady system of first-order PDEs,

∂wi
∂t

+
∂Fi
∂x

= 0 (2.8)

where wi is a vector containing conservative variables

Fi is a vector containing flux associted with wi

The Eq. (2.8) can be written as,

∂wi
∂t

+ [A]
∂wi
∂x

= 0 (2.9)

where [A] is called the Jacobian (matrix).
The Jacobian in Eq. (2.9) determines the behavior of the solutions, based on the nature

of its eigenvalues. Diagonalizing the Jacobian in Eq. (2.9), we can rewrite the equation as:

∂wi
∂t

+ [Qr] [λi] [Ql]
∂wi
∂x

= 0 (2.10)

where Ql, Qr are the left and right eigenvector matrices explained through the following
relations.

For any diagonalizable matrix A, Qr is a matrix whose columns ri are right characteris-
tics vectors or right eigenvectors of A, andQl is a matrix whose rows li are left characteristics
vectors or left eigenvectors of A.

The right characteristic vectors are defined as follows:

Ari = λiri (2.11)

While less familiar, left characteristic vectors are defined in almost the same way as
right characteristic vectors, except that left characteristic vectors multiply A on the left
than on the right.

liA = λili (2.12)

Also,
[λ] = [Ql][A][Qr]

[Ql] = [Qr]−1

As mentioned earlier, the nature of λi determines the behavior of the solution. If a full
set of real non-zero eigenvalues exists then the system of equations is called Hyperbolic, if a
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full set of real eigenvalues does not exist then the system is called Parabolic and if some of
eigenvalues are complex then the system is called Elliptic.

Let us now consider a hyperbolic system. By multiplying Eq. (2.10) by [Ql] and rewriting
equation(2.10) we get

[Ql]
∂wi
∂t

+ [Ql] [Qr] [λi] [Ql]
∂wi
∂x

= 0 (2.13)

As we know,

[Ql] = [Qr]−1 (2.14)

[Ql]
∂wi
∂t

+ [λi] [Ql]
∂wi
∂x

= 0 (2.15)

Introducing new set of variables as,

δvi = [Ql] δwi (2.16)

Eq. (2.15) can be written as,

∂vi
∂t

+ [λi]
∂vi
∂x

= 0 (2.17)

where [λi] is a diagonal matrix of eigenvalues.

Now, note the simplicity of Eq. (2.17) in comparison to Eq. (2.8); unlike in the latter
equation, the equations in system (2.17) are decoupled, i.e., the solution of any one of them
is independent of the solution of others. Thus the component equations of (2.17) can thus
be solved separately and easily. Then, by inverting Eq. (2.16) we can obtain the solution
to system of Eq. (2.8).

As shown in the figure for a system of 3 equations, the information flowing along corre-
sponding characteristic lines passing through a point P determine the solution at P by the
superposition of the characteristic information. From this, it is not difficult to show that
solution at point P depends only on the solution in region APCBA and it has nothing to do
with the solution outside this region. Hence this region is termed as the domain of depen-
dence. By extending the characteristic lines beyond point P, we can say that solution at this
point is going to affect the solution in the region FPDE, hence this region is termed the zone
of influence. The point to note here is that a numerical scheme determining the solution
(for a time-step) at point P must include only points from the domain of dependence to
capture the solution correctly — failing to do this causes serious issues, mostly resulting in
the blowing up of the solution. This condition is called Courant-Friedrichs-Lewy condition
and will be discussed in the next chapter.

Depending upon the nature (positive or negative valued) of the eigenvalues, character-
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Figure 2.1: Characteristics in 3 equation system

istic information may flow from left to right or right to left (Fig. 2.1). So, the problem to
well-posed boundary conditions must be handled carefully. We will discuss this in the next
few sections.

Further discussion over characteristics can be found in the ([11], Section 2). Here, in the
following section we shall present the method to find the nature of the governing equations
for the multi-dimensional cases.

2.2 System of partial differential equation in

multi-dimensions

By direct matrix manipulation we can find out the nature of governing equation for 1-D case.
We discuss here the general method to find out the nature of governing equations applicable
for all the cases. Governing equations defining conservation laws in multi-dimensions can
be written as:

Steady state:

[A]
∂wi
∂x

+ [B]
∂wi
∂y

+ [C]
∂wi
∂z

= 0 (2.18)

Unsteady state:

[I]
∂wi
∂t

+ [A]
∂wi
∂x

+ [B]
∂wi
∂y

+ [C]
∂wi
∂z

= 0 (2.19)

Diagonalizing the Jacobian matrices, we get:
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I
∂wi
∂t

+ [Qa][λa][Qa]−1∂wi
∂x

+ [Qb][λb][Qb]−1∂wi
∂y

+ [Qc][λc][Qc]−1∂wi
∂z

= 0 (2.20)

Since, [Qa] 6= [Qb] 6= [Qc] we cannot replace, as before the conservative variables with
another set such that the equations in the system (2.18) or (2.19) gets decoupled. Therefore
a deeper analysis needs to be done to get eigenvalues and characteristic variables.

2.2.1 System of First Order Steady-State PDEs

The following steps define the procedure to identify the nature of a mathematical system.
These are taken from [1]:

Step 1: Write the system of PDEs describing the mathematical model as a

system of first order PDEs

Suppose we have n unknown variables wj , in (m + 1)-dimensional space xJ , we can
group all the variables wj in an (n × 1) vector column w and write the system of first order
PDEs under the general form:

ΣjAj
∂w

∂xj
= T j = 1, 2, 3....m+ 1

w =



w1

w2

w3

.

.

.

wn


(2.21)

where Aj are (n × n) matrices and T is a column vector of the non-homogeneous source
terms. The matrices Aj and T can depend on xj and w, but not on the derivatives of w.

Step 2: Consider a plane wave solution of amplitude Û in the space of the

independent variables x with components xj(j = 1, ...,m+ 1), defined by

w = Ûei(
−→n ·−→x ) (2.22)

where i =
√
−1, ~n is a vector in the m-dimensional space of the independent variables xj

and Û is an (n× 1) column vector.
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Step 3: Introduce this solution in the homogeneous part of the system (2.21)
and find the values of n satisfying the resulting equation.

The homogenous part of Eq. (2.21) is written as

ΣjAj
∂w

∂xj
= 0 j = 1, 2, 3....m+ 1 (2.23)

and the function (2.22) is a solution of this system of equations if the homogeneous algebraic
system of equations:

[ΣjAjnj ] Û = 0 (2.24)

has non-vanishing solutions for the amplitude Û . This will be the case if and only if the
determinant of the matrix ΣjAjnj vanishes.

Step 4: Find the n solutions of the equation

det [ΣjAjnj ] (2.25)

Eq. (2.25) defines a condition on the normals ~n. This equation can have at most n
solutions, and for each of these normals ni , the system (2.25) has a non-trivial solution.

The system is said to be hyperbolic if all the n characteristic normals ni are real and if
the solutions of the n associated systems of equations (2.25) are linearly independent. If all
the characteristics are complex, the system is said to be elliptic. If some are real and other
complex the system is classed as hybrid. If the matrix Σj [Ajnj ] is not of rank n, i.e. there
are less than n real characteristic normals then the system is said to be parabolic.

The last case will occur, for instance, when at least one of the variables, say w1 has
derivatives with respect to one coordinate, say x1 , missing. This implies that the compo-
nents A1 = 0 for all equations i.

2.2.2 Characteristic and Characteristic Surface in

Multi-dimensions

Parabolic and hyperbolic equations play an important role in CFD, due to their associa-
tion to diffusion and convection phenomena. They are recognized by the existence of real
characteristic normals, solutions of Eq. (2.25). Each of these normals ni defines therefore
normal to the surface, which is called the characteristic surface. We will show here the very
important consequences of these properties, as they have a significant effect on the whole
process of discretization in CFD.
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If we define a surface S(xj) = 0, in the (m + 1)-dimensional space of the independent
variables xj , the normal to this surface is defined by the gradient of the function S(xj), as

−→n =
∇S
‖∇S‖

(2.26)

(Henceforth, the normalizing ‖∇S‖ is to be absorbed into the function S).

What is the significance of this characteristic surface in terms of wave propagation,
referring to the plane wave solution Eq. (2.22)?

If Eq. (2.26) is introduced in the plane wave Eq. (2.22), a general representation is
defined as,

w = Ûei(
−→x ·∇S) = Ûei(xjSj) with Sj ≡

∂S

∂xj
(2.27)

If we consider the tangent plane to the surface S(xj) = 0, defined by

S(xj) = S(0) +−→x · ∇S = S(0) + xj
∂S

∂xj
= S(0) + xjnj (2.28)

we observe that along the constant values of the phase of the wave φ = −→x ·∇S, the quantity
w is constant.

Hence, we can consider that, the quantity U is propagating at a constant value in the
direction of the normal −→n .

The surface S is called a wave-front surface, defined as the surface separating the space
domain already influenced by the propagating quantity w from the points not yet reached
by the wave.

Observe that in the general case of n unknown flow quantities ui , we have n character-
istic surfaces, for a pure hyperbolic problem.

In a two-dimensional space the characteristic surface reduces to a characteristic line.
The properties w are transported along the line S(x, y) = 0 and the vectors tangent to the
characteristic line are obtained by expressing that along the wavefront:

dS = ∇S · dx =
∂S

∂x
dx+

∂S

∂y
dy = 0 (2.29)

Hence, the direction of the characteristic line in two dimensions is given by

dy
dx

= −Sx
Sy

= −nx
ny

(2.30)

In two dimensions, there are two characteristic directions for a hyperbolic equation.
Hence out of each point in the (x, y) domain, two characteristics can be defined, along
which two quantities propagate. As we have as many unknowns, at each point the solution
can be obtained from the characteristic-related quantities that have propagated from the
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boundary or initial condition to that point.
To get a physical understanding of the discussion so far we can consider unsteady in-

viscid flow. The unsteady inviscid flow equation or the unsteady Euler Equation in non-
conservation form is written as

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
= 0 (2.31)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
(2.32)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
(2.33)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
(2.34)

∂E

∂t
+ u

∂E

∂x
+ v

∂E

∂y
+ w

∂E

∂z
= −1

ρ

(
∂pu

∂x
+
∂pv

∂y
+
∂pw

∂z

)
(2.35)

By following the analysis given in Sec. 2.2, we can find that the above governing equa-
tions is hyperbolic, no matter whether the flow is locally subsonic or supersonic. More
precisely, we say the flows are hyperbolic with respect to time. (The classification of the
unsteady Euler Equations as hyperbolic with respect to time is derived in Sec 11.2.1 of [5].)
This implies that in such unsteady flows, no matter whether we have one, two, or three
spatial directions, the marching direction is always the time direction. Let us examine this
more closely to understand the marching behavior discussed before for hyperbolic partial
differential equations. For one dimensional flow, consider a point P in the xt plane shown
in Fig. 2.2. The region influenced by P is the shaded area between the two advancing char-
acteristics through P. The x-axis (t = 0) is the initial data line. The interval ab is the only
portion of the initial data along the x axis which the solution at P depends. Extending
these thoughts for two-dimensional unsteady flow, consider point P in the xyt space as
shown in Fig. 2.3. The region influenced by P and the portion of the boundary in the xy
plane upon which the solution at P depends are shown in this figure. Starting with known
initial data in the xy plane, the solution “marches”forward in time. The same extension
can be applied to the 3D case.
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Figure 2.2: Domain and boundaries for the solution of hyperbolic equations. One dimen-
sional unsteady flow. [5]

Figure 2.3: Domain and boundaries for the solution of hyperbolic equations. Two dimen-
sional unsteady flow. [5]
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2.3 Advantage of Conservation form over the non-conservation

form

The conservation and non-conservation form of the continuity equation is shown below.

Conservation form:

∂ρ

∂t
+ ~∇ · (ρ~V ) = 0

Non-Conservation form:

Dρ

Dt
+ ρ~∇ · (~V ) = 0with

D

Dt
≡ ∂

∂t
+ ~V · ~∇

The labelling of the governing equations as either conservation or non-conservation form
grew out of modern CFD, as well as concern for which method has to be preferred for a
given CFD applications. We shall state here the two perspectives for the advantage of
conservation form over the non-conservation form. The detail understanding of these can
be found in [5].

1. The conservation form of the governing equations allows to write the system of equa-
tion in a general form. Thus, it provides an ease and better organization for numerical
and computer programming.

2. Experience has shown that the conservation form of equation is better for shock-
capturing method (used in this thesis). For the non-conservation form, the computed
flow-field has unsatisfactory results. The reason for this is, the conservation form
uses flux variables as the dependent variable and because the changes in these flux
variables are either zero or small across a shock wave, the numerical quality of the
shock-capturing method will be enhanced. Whereas, the non-conservation form uses
the primitive variables as dependent variable, and one would see a large discontinuity
in them.

2.4 Boundary Condition Specification in Hyperbolic System

Boundary condition specification is an important part of any CFD problem statement and
has to be compatible with physical and numerical properties of problem.

We have already seen that information in a hyperbolic problem propagates in a specific
characteristic direction, the eigenvalue spectrum of the Jacobian matrix defines how infor-
mation is going to propagate. Hence for a hyperbolic problem to be well-posed we cannot
specify general boundary conditions on all boundaries. Rather, the following questions have
to be answered:

14



1. How many boundary conditions have to be imposed at a given boundary?

2. What are the boundary conditions that have to be imposed at the boundary?

3. How are the remaining variables (i.e., those without BCs) to be handled at the bound-
ary?

In this section we will discuss only the answer to the first question pertaining to the Euler
problem.The five eigenvlaues of the system, which correspond to the speed of propagation
of five characteristic quantities, are given by,

−→u ·
−→
k

k
,

−→u ·
−→
k

k
,

−→u ·
−→
k

k
,

−→u ·
−→
k

k
+ c,

−→u ·
−→
k

k
− c

where c is the local sonic speed. [1]
The derivation for the above eigenvalues can be found in the Section of 11.2.1 of [5].

Since, the transport properties at a surface are determined by the normal components of
the fluxes, the number and type of conditions at a boundary of a multi-dimensional domain
will be determined by the propagation of waves with the following speeds:

λ1 = −→u · ên = vn

λ2 = −→u · ên = vn

λ3 = −→u · ên = vn

λ4 = −→u · ên + c = vn + c

λ5 = −→u · ên − c = vn − c

where vn is the inward normal velocity component at the considered surface, coming into the
computational domain. The first three eigenvalues correspond to the entropy and vorticity
waves, while the two remaining eigenvalues, are associated with acoustic waves. This defines
a locally quasi-one-dimensional propagation of information and we can therefore look at
how the propagation behaves at a boundary, from the the sign of these eigenvalues at the
boundary.

The key to the understanding of the issue of the number of boundary conditions that
are needed at the boundary is that characteristics convey information in the (n− t) space
formed by the local normal direction and time. When information is propagated from out-
side into the computational domain, it means that this information has to obtained by a
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boundary condition; this occurs when the eigenvalue λ is positive, and a physical boundary
condition has to be imposed. On the other hand, when the eigenvalue λ is negative and
the propagation occurs from the interior of the domain towards the boundary, this means
that a boundary condition cannot be imposed from the outside. Such variable will be han-
dled through “numerical boundary conditions”, by extrapolating interior information to the
boundary.

In summary, the number of physical conditions to be imposed at a boundary with in-
ward normal vector −→n , pointing into the computational domain, is defined by the number
of characteristics entering the domain.

2.5 Closure

In this chapter we saw very basic properties of system of partial differential equations with
emphasis on the hyperbolic type. These properties must be understood before implementing
boundary conditions, to avoid ill-posedness of system.

We saw how information flows along with characteristic in hyperbolic systems and we
used this information to determine the number of variables to be assigned at the boundary,
based on direction of characteristic waves, i.e. whether the characteristic is flowing into
the domain or out of the domain. Also, we saw the advantage of the conservation form of
governing equation over the non-conservation form for hyperbolic system.
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Chapter 3

Navier Stokes Equations,

Boundary Conditions and CFL

Criterion

3.1 A Short Description of Navier-Stokes Equations

The Navier-Stokes equations represent in three dimensions a system of five equations for
the five conservative variables ρ, ρu, ρv, ρw, and ρE. But they contain seven unknown
flow field variables, namely: ρ, u, v, w, E, p, and T. Therefore, we have to supply two
additional equations, the first is the equation of state which prescribes the thermodynamic
relations between the state variables, the second is an equation relating the total energy,
E with the temperature, T. For example, for an ideal gas the pressure can be expressed
as a function of the density and temperature Eq. 3.8, and the total energy as a function
of the temperature Eq. 3.9. Beyond this, we have to provide the viscosity coefficient µ
and the thermal conductivity coefficient k as functions of the state of the fluid. Clearly,
the relationships depend on the kind of fluid being considered. In the following, we shall
therefore show methods of closing the equations for two commonly encountered situations.
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System of Navier-Stokes Equations in Conservative Form:

∂

∂t
(ρ) +

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0 (3.1)

∂

∂t
(ρu) +

∂

∂x
(ρu2 + p− τxx) +

∂

∂y
(ρuv − τxy) +

∂

∂z
(ρuw − τxz) = 0 (3.2)

∂

∂t
(ρv) +

∂

∂x
(ρuv − τyx) +

∂

∂y
(ρv2 + p− τyy) +

∂

∂z
(ρvw − τyz) = 0 (3.3)

∂

∂t
(ρw) +

∂

∂x
(ρuw − τyz) +

∂

∂y
(ρvw − τyy) +

∂

∂z
(ρw2 + p− τzz) = 0 (3.4)

∂

∂t
(Et) +

∂

∂x
((Et + p)u+ qx − uτxx − vτxy − wτxz) (3.5)

+
∂

∂y
((Et + p)v + qy − uτyx − vτyy − wτyz) (3.6)

+
∂

∂z
((Et + p)v + qy − uτzx − vτzy − wτzz) = 0 (3.7)

where,

P = ρRT (3.8)

Et = ρe = ρ(CvT +
u2 + v2 + w2

2
) (3.9)

The mathematical nature of the steady and unsteady Navier-Stokes equations is stated
below.

• Compared to the Euler equations, the presence of viscosity and heat conduction trans-
forms the conservation laws of momentum and energy into second-order partial dif-
ferential equations.

• The unsteady continuity equation is hyperbolic, for compressible flow where it is
considered as an equation for the density, on the other hand, the steady continuity
equation is elliptic.

• Unsteady momentum and energy equations are parabolic and steady momentum and
energy equations have elliptic behavior.

• The coupled system of the Navier-Stokes equations is therefore a hybrid system, being
parabolic-hyperbolic for the unsteady case but becoming elliptic for the stationary
formulation.

From the computational point of view, usually we are more interested in steady state
than transient solutions. Therefore, while solving the steady state equations we have to
check for the sonic condition, as the numerical schemes for each type of PDE are different.
Till date no scheme has been developed which can work well for all these types of PDEs. So
there need to be completely separate modules to be developed for subsonic and supersonic
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flows, while for transonic flows it would be even more difficult to obtain solutions since the
domain will contain all three types of PDEs.

Thus, by just the addition of the temporal dimension in this system of equations makes
it hyperbolic, parabolic independent of the speed of flow. Therefore, even if we are interested
in only in the steady state solution, it is best to solve the transient set of equations to steady
state. This is called the false-transient approach and is used in this work.

3.2 Boundary Condition Treatment In Terms of Primitive

Variables

In the preceding chapter we have seen how boundary condition specification is different for
hyperbolic problems compared to that of parabolic and elliptic problems, and have seen how
the flow of characteristics into or out of the computational domain affects the specification
of the boundary conditions.

Extending the thoughts developed in Sec. 2.4 and referring the literature [1, 2] we can
present the following table and implementation of boundary condition for Navier-Stokes
equations. This way we answer all the three questions required for the specification of
boundary conditions. Namely,

1. How many boundary conditions should be specified?

2. What boundary conditions should be specified?

3. What boundary conditions will have a numerical boundary condition?1

The answer to the first question depends upon on the number of characteristics that enter
into the domain at a boundary. The following table summarises the number of physi-
cal/numerical B.C. specification in 3D Navier-Stokes equations.

The second question will be answered in the following subsection.

3.2.1 Implementation of Boundary Conditions

For implementing the boundary condition for the structured grid arrangement, we use
the fictitious cell with zero-volume approach. The value of the fictitious cell is updated
using the value calculated at the boundary directly. But this, method has to be reviewed,
for inhomogeneous Neumann conditions at the boundary. Under such condition, for non-
orthogonal grid, taking fictitious cell-center at the face center will lead to complexity. One
has to take into account the cross-diffusion terms also.

1Which not an actual boundary conditions, but is prescribed for variables, to obtain the numerical
solution.
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Type Sub-sonic
No of +ve Eigen values No of physical BC No of Numerical B.C

Inflow Five Five Zero
Outflow One One Four

Super-sonic
No of +ve Eigen values No of physical BC No of Numerical B.C

Inflow Five Five Zero
Outflow Zero Zero Five

Wall
No of +ve Eigen values No of physical BC No of Numerical B.C

Four Four One

Table 3.1: No of boundary condition to be fixed on boundary in the Navier-stokes system
of equations.

The characteristic variables has to be defined in terms of the primitive variables and
using them we have to specify the boundary conditions. The detail is very interesting and
can be found in [4]. The boundary condition used in this thesis is based on these concepts.

The two basic flow situations at the boundary is sketched in the Fig. 3.1.

Figure 3.1: Flow Situation at boundary: inflow (a) and outflow (b) situation. Position a
is outside, b on the boundary, and the position d is inside the physical domain. The unit
normal vector ~n = [nx, ny, nz]T points out of the domain.[3]
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3.2.2 Inflow BC

Subsonic and Supersonic Inflow

When the flow is either supersonic or subsonic, all boundary conditions are physical. The
conservative variables on the boundary (point b in Fig. 3.1) are determined by free-stream
values only.

3.2.3 Outflow BC

Subsonic Outflow

It requires only one physical boundary conditions, the others have to be numerical boundary
conditions. The most appropriate physical condition, particularly for internal flows and
corresponding to most experimental situations, consists in fixing the downstream static
pressure. This can also be applied for external flow problems. The following numerical
formulation is used:

pb = pa

ρb = ρd +
(pb − pa)

c2
o

ub = ud + nx
(pd − pb)
ρoco

vb = vd + ny
(pd − pb)
ρoco

wb = wd + nz
(pd − pb)
ρoco

(3.10)

with pa being the prescribed static pressure.
A point to be considered is that when imposing a constant pressure at a subsonic exit

section, one actually allows perturbation waves to be reflected at the boundaries. The
non-reflecting boundary condition [12, 13] expresses the physical boundary condition as
the requirement that the local perturbations propagated along incoming characteristics be
made to vanish. We use the work of Rudy [14] to implement the non-reflecting boundary
condition. It has the following form.

∂u

∂t
− 1
ρbab

pn+1
b − pnb

∆t
− α

ρa
(pn+1
b − p∗b) = 0 (3.11)

where,

α =


0.25 for M ≥ 0.7

0.6 for 0.5 ≤M ≤ 0.7

1 otherwise
,

21



p∗b is the constant pressure imposed at the subsonic exit section and ab is the sonic speed.

Supersonic Outflow

When the flow is supersonic at outflow, all the conservative variables at the boundary must
be determined from the solution inside the boundary.

3.2.4 Wall (or Solid) Boundary

For a viscous fluid which passes a solid wall, the relative velocity between surface and fluid is
zero. In the case of stationary wall all the velocity components are zero. i.e., u=0;v=0;w=0;

3.2.5 Symmetry Boundary Conditions

We apply the Neumann boundary condition on characteristic variables to update value of
the boundary slabs corresponding to symmetry boundaries.

Numerical boundary conditions: We end this section with the discussion on how
to implement the numerical boundary conditions. This is particularly important for solid
walls, where we want to determine the pressure variations. The simplest way is to take
the value at the cell centre of the associated cell. This is a zero-order extrapolations. We
can also apply volume extrapolation using the inside two cells. This is first-order and thus
supposedly more accurate. Through numerical experiments we have found that the linear
extrapolation esp. at wall and symmetry plane can lead to divergence in the solution.

3.3 CFL Condition

For viscous flows, the spectral radii of the viscous flux Jacobians have to be included in the
computation of ∆t. They can severely limit the maximum time step in boundary layers.
The time step[3] ,

∆ti = CN
Ω

(Λ̂Ic + Λ̂Jc + Λ̂Kc ) + C1(Λ̂Iv + Λ̂Jv + Λ̂Kv )

∆ti is calculated at the cell center.
The spectral radii of the convective flux Jacobians for the three grid directions,

Λ̂Ic =
(∣∣−→v · −→n I

∣∣+ c
)

∆SI

Λ̂Jc =
(∣∣−→v · −→n J

∣∣+ c
)

∆SJ

Λ̂Kc =
(∣∣−→v · −→n K

∣∣+ c
)

∆SK
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If we assume that an eddy-viscosity turbulence model is employed, the viscous spectral radii
are given by,

Λ̂Iv = max

(
4
3ρ
,
ν

ρ

)(
µL
PrL

+
µT
PrT

)
(∆SI)2

Ω

and similarly for the other directions.
The constant which multiplies the viscous spectral radii is usually set as C1 = 4 for

central spatial discretization, C1 = 2 for first-order upwind and C1 = 1 for second-order
upwind discretization.

The symbol µL denotes the laminar and µT the turbulent dynamic viscosity coefficient,
respectively. Furthermore, PrL and PrT are the laminar and the turbulent Prandtl num-
bers.
If the flow is laminar we can neglect turbulent properties,

Λ̂Iv = max

(
4
3ρ
,
ν

ρ

)(
µL
PrL

)
(∆SI)2

Ω

∆t = min(∆ti)

3.4 Closure

In this chapter we have set up the basic governing equations we use for the study of viscous
compressible flows. The boundary conditions described in the previous chapter have been
implemented. Finally, we have discussed the criteria for the calculation of the time-step,
based on the CFL criterion.
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Chapter 4

Numerical Methodology For

Navier-Stokes Equations

4.1 Numerical Schemes.

Diffusive processes affecting flow due to viscosity and thermal conductivity are included by
the N-S system of equations. As the Reynolds number increases, boundary layers are formed
and the laminar flow undergoes a transition toward turbulence. In high Reynolds number
and high Mach number flows, shock waves and turbulent boundary layer interactions are
most likely to occur.

In the present work, The MacCormack scheme has been chosen to solve Navier-Stokes
equations, since it is a very robust and tested scheme. We have also implemented the
upwind method for the convective term in the N-S equations, by incorporating the AUSM+
scheme in the solver. These convective schemes will be discussed in this chapter later on.

Important techniques used in the solvers are listed below. These will be explained in
detail in this section.

1. Discretization of convective terms

(a) MacCormack scheme

(b) AUSM+ -up

2. Discretization of Diffusive terms

(a) Diffusive formulation

3. Gradient discretization at the cell center

(a) Least square’s method

24



4.2 Governing Equations

The system of Navier-Stokes and Energy equations which describes the viscid compressible
fluid motion can be presented in conservation form as,

∂

∂t
(ρ) +

∂

∂x
(ρu) +

∂

∂y
(ρv) +

∂

∂z
(ρw) = 0 (4.1)

∂

∂t
(ρu) +

∂

∂x
(ρu2 + p− τxx) +

∂

∂y
(ρuv − τxy) +

∂

∂z
(ρuw − τxz) = 0 (4.2)

∂

∂t
(ρv) +

∂

∂x
(ρuv − τyx) +

∂

∂y
(ρv2 + p− τyy) +

∂

∂z
(ρvw − τyz) = 0 (4.3)

∂

∂t
(ρw) +

∂

∂x
(ρuw − τzx) +

∂

∂y
(ρvw − τzy) +

∂

∂z
(ρw2 + p− τzz) = 0 (4.4)

∂

∂t
(Et) +

∂

∂x
((Et + p)u+ qx − uτxx − vτxy − wτxz)

+
∂

∂y
((Et + p)v + qy − uτyx − vτyy − wτyz)

+
∂

∂z
((Et + p)v + qy − uτzx − vτzy − wτzz) = 0 (4.5)

where P = ρRT ,Et = ρE, E = CvT + u2+v2+w2

2 , H = E + P
ρ

τxx = 2µ
∂u

∂x
− 2

µ

3
(∇ · V ), τyy = 2µ

∂v

∂y
− 2

µ

3
(∇ · V ), τzz = 2µ

∂w

∂z
− 2

µ

3
(∇ · V )

∇ · V =
∂u

∂x
+
∂v

∂y
+
∂w

∂z

τxy = µ

(
∂u

∂y
+
∂v

∂x

)
= τyx

τyz = µ

(
∂u

∂z
+
∂w

∂x

)
= τyz

τzx = µ

(
∂u

∂z
+
∂w

∂x

)
= τxz

qx = −k∂T
∂x

, qy = −k∂T
∂y

, qz = −k∂T
∂z
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4.2.1 Viscous Terms for X-Momentum:

∂

∂x
(τxx) +

∂

∂y
(τxy) +

∂

∂z
(τxz)

=
∂

∂x

[
2µ
∂u

∂x
+ λ(∇ · V )

]
+

∂

∂y

[
µ

(
∂u

∂y
+
∂v

∂x

)]
+

∂

∂z

[
µ

(
∂u

∂z
+
∂w

∂x

)]
=

∂

∂x

(
µ
∂u

∂x

)
+

∂

∂y

(
µ
∂u

∂y

)
+

∂

∂z

(
µ
∂u

∂z

)
+

∂

∂x

(
µ
∂u

∂x

)
+

∂

∂x
(λ∇ · V ) +

∂

∂y

(
µ
∂v

∂x

)
+

∂

∂z

(
µ
∂w

∂x

)
= ∇ · µ∇u+

∂

∂x

(
µ
∂u

∂x

)
+

∂

∂x
(λ∇ · V ) +

∂µ

∂y

∂v

∂x
+ µ

∂2v

∂y∂x
+
∂µ

∂z

∂w

∂x
+ µ

∂2w

∂z∂x

= ∇ · µ∇u+
∂

∂x

(
µ
∂u

∂x

)
+

∂

∂x
(λ∇ · V ) +

∂µ

∂y

∂v

∂x
+
∂µ

∂z

∂w

∂x
+

∂

∂x

(
µ
∂v

∂y

)
− ∂µ

∂x

∂v

∂y
+

∂

∂x

(
µ
∂w

∂z

)
− ∂µ

∂x

∂w

∂z

= ∇ · µ∇u+
∂

∂x

[
µ

(
∂u

∂x
+
∂v

∂y
+
∂w

∂z

)]
+

∂

∂x
(λ∇ · V ) +

∂µ

∂y

∂v

∂x
+
∂µ

∂z

∂w

∂x
− ∂µ

∂x

∂v

∂y
− ∂µ

∂x

∂w

∂z

= ∇ · µ∇u+
∂

∂x
[(µ+ λ)∇ · V ] +

[
∂µ

∂y

∂v

∂x
+
∂µ

∂z

∂w

∂x
− ∂µ

∂x

∂v

∂y
− ∂µ

∂x

∂w

∂z

]
= ∇ · µ∇u+

∂

∂x

(µ
3
∇ · V

)
+
[
∂µ

∂y

∂v

∂x
+
∂µ

∂z

∂w

∂x
− ∂µ

∂x

∂v

∂y
− ∂µ

∂x

∂w

∂z

]
Performing a similar expansion for Y and Z momentum equations, the Navier-Stokes equa-
tion can be written as,
U-Momentum

∂

∂t
(ρu) +

∂

∂x
(ρu2) +

∂

∂y
(ρuv) +

∂

∂z
(ρuw) = −∂p

∂x
+ (∇ · µ∇u) +

∂

∂x

(µ
3
∇ · V

)
+
∂µ

∂y

∂v

∂x
+
∂µ

∂z

∂w

∂x
− ∂µ

∂x

∂v

∂y
− ∂µ

∂x

∂w

∂z

V-Momemtum

∂

∂t
(ρv) +

∂

∂x
(ρuv) +

∂

∂y
(ρv2) +

∂

∂z
(ρvw) = −∂p

∂y
+ (∇ · µ∇v) +

∂

∂y

(µ
3
∇ · V

)
+
∂µ

∂x

∂u

∂y
+
∂µ

∂z

∂w

∂y
− ∂µ

∂y

∂u

∂x
− ∂µ

∂y

∂w

∂z

W-Momemtum

∂

∂t
(ρw) +

∂

∂x
(ρuw) +

∂

∂y
(ρvw) +

∂

∂z
(ρw2) = −∂p

∂z
+ (∇ · µ∇w) +

∂

∂z

(µ
3
∇ · V

)
+
∂µ

∂x

∂u

∂z
+
∂µ

∂y

∂v

∂z
− ∂µ

∂z

∂u

∂x
− ∂µ

∂z

∂v

∂y
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4.2.2 Viscous Dissipation Term in Energy equation

∂

∂x
(uτxx + vτxy + wτxz) +

∂

∂y
(uτyx + vτyy + wτyz) +

∂

∂z
(uτzx + vτzy + wτzz)

=
∂u

∂x
τxx +

∂v

∂x
τxy +

∂w

∂x
τxz + u

∂

∂x
(τxx) + v

∂

∂x
(τxy) + w

∂

∂x
(τxz)

+
∂u

∂y
τyx +

∂v

∂y
τyy +

∂w

∂y
τyz + u

∂

∂y
(τyx) + v

∂

∂y
(τyy) + w

∂

∂y
(τyz)

+
∂u

∂z
τzx +

∂v

∂z
τzy +

∂w

∂z
τzz + u

∂

∂z
(τzx) + v

∂

∂z
(τzy) + w

∂

∂z
(τzz)

=
∂u

∂x
τxx +

∂v

∂x
τxy +

∂w

∂x
τxz + u(

∂

∂x
(τxx) +

∂

∂y
(τyx) +

∂

∂z
(τzx))

v(
∂

∂x
(τxy) +

∂

∂y
(τyy) +

∂

∂z
(τzy)) + w(

∂

∂x
(τxz) +

∂

∂y
(τyz) +

∂

∂z
(τzz))

+
∂u

∂y
τyx +

∂v

∂y
τyy +

∂w

∂y
τyz +

∂u

∂z
τzx +

∂v

∂z
τzy +

∂w

∂z
τzz

=u(viscous part of u-momentum)+v(viscous part of v-momentum)+w(viscous part of w-
momentum)+derivative terms.

Final governing equations:

∂ρ

∂t
+
∂(ρu)
∂x

+
∂(ρv)
∂y

+
∂(ρw)
∂z

= 0 (4.6)

∂(ρu)
∂t

+
∂(ρu2 + P )

∂x
+
∂(ρuv)
∂y

+
∂(ρuw)
∂z

= (∇ · µ∇u) +
∂

∂x

(µ
3
∇ · V

)
+
∂µ

∂y

∂v

∂x
+
∂µ

∂z

∂w

∂x
− ∂µ

∂x

∂v

∂y
− ∂µ

∂x

∂w

∂z
(4.7)

∂(ρv)
∂t

+
∂(ρvu)
∂x

+
∂(ρv2 + P )

∂y
+
∂(ρvw)
∂z

= (∇ · µ∇v) +
∂

∂y

(µ
3
∇ · V

)
+
∂µ

∂x

∂u

∂y
+
∂µ

∂z

∂w

∂y
− ∂µ

∂y

∂u

∂x
− ∂µ

∂y

∂w

∂z
(4.8)

∂(ρw)
∂t

+
∂(ρwu)
∂x

+
∂(ρwv)
∂y

+
∂(ρw2 + P )

∂z
= (∇ · µ∇w) +

∂

∂z

(µ
3
∇ · V

)
+
∂µ

∂x

∂u

∂z
+
∂µ

∂y

∂v

∂z
− ∂µ

∂z

∂u

∂x
− ∂µ

∂z

∂v

∂y
(4.9)
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∂(ρE)
∂t

+
∂(ρuH)
∂x

+
∂(ρvH)
∂y

+
∂(ρwH)
∂z

= (∇ ·K∇T ) + uFdu + vFdv + wFdw

+
∂u

∂x
τxx +

∂v

∂x
τxy +

∂w

∂x
τxz +

∂u

∂y
τyx +

∂v

∂y
τyy +

∂w

∂y
τyz +

∂u

∂z
τzx +

∂v

∂z
τzy +

∂w

∂z
τzz (4.10)

Fdu, Fdv, Fdw are viscous terms in x, y and z momentum equations.

4.3 Discretization of Governing Equation

The equations Eq. 4.6 to Eq. 4.10 can be written in compact form as

∂ {w}
∂t

+
∂ {Fx}
∂x

+
∂ {Fy}
∂y

+
∂ {Fz}
∂z

− Fd = 0 (4.11)

Fx, Fy, Fz are the convective fluxes and Fd is the diffusive flux.

w ≡



ρ

ρu

ρv

ρw

ρE



Fx ≡



ρu

ρu2 + P

ρuv

ρuw

ρuH


, Fy ≡



ρv

ρuv

ρv2 + P

ρvw

ρvH


, Fz ≡



ρw

ρuw

ρvw

ρw2 + P

ρwH



Fd ≡



0
R.H.S of the u-momentum (4.7)
R.H.S of the v-momentum(4.8)
R.H.S of the w-momentum(4.9)

R.H.S of the Energy(4.10)


Note that the Fx, Fy, Fz column vectors are used just for notational convenience. Now for
an arbitrary component of w, wi we can write,

∂wi
∂t

+∇ · Fi − Fdi = 0 (4.12)

where each row i respectively represents the governing continuity, momentum, energy equa-
tion equations.

The finite volume method uses the integral form of the equations while the governing
equation above is in differential form. The corresponding integral form of the equation can
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be obtained by taking the integral of the equation over a control volume.∮
V

(
∂wi
∂t

+∇ · Fi − Fdi

)
dV = 0 (4.13)

where V is the fluid domain under analysis. Using the divergence theorem,
∮
V ∇ ·

−→v dV =∮
S
−→v · d

−→
S , we get

∮
V

∂wi
∂t

dV +
∮
S

Fi · d
−→
S −

∮
V

FdidV = 0

Assuming the control volume is not changing with time, the equation can be written as,

∂

∂t

∮
V
widV +

∮
S

Fi · d
−→
S −

∮
V

FdidV = 0

The equation can be divided into the temporal, convective parts, diffusion parts as
shown, and we will now do the finite volume discretization of each part to get the full dis-
cretized equation.

∂

∂t

∮
V
widV︸ ︷︷ ︸

TemporalPart

+
∮
S

Fi · d
−→
S︸ ︷︷ ︸

ConvectivePart

−
∮
V

FdidV︸ ︷︷ ︸
DiffusionPart

= 0

Let,
∮
V

FddV = FD

The control volume V can be arbitrarily chosen so we use the above equation for each
of the finite-volume cells of a chosen grid spanning the entire computational domain. The
shape of the finite volume cells are the user’s choice. The numerical results obtained from
hexahedral elements are more accurate than that obtained from any other element like
triangular prism, pyramid or polyhedral. And it is easy to create a structured grid from
hexahedral elements rather than use of any other prismatic shaped element. Thus, we use
non-orthogonal hexahedral elements, as shown in the figure, having east, west, north, south,
top and bottom faces.

Temporal term: It is assumed the volume averaged value of conservative variable can
be written for the pth cell as:

1
Vp

∮
Vp

wdV = wp

thus,
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Figure 4.1: Finite volume cell

∮
Vp

wdV = Vpwp

where, Vp is the volume of the pth cell, and wp is the value of w at the cell-center(centroid).

Using this volume averaged value we can get the discretized form of the temporal term
as:

∂wi
∂t

= Vp
wn+1
p − wnp

∆t

Convective term: In the convective term, the integral is carried out over the full
surface of the control volume, without any approximation it can be divided into six parts
over the east(e), west(w), north(n), south(s), top(t) and bottom(b) faces as follows:

∮
S

−→
Fi · d

−→
S =

∮
e

−→
Fi · d

−→
S e +

∮
w

−→
Fi · d

−→
S w +

∮
n

−→
Fi · d

−→
S n +

∮
s

−→
Fi · d

−→
S s+∮

t

−→
Fi · d

−→
S t +

∮
b

−→
Fi · d

−→
S b

where each face integral can be divided, without approximation, into 3 scalar parts:
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∮
Sf

−→
Fi · d

−→
S f =

∮
S
FixdSx +

∮
S
FiydSy +

∮
S
FizdSz

The value of the flux variable may change over the surface. For each scalar component,
we now approximate the surface averaged value of the variable by its face-centroid value
Fif .
Therefore we can write, ∮

Sf

−→
Fi · d

−→
S f = FixSfx + FiySfy + FizSfz

where Sfi is the ith component of face vector
−→
S f . Repeating the procedure for each of the

faces we can write

∮
Sf

−→
F · d

−→
S f = FexSex + FeySey + FezSez + FwxSwx + FwySwy + FwzSwz

+ FnxSnx + FnySny + FnzSnz + FsxSsx + FsySsy + FszSsz

+ FtxStx + FtySty + FtzStz + FbxSbx + FbySby + FbzSbz

Now, putting the discretized temporal, convective and diffusive terms together, the
Navier-Stokes equations can be written in discretized form as:

Vp
wn+1
ip − wnip

∆t
= −

∑
f

(FifxSfx + FifySfy + FifzSfz)
n + FniD (4.14)

So, while discretizing the equation the following approximations are considered:

1. The volume-average value of the variable is approximated by its cell-center value.

2. The surface-average value of the variable on a cell-face is approximated by its face-
center value.

3. Second-order time variation is neglected.

4. The faces of the cell are taken to be flat.

The approach used here for space discretization (dividing the domain into small finite-
volume cells) is the cell-centered approach because of its various advantages for a general-
purpose finite-volume solver. Therefore, the data-structure used for the discretized equation
stores the cell-values in its solution array. But the discretized equation also requires the
surface averaged value at the six faces of each cell. To get the variable face values from cell
center values we need some interpolation function. Since, we are dealing with a convective
equation whose nature is quite different from a diffusion equation, the interpolation function
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should give greater weight to upwind than to downwind values, in estimating the variable
value at any given point.

4.4 MacCormack Scheme in FVM

The MacCormack scheme [5] in the finite volume methodology is described below. Rewriting

Figure 4.2: Finite volume grid

discretized equation (4.14)

Vp
wn+1
ip − wnip

∆t
= −

∑
f

(FifxSfx + FifySfy + FifzSfz)
n + FniD (4.15)

and assuming step 1 as forward differenced and step 2 as backward differenced, the finite
volume discretization can be written as,
Step 1: Predictor Step

w∗iP = wnip −
∆t
Vp

(FniExSex + FniEySey + FniEzSez + FniPxSwx + FniPySwy + FniPzSwz

+ FniNxSnx + FniNySny + FniNzSnz + FniPxSsx + FniPySsy + FniPzSsz

+ FniTxStx + FniTySty + FniTzStz + FniPxSbx + FniPySby + FniPzSbz)

+
∆t
Vp

(FniD) (4.16)

Step 2: Corrector Step
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w∗∗ip = w∗ip −
∆t
Vp

(F ∗iPxSex + F ∗iPySey + F ∗iPzSez + F ∗iWxSwx + F ∗iWySwy + F ∗iWzSwz

+ F ∗iPxSnx + F ∗iPySny + F ∗iPzSnz + F ∗iSxSsx + F ∗iSySsy + F ∗iSzSsz

+ F ∗iPxStx + F ∗iPySty + F ∗iPzStz + F ∗iSxSbx + F ∗iSySby + F ∗iSzSbz)

+
∆t
Vp

(F ∗iD) (4.17)

and the new time-level value can be calculated as:

wn+1
iP =

wniP + w∗∗iP
2

(4.18)

We see above that we have applied forward difference step in the predictor step and
backward difference in the corrector step for convective terms. We can apply the same in
reverse also. The left running waves are better captured by the former one, whereas the
right running waves are better captured by the second version. To avoid favoring either left-
or right-running waves, the two versions are often combined, reversing the order of FTBS
and FTFS after every time-steps ([15], Pg.361). But, the diffusion term is same in both
predictor and corrector steps. Since the MacCormack scheme is second order accurate in
space and time, oscillations are observed in solution having abrupt step-changes in value.
The amplitude of oscillation depends upon the magnitude of the change; often this causes
the variable to crosses the CFL condition and the solution gets blown to infinity. To avoid
such oscillations and to get physically acceptable solutions, we need to add a small amount
of diffusion in the governing equation which is discussed in the next section.

4.4.1 Artificial Viscosity

The MacCormack method operates satisfactorily in the regions where the variations of
properties is smooth. But there is oscillations occurring around discontinuities, i.e. around
a shock wave or in the boundary layer. So, artificial smoothing terms must be introduced,
to damp these oscillations.

From the basic CFD we know that modified equation of a PDE gives us some information
on the behaviour to be expected of the numerical solution of the difference equation. The
modified equation for the one-dimensional wave equation given by

∂u

∂t
+ a

∂u

∂x
= 0 (4.19)
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is shown below

∂u

∂t
+ a

∂u

∂x
=
a∆x

2
(1− ν)

∂2u

∂x2
+
a(∆x)2

6
(3ν − 2ν2 − 1)

∂3u

∂x3

+O[(∆t)3, (∆t)2(∆x), (∆t)(∆x)2, (∆x)3]
(4.20)

The dissipative term in the above equation, i.e., even-order derivative terms ∂2u
∂x2 is actually

the artificial viscosity term implicitly embedded in the numerical scheme. It prevents the
solution from going unstable due to the oscillations caused by the dispersive terms i.e. odd-
order derivative terms ∂3u

∂x3 . But for variable velocity problems, the MacCormack scheme
often does not have enough artificial viscosity implicitly in the algorithm, and the solution
will become unstable unless more artificial viscosity is added explicitly to the calculation,
which makes the solution more inaccurate. Therefore, there is a trade off involved. The
artificial viscosity formulation is explained in Appendix A. Next we present in the following
subsection Sec. 4.4.2 the MacCormack algorithm which has been implemented in this solver.

4.4.2 MacCormack Algorithm

1. Initialization of variables.

2. Predictor step for all five equations (Find conservative variables) using previous solu-
tion variables. Eq. 4.16.

3. Calculate the primitive variables (u,v,w,p,T) for predictor step, and applying the
boundary conditions for primitive variables.

4. Corrector step for all five equations (Find conservative variables) Eq. 4.18 using pre-
dictor solution variables.

5. Calculate the primitive variables (u,v,w,p,T) for corrector step, and applying the
boundary conditions for primitive variables.

6. Accepting corrector step variables as current step flow solution.

7. Checking the convergence criteria.

4.5 Advection Upstream Splitting Method (AUSM)

AUSM is developed as a numerical inviscid flux function for solving a general system of con-
servation equations and especially it is used to simulate hyperbolic conservations equations.
It is based on the upwind concept and was motivated to provide an alternative approach to
other upwind methods, such as the Godunov method, flux difference splitting methods by
Roe, and Solomon and Osher, flux vector splitting methods by Van Leer, and Steger and
Warming. It was first presented by Liou and Steffen [9].
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We present here the AUSM+-up of Liou (2006) [8]. The token used “-up”will be clear
after the scheme formulation is made. The scheme relies on splitting the convective flux
vector F into a convective component F(c) and a pressure component F(p). For the x-split
three dimensional flux we have

F(w) =



ρu

ρu2 + P

ρuv

ρuw

ρu(E + P )


=



ρu

ρu2

ρuv

ρuw

ρuH


+



0
P

0
0
0


≡ F(c) + F(P ) (4.21)

where, w represents conservative variables.
By introducing the Mach number and enthalpy

M = u
a , H = E+P

ρ

we write,

F(c) = M



ρa

ρau

ρav

ρaw

ρaH


≡M F̂

(c)
(4.22)

The face straddles two neighboring cells labeled by subscripts “L”and “R”, respectively,
namely left and right of the interface. The values of various variable at the face is denoted
by subscript “1/2”. In defining the flux at face (say F1/2), the scheme take

F1/2 = F(c)
1/2 + F(p)

1/2 (4.23)

where the convective flux component is given by

F(c)
1/2 = M1/2[F̂

(c)
]1/2 (4.24)

with definition

[•]1/2 =

[•]L if M1/2 ≥ 0

[•]R if M1/2 < 0

The flux vector in Eq. 4.24 is upwinded as per the sign of face Mach number M1/2. The
convective terms are upstream-biased using the velocity implied in the face Mach Number.
For this reason Liou and Steffen call their scheme AUSM, which stands for Advection
Upstream Splitting Method.

The face Mach number is given by the splitting
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M1/2 = M+
L +M−R (4.25)

with the positive and negative component yet to be defined. The splitting of the pressure
flux components depends on the splitting of the pressure itself, namely

P1/2 = P+
L + P−R (4.26)

For the splitting of Mach number and pressure we follow the formulation presented in
Liou (2006) [8]. The objective of doing this was to make the earlier version of AUSM to be
uniformly valid for all speed regimes.

The final algorithm for flux calculation is given as follows AUSM+ − up.

1. We define

ML = VL
a1/2

, MR = VR
a1/2

where, Vi = ~Vi · n̂

The corresponding speed of sound at the interface is given by

a1/2 = aL+aR
2 or, a1/2 = min(âi, âR)

where, âi = a∗L
max(a∗L,VL) , âR = a∗R

max(a∗R,−VR)

where, a∗ is defined as the speed of sound based on total enthalpy(Ht). And is given

as a∗ =
√

2(γ−1)
γ+1 Ht.

2. M̄2 = V 2
L+V 2

R
2a1/2

,

M2
o = min(1,max(M̄2,M2

∞)) ∈ [0, 1],

fa(Mo) = Mo(2−Mo) ∈ [0, 1],

A pressure diffusion term Mp, is introduced to enhance calculations of low Mach
number flow. It is defined as

Mp = −Kp

fa
max(1− σM̄2, 0)PR−PL

(ρa)1/2
,

where, 0 ≤ Kp ≤ 1, σ ≤ 1 and ρ1/2 = ρL+ρR
2

Thus,

M1/2 = M+
(4)(ML) +M−(4)(MR) +Mp

where, M±(4)(M) =

M
±
(1) if |M | ≥ 1

M±(2)(1∓ 16βM∓(2)) otherwise

where,

M±(1)(M) = 1
2(M ± |M |)

M±(2)(M) = ±1
4(M ± 1)2
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3. P1/2 = P+
(5)(ML)Pi + P−(5)(MR)PR + Pu

where, P±(5)(M) =

 1
MM

±
(1) if |M | ≥ 1

M±(2)[(±2−M)∓ 16αMM∓(2)] otherwise

where, Pu is the velocity diffusion term similar to interface Mach number defined in
step 2. Pu = −KuP

+
(5)(Mi)P−(5)(MR)(ρL + ρR)(faa1/2)(uR − uL)

where, 0 ≤ Ku ≤ 1

4. α = 3
16(−4 + 5f2

a ) ∈ [−3
8 + 3

16 ],

β = 1
8 , Kp = 0.25, Ku0.75 and σ = 1.0

5. The mass flux at the interface has the following form

ṁ1/2 = a1/2M1/2

ρL if M1/2 ≥ 0

ρR otherwise

6. Finally, the flux vector is written as

F1/2(w) = ṁ1/2

wL if w1/2 ≥ 0

wR otherwise
+ P1/2 (4.27)

The value of the conservative variables wL and wR are the left and right states at the
face. They are obtained using MUSCL extrapolation formula [2]. Considering non-uniform
structured grid, we have used second order volume extrapolation. At the cells next to the
boundary we use simple zero-order extrapolation, i.e. we have 1st order accuracy at the
boundary. For the multi-block approach, we have maintained second-order accuracy at the
block interface using center-difference approach. We have also tried with single and double
upwind approach. But, the center-difference has been given best results in terms of accuracy
and stability.

The scheme is called AUSM+-up. The suffix “u” is used to indicate the velocity diffusion
term (Pu) included in the pressure split of flux vector and the suffix “p” is used to indicate
the pressure diffusion term (Mp) included in the convective split part of the flux vector.
Next we present in the following subsection Sec. 4.5.1 the AUSM algorithm which has been
implemented in this solver.

4.5.1 AUSM Algorithm

1. Initialization of variables.

2. Calculating the convective fluxes by upwind AUSM scheme.

3. Calculating the viscous terms using previous solution variables.
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4. Calculating the conservative variables using governing equations for current time step.

5. Updating the primitive variables from conservative variables, and applying the bound-
ary conditions for primitive variables.

6. Checking the steady state convergence criteria.

Compressible Navier-Stokes equation in compact form:

∮
V

(
∂wi
∂t

+∇ · Fi − Fdi

)
dV = 0

∮
V

∂wi
∂t

dV +
∮
V
∇ · FidV −

∮
V

FdidV = 0

VP

(
wn+1
i − wni

∆t

)
+
∮
V
∇ · FidV −

∮
V

FdidV = 0

wn+1
i = wni −

∆t
VP

(∮
V
∇ · FidV

)
+

∆t
VP

(∮
V

FdidV
)

wn+1
i = wni −

∆t
VP

(∮
V
∇ · FidV

)n
︸ ︷︷ ︸
ConvectivePart

+
∆t
VP

(∮
V

FdidV
)n

︸ ︷︷ ︸
DiffusionPart

Convective Part: Discretization and procedure to find convective terms by AUSM Scheme
has been already discussed in the earlier section, based on work done by Ashwani [7]
Diffusive Part: Discretization and procedure to find diffusive terms will be discussed in
detail, in the next section.

4.6 Diffusion term:

Viscous terms for u-momentum

Fd = (∇ · µ∇u) +
∂

∂x

(µ
3
∇ · V

)
+
∂µ

∂y

∂v

∂x
+
∂µ

∂z

∂w

∂x
− ∂µ

∂x

∂v

∂y
− ∂µ

∂x

∂w

∂z
(4.28)

∮
V

FddV =
∮
V

[
(∇ · µ∇u) +

∂

∂x

(µ
3
∇ ·V

)
+
∂µ

∂y
∂v
∂x

+
∂µ

∂z
∂w
∂x
− ∂µ

∂x
∂v
∂y
− ∂µ

∂x
∂w
∂z

]
dV∮

V
FddV =

∮
V

(∇ · µ∇u)dV +
∮

V

∂

∂x

(µ
3
∇ ·V

)
dV +

∮
V

[
∂µ

∂y
∂v
∂x

+
∂µ

∂z
∂w
∂x
− ∂µ

∂x
∂v
∂y
− ∂µ

∂x
∂w
∂z

]
dV
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Let,Div =
(µ

3
∇ ·V

)
∮
V

FddV =
∮
V

(∇ · µ∇u)dV +
∮

V

∂Div
∂x

dV +
∮

V

[
∂µ

∂y
∂v
∂x

+
∂µ

∂z
∂w
∂x
− ∂µ

∂x
∂v
∂y
− ∂µ

∂x
∂w
∂z

]
dV∮

V
FddV =

∮
V

(∇ · µ∇u)dV +
[
∂Div

∂x
+
∂µ

∂y

∂v

∂x
+
∂µ

∂z

∂w

∂x
− ∂µ

∂x

∂v

∂y
− ∂µ

∂x

∂w

∂z

]
VP∮

V
FddV =

∮
V

(∇ · µ∇u)dV︸ ︷︷ ︸
DiffusionF lux

+
[
∂Div

∂x
+
∂µ

∂y

∂v

∂x
+
∂µ

∂z

∂w

∂x
− ∂µ

∂x

∂v

∂y
− ∂µ

∂x

∂w

∂z

]
︸ ︷︷ ︸

Gradients−at−the−center

VP (4.29)

same as above is done for y and z momentum equations. We get two parts a diffusion part
and a gradient part as we can see in Eq. 4.29

Viscous Terms For Energy equation:

Fd = (∇ ·K∇T ) + uFdu + vFdv + wFdw +
∂u

∂x
τxx +

∂v

∂x
τxy +

∂w

∂x
τxz

+
∂u

∂y
τyx +

∂v

∂y
τyy +

∂w

∂y
τyz +

∂u

∂z
τzx +

∂v

∂z
τzy +

∂w

∂z
τzz (4.30)

Let,

G =
∂u

∂x
τxx +

∂v

∂x
τxy +

∂w

∂x
τxz +

∂u

∂y
τyx +

∂v

∂y
τyy +

∂w

∂y
τyz +

∂u

∂z
τzx +

∂v

∂z
τzy +

∂w

∂z
τzz

(4.31)

where, G = gradient terms at the cell center∮
V

FddV =
∮
V

[(∇ ·K∇T ) + uFdu + vFdv + wFdw +G] dV

∮
V

FddV =
∮
V

(∇ ·K∇T )dV +
∮
V

(uFdu + vFdv + wFdw)dV +
∮
V
GdV∮

V
FddV =

∮
V

(∇ ·K∇T )︸ ︷︷ ︸
DiffusionF lux

dV + (uFdu + vFdv + wFdw)VP +GVP

Fdu, Fdv, Fdw are the viscous terms in u,v,w momentum equations and the calculation of
these terms already discussed earlier.

4.6.1 Diffusion Fluxes:

∮
V

(∇ · ΓΦ∇Φ)dV =
∫
s

ΓΦ∇Φ · dS (4.32)

The surface integral over diffusion flux of variable Φ can be approximated as
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∫
s

ΓΦ∇Φ · dS =
∑

j=e,w,n,s,t,b

(ΓΦ∇Φ · S)j =
∑
j

−Fjd (4.33)

for any face we can write,

sj = α1n
1 + α2n

2 + α3n
3 (4.34)

where n1, n2, n3 are three linearly independent (not necessarily orthogonal ) unit vectors.
Therefore,

∇Φ · Sj = ∇Φ · (α1n
1 + α2n

2 + α3n
3) (4.35)

= α1∇Φ · n1 + α2∇Φ · n2 + α3∇Φ · n3 (4.36)

If ∆Φ1,∆Φ2,∆Φ3 are the differences in Φ between the two ends of the line segments
∆x1,∆x2,∆x3 then,

∆Φ1 = ∇Φ ·∆x1,∆Φ2 = ∇Φ ·∆x2,∆Φ3 = ∇Φ ·∆x3 (4.37)

If ∆x1,∆x2,∆x3 are in the direction of n1, n2,and n3 respectively then equation, we can
write

∆Φ1

∆x1
= ∇Φ · n1,

∆Φ2

∆x2
= ∇Φ · n2,

∆Φ3

∆x3
= ∇Φ · n3 (4.38)

where ∆x1 is the magnitude of ∆X1 etc. Therefore using equation and we can write,

∇Φ · S = α1
∆Φ1

∆x1
+ α2

∆Φ2

∆x2
+ α3

∆Φ3

∆x3
(4.39)

To get α1, α2, α3, we have

n1 = (n11n12n13)

n2 = (n21n22n23)

n3 = (n31n32n33)
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Where n11, n12,and n13 are the Cartesian components of n and which can be easily de-
termined by ∆X1

1
∆x1 ,

∆X1
2

∆x2 ,
∆X1

3
∆x3 where,∆X1

1 ,∆X
1
2 ,∆X

1
3 are the components of vector ∆X1

etc. The other values n11,n12,...etc.can be similarly determined.Therefore equation can be
written as,  n11 n21 n31

n12 n22 n32
n13 n23 n33



α1

α2

α3

 =


S1j

S2j

S3j


where, S1j , S2j , S3j are the Cartesian components of the surface vectors Sj Using Cramer’s
rule, we get

α1 =
D1

D
,α2 =

D2

D
,α3 =

D3

D
(4.40)

Where D is the determinant of the coefficient matrix. The diffusion flux is made of two
distinct parts: normal diffusion and cross derivative diffusion. The second part arises from
the non-orthogonality of the grid. The normal derivative diffusion flux of Φ through any cell
face involves the values of Φ at cell center whereas the cross-derivative diffusion flux takes
into account the edge center value of Φ The example of the east face is taken to illustrate
the diffusion model and is shown in Fig. 4.3. We get the normal diffusion term ΦE−ΦP

|∆x1|
involving cell center values and the cross diffusion terms Φse−Φne

|∆x2| and Φte−Φbe
|∆x1| involving the

edge center values Φte,Φbe,Φse,Φne. We compute the diffusion flux by

Figure 4.3: Face-Representation

F de = −Γφ(α1
φE − φP

∆x1
+ α2

φse − φne
∆x2

+ α3
φte − φbe

∆x3
) (4.41)

β1 =
α1

∆x1
, β2 =

α2

∆x2
, β3 =

α3

∆x1

F de = −Γφ(β1(φE − φP ) + β2(φse − φne) + β3(φte − φbe)) (4.42)
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To calculate the edge center values appearing in cross derivative diffusion flux, the
following interpolation scheme is used.

Φte =
VTEΦP + VPΦTE + VTΦE + VEΦT

VTE + VP + VT + VE
(4.43)

Φbe =
VBEΦP + VPΦBE + VBΦE + VEΦB

VBE + VP + VT + VE
(4.44)

Φne =
VNEΦP + VPΦNE + VNΦE + VEΦN

VNE + VP + VN + VE
(4.45)

Φse =
VSEΦP + VPΦSE + VSΦE + VEΦS

VSE + VP + VS + VE
(4.46)

Where the notation used is that VTE is the volume of the cell to the top-east of cell P
and ΦTE is its cell center value. Other edge center values can be determined by similar
interpolation.

Special Treatment Of Diffusion Fluxes Of Corner Cells:

The solver is a multi-zone solver, and the corner cells of each zone may have more than
two neighboring zones. Calculation of diffusion fluxes with the same existing diffusion
formulation at corner cells of zones is difficult due to complexity involved in traversing
the zones to find the corner cell values of the next zone. Therefore, a 3-Point diffusion
formulation, suggested by Eswaran (private communication) has been used instead of the
usual 4-Point diffusion formulation, used in the interior of domain. This formulation has
been validated for different bench-mark problems and shows a good agreement with 4-Point
formulation even for complex geometries. Fig. 4.4 shows implementation of the 3-Point
formulation. The 3-Point formulation is used only at the corner cell edges, for corners of
all the zones.
To calculate the edge center values appearing in cross derivative diffusion flux at the corners
of the corner cells, the following 3-Point interpolation schemes is used.

Φte =
VEΦP + VPΦE

VE + V P
+
VTΦP + VPΦT

VT + VP
− ΦP (4.47)

Φbe =
VEΦP + VPΦE

VE + V P
+
VbΦP + VPΦb

Vb + VP
− ΦP (4.48)

Φne =
VEΦP + VPΦE

VE + V P
+
VNΦP + VPΦN

VN + VP
− ΦP (4.49)

Φse =
VEΦP + VPΦE

VE + V P
+
VSΦP + VPΦS

VS + VP
− ΦP (4.50)

where the notation used is the same as in Eqn..

42



4.6.2 Computation of Spatial Derivatives at Cell-Center of a Non-orthogonal

Grid (Least Square Method) :

In this section, The procedure for calculating the gradients of any variable Φ in x, y and z
directions at centroid of the control volume in a non-orthogonal grid is described.

Let the difference vectors in the 3 index directions be,

−→
∆i = ∆xiî+ ∆yiĵ + ∆zik̂

−→
∆i = (xi+1,j,k − xi−1,j,k )̂i+ (yi+1,j,k − yi−1,j,k)ĵ + (zi+1,j,k − zi−1,j,k)k̂

−→
∆j = ∆xj î+ ∆yj ĵ + ∆zj k̂

−→
∆i = (xi,j+1,k − xi,j−1,k )̂i+ (yi,j+1,k − yi,j−1,k)ĵ + (zi,j+1,k − zi,j−1,k)k̂

−→
∆k = ∆xk î+ ∆yk ĵ + ∆zkk̂

−→
∆i = (xi,j,k+1 − xi,j,k−1)̂i+ (yi,j,k+1 − yi,j,k−1)ĵ + (zi,j,k+1 − zi,j,k−1)k̂

now we know that for any scalar

∆Φi = Φi+1,j,k − Φi−1,j,k =
∂Φ
∂x

∆xi +
∂Φ
∂y

∆yi +
∂Φ
∂z

∆zi +HOT (4.51)

∆Φj = Φi,j+1,k − Φi,j−1,k =
∂Φ
∂x

∆xj +
∂Φ
∂y

∆yj +
∂Φ
∂z

∆zj +HOT (4.52)

∆Φk = Φi+1,j,k − Φi−1,j,k =
∂Φ
∂x

∆xk +
∂Φ
∂y

∆yk +
∂Φ
∂z

∆zk +HOT (4.53)

∆xi ∆yi ∆zi

∆xj ∆yj ∆zj

∆xk ∆yk ∆zk



∂Φ
∂x
∂Φ
∂y
∂Φ
∂z

 =


∆Φi

∆Φj

∆Φk


the left matrix can be easily inverted either during initialization or during computa-

tion,i.e., 
∂Φ
∂x
∂Φ
∂y
∂Φ
∂z

 = [∆−1]


∆Φi

∆Φj

∆Φk


4.7 MacCormack Scheme Discretization for 2D Rectangular

Grids

Before the MacCormack and AUSM+ algorithm for N-S equations were implemented in
the Anupravaha solver, the MacCormack algorithm was tested on a rectangular grid. We
present the 2D algorithm below.
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4.7.1 MacCormack Finite Difference Discretization in 2D

Governing equations of compressible fluid flow in 2D

∂U

∂t
+
∂E

∂x
+
∂F

∂y
= 0

U =


ρ

ρu

ρv

Et



E =


ρu

ρu2 + p− τxx
ρuv − τxy

(Et + p)u− uτxx − vτxy + qx



F =


ρv

ρuv − τyx
ρv2 + p− τyy

(Et + p)v − uτyx − vτyy + qy



Predictor Step:

U∗ij − Unij
∆t

+
Eni+1j − Enij

∆x
+
Fnij+1 − Fnij

∆y
= 0 (4.54)

Corrector Step:

U∗∗ij − U∗ij
∆t

+
E∗ij − E∗i−1j

∆x
+
F ∗ij − F ∗ij−1

∆y
= 0 (4.55)

Final Step:

Un+1
ij =

Unij + U∗∗ij
2

(4.56)

τxy = µ

(
∂u

∂y
+
∂v

∂x

)
; τxx = 2µ

∂u

∂x
+ λ(∇ · V )

τyy = 2µ
∂v

∂y
+ λ(∇ · V )

λ = −2µ
3

; qx = −k∂T
∂x

; qy = −k∂T
∂y

; e = cvT
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MacCormack Discretization of Viscous Terms

To maintain second order accuracy, the x-derivative terms appearing in E are differenced in
the opposite direction to that used for ∂E

∂x , while the y-derivative terms are approximated
with central differences. Likewise, the y-derivative terms appearing in F are differenced in
the opposite direction to that used for ∂F

∂y , while the x-derivative terms in F are approxi-
mated with central differences.

4.7.2 Discretization of Viscous Terms with Central Difference

Governing equations of compressible fluid flow in 2D

∂U

∂t
+
∂E

∂x
+
∂F

∂y
+
∂EV
∂x

+
∂FV
∂y

= 0

U =


ρ

ρu

ρv

Et



E =


ρu

ρu2 + p

ρuv

(Et + p)u



F =


ρv

ρuv

ρv2 + p

(Et + p)v



EV =


0
−τxx
−τxy

−uτxx − vτxy + qx



FV =


0
−τyx
−τyy

−uτyx − vτyy + qy
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Predictor Step:

U∗ij − Unij
∆t

+
Eni+1j − Enij

∆x
+
Fnij+1 − Fnij

∆y
+
EnV i+1j − EnV i−1j

2∆x
+
FnV ij+1 − FnV ij−1

2∆y
= 0 (4.57)

Corrector Step:

U∗∗ij − U∗ij
∆t

+
E∗ij − E∗i−1j

∆x
+
F ∗ij − F ∗ij−1

∆y
+
E∗V i+1j − E∗V i−1j

2∆x
+
F ∗V ij+1 − F ∗V ij−1

2∆y
= 0 (4.58)

Final Step:

Un+1
ij =

Unij + U∗∗ij
2

(4.59)

τxy = µ

(
∂u

∂y
+
∂v

∂x

)
; τxx = 2µ

∂u

∂x
+ λ(∇ · V )

τyy = 2µ
∂v

∂y
+ λ(∇ · V )

λ = −2µ
3

; qx = −k∂T
∂x

; qy = −k∂T
∂y

; e = cvT

Irrespective of x-derivative terms or y-derivative terms, all viscous terms are approximated
by central differences.

4.7.3 2d-MacCormack Finite Volume Discretization for Rectangular Grids

2d-equations

x-momentum:

∂

∂t
(ρu) +

∂

∂x
(ρu2) +

∂

∂y
(ρuv) = −∂p

∂x
+ (∇ · µ∇u) +

∂

∂x

(µ
3
∇ · V

)
+
∂µ

∂y

∂v

∂x
− ∂µ

∂x

∂v

∂y
(4.60)

y-momentum:

∂

∂t
(ρv) +

∂

∂x
(ρuv) +

∂

∂y
(ρv2) = −∂p

∂y
+ (∇ · µ∇v) +

∂

∂y

(µ
3
∇ · V

)
+
∂µ

∂x

∂u

∂y
− ∂µ

∂y

∂u

∂x
(4.61)

discretization of convective terms uses same discretization as finite difference standard Mac-
Cormack discretization. But for diffusion terms we need gradients at the cell center and
cell faces. next we discuss about these gradients.

Derivarive at the centre:

∂Φ
∂x

=
1
Vp

∑
f

ΦfSfx

 =
1
Vp

(ΦeSex + ΦwSwx + ΦnSnx + ΦsSsx)

46



∂Φ
∂x

=
Φi+1,j − Φi−1,j

2∆x
∂Φ
∂y

=
Φi,j+1 − Φi,j−1

2∆y

Derivative at the faces: for example derivative at the east face,(
∂Φ
∂x

)
e

=
Φi+1,j − Φi,j

∆x(
∂Φ
∂y

)
e

=
Φne − Φse

∆y

and Φne,Φse values can be found out by volume interpolating the four nighbouring cells.

Φne =
Φi,j + Φi+1,j + Φi,j+1 + Φi+1,j+1

4

Φse =
Φi,j + Φi+1,j + Φi,j−1 + Φi+1,j−1

4

4.8 Closure

In this chapter we have seen the discretization of convective fluxes by central scheme such as
MacCormack and the upwind based scheme AUSM+-up. Also, we saw the detail formulation
and discretization of viscous terms of compressible flows. In the end of these chapter we
added preliminary work done by different methods.
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Figure 4.4: Three Point Formulation

Figure 4.5: Neighbouring cell indices
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Chapter 5

Results And Discussion

In this chapter we present the results obtained using the solver for different geometric
configurations and for different regimes of flow. The results are all compared with standard
benchmark and/or analytical results. The MacCormack scheme with artificial viscosity
(referred as MacCormack) and AUSM+-up scheme (referred as AUSM+) have been tested.
The aim is to study the performance of these schemes and validate the compressible flow
solver module of Anupravaha. Since, the solver is 3D-based, for all the 2D test-cases we have
given a minimum of 4 cells thickness in the z-direction and symmetry boundary conditions
are applied on the two boundaries normal to the z-direction.

Before going to implement the viscous terms in the Anupravaha solver, we tried the
finite difference method given by Anderson [5], and compared it with the results therein.
The scheme presented by Anderson [5] uses the MacCormack for both convective and vis-
cous terms, while the scheme presented in chapter 4 uses the discretization of viscous terms
by central difference, while the convective discretization was done using the standard Mac-
Cormack scheme. So, in the first section Sec. 5.1 we present the results obtained by 2-D
finite-difference scheme and 2D-finite volume scheme. In the next sections Sec. 5.2, 5.3
and 5.4, we present the results obtained by the Anupravaha solver i.e., 3-D finite volume
structured code.

5.1 Preliminary Results from 2D-Rectangular Codes for Su-

personic Flow Over a Flat Plate

Set-up

Consider the supersonic flow over a thin sharp flat plate [5] at zero incidence and of length
L, as sketched in Fig. 5.1 A laminar boundary layer develops at the leading edge of the flat
plate and remains laminar for the case of relatively low Reynolds number. The oncoming
free stream no longer sees a sharp flat plate. Rather due to the presence of the viscous
boundary layer,the plate possesses an effective curvature. Consequently, a curved induced
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shock wave is generated at the leading edge. Now for the problem at hand, consider the
computational domain, in this case a rectangular structured grid, as shown in the figure.
The flow at the upstream boundary (x=0.0, i=1 or IMIN) is at Mach4 with pressure, tem-
perature, and speed of sound is equal to their respective sea level values. The length of the
plate is 0.00001 m. This is extremely small but large compared to the mean free path of the
oncoming air molecules, and sufficient to capture the desired physics. The Reynolds number
is about 1000. We want low Reynold number in order to keep computational running times
relatively short compared to high Reynold number applications requiring considerably finer
grids.

Figure 5.1: Flatplate [5]

LH = 0.00001m

LV = 5δ

δ =
5(LH)√
ReL

ReL =
ρuL

µ

No.of grids 70×70

Constants for air:

Specific gas constant(R)=287
ratio of specific heats(γ)=1.4
Prandtl number(Pr)=0.71
dynamic viscosity(µ)=1.7894e-5 kg/(m-sec)
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Initial Condition

IC Part
Pressure 101325 Pa
Temperature 288.16K
U velocity 4 Mach
V velocity 0
W velocity 0

Boundary Conditions

Quantity Inflow Outflow
Pressure 101325 Pa -
Temperature 288.16 K -
U velocity 4 Mach -
V velocity 0 -
W velocity 0 -

Table 5.1: Boundary conditions for supersonic flatplate

5.1.1 MacCormack Finite Difference Method:

Governing equations and Discretization has been discussed in Sec. 4.7.1. The steady-state
results using MacCormack Scheme is shown in Fig. 5.2 and 5.3.

The finite-difference based MacCormack scheme gave similar and accurate results when
compared with the reference [5].
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(a) Velocity-x

(b) Machnumber

Figure 5.2: Plot along outlet
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(a) Temperature

(b) Pressure

Figure 5.3: Plot along outlet
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5.1.2 MacCormack Discretization vs Central Discretization of Viscous

Terms

Governing equations and discretization has been discussed in previous chapter Sec. 4.7.1.
In this section we compare the MacCormack discretization with central discretization of
viscous terms.

Both the MacCormack and central discretization of viscous terms give the similar results
as we can see in Fig. 5.4 and 5.5.

Figure 5.4: Plot for non-dimensioned velocity in X-direction w.r.t non-dimensioned Y

54



Figure 5.5: Plot for non-dimensioned temperature in X-direction w.r.t non-dimensioned Y
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5.1.3 Finite Difference Method vs Finite Volume Method

In this section we compare finite difference discretization and finite volume discretization.
Finite difference discretization uses the MacCormack scheme explained Sec 4.7.1. Finite
volume discretization uses the same formulation as discussed in Sec. 4.7.3.

Both the finite-difference and finite-volume schemes give the same results as we can see
Fig. in 5.6, 5.7 and 5.8.

Figure 5.6: Plot for Velocity-x w.r.t non-dimensioned Y
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Figure 5.7: Plot for Temperature w.r.t non-dimensioned Y

Figure 5.8: Plot for Mach number w.r.t non-dimensioned Y
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5.2 Supersonic flow Over a Flat Plate Ma=2.06, RE=39,0000

We now consider the supersonic flow over a 2-D flatplate. The inflow conditions are sum-
marized in Table 5.2. Present results have been compared with analytical results [16] .
A Courant number of 0.3 was used for both AUSM+ and MacCormack. AUSM+ scheme
however gives a solution with less oscillations, as we can see in contours.

Computational Domain:

LH = 1m

δ =
5(LH)√
ReL

LV = 5δ

LV = 0.04m

ReL =
ρuL

µ

µ =
ρuL

ReL

µ = 0.002202041 kg/(m-sec)

Pr = 0.71

k =
µ ∗ Cp
Pr

Initial Condition:

IC Part
Pressure 101325 Pa
Temperature 288.16K
U velocity 700.953 m/sec
V velocity 0
W velocity 0

Boundary Conditions:

Wall:

No-slip (u=0; v=0; w=0), adiabatic wall
(
∂T
∂n = 0

)
Non-dimensionalz y-distance:

ȳ =
y

x

√
Rex
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Quantity Inflow and Top Outflow
Pressure 101325 Pa -
Temperature 288.16 K -
U velocity 700.953 m/sec -
V velocity 0 -
W velocity 0 -

Table 5.2: Boundary conditions M = 2.06, α = 0◦

For outlet or trailing edge i.e. x=L, ȳ becomes

ȳ =
y

L

√
ReL

The steady-state contours using MacCormack scheme is shown in Fig. 5.10 and the
steady-state contours using AUSM+ is shown in Fig. 5.11. Comparison of MacCormack
and AUSM+ shown in Fig. 5.9. Both the MacCorMack and AUSM+ gives similar results
and both have high accuracy, corresponding to the analytical results [16] .
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Figure 5.9: Plot for Velocity-x w.r.t non-dimensioned Y
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(a) Machnumber

(b) Temperature

(c) VelocityX

Figure 5.10: MacCormack contours
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(a) Machnumber

(b) Temperature

(c) VelocityX

Figure 5.11: AUSM contours
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5.3 Subsonic Flow Over a Flat Plate Ma=0.5, RE=10,000

We now consider the subsonic flow over a 2-D Flatplate. The inflow conditions are sum-
marized in Table 5.3. and the present results have been compared with analytical Results
[17] . A Courant number of 0.3 was used for both AUSM+ and MacCormack.

Computational Domain:

LH = 1m

δ =
5(LH)√
ReL

LV = 5δ

LV = 0.25m

ReL =
ρuL

µ

µ =
ρuL

ReL

µ = 0.0208445651 kg/(m-sec)

Pr = 0.71

k =
µ ∗ Cp
Pr

Initial Condition:

IC Part
Pressure 101325 Pa
Temperature 288.16K
U velocity 170.134 m/sec
V velocity 0
W velocity 0

Boundary Conditions:

Wall:

No-slip (u=0;v=0;w=0), adiabatic wall
(
∂T
∂n = 0

)
Non-dimensional y-distance:

ȳ =
y

x

√
Rex
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Quantity Inflow Outflow
Pressure 101325 Pa 101325 Pa
Temperature 288.16 K -
U velocity 170.134 m/sec -
V velocity 0 -
W velocity 0 -

Table 5.3: Boundary conditions M = 0.5, α = 0◦

For outlet or trailing edge i.e. x=L, ȳ becomes

ȳ =
y

L

√
ReL

The steady-state contours using MacCormack are shown in Fig. 5.13 and the contours
from AUSM+ are shown in Fig. 5.14. Both the MacCormack and AUSM+ gives similar
results and both have high accuracy, corresponding to the analytical results [17] shown in
Fig. 5.12. AUSM+ scheme however gives a solution with less oscillations as we can see in
contours.

Figure 5.12: Plot for Velocity-x w.r.t non-dimensioned Y
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(a) Temperature

(b) VelocityX

Figure 5.13: MacCormack contours
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(a) Temperature

(b) VelocityX

Figure 5.14: AUSM contours
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5.4 Supersonic Flow Over a Wedge

We now consider the supersonic flow over a 2-D wedge with wedge angle 150, as shown in
Fig. 5.15 with Reynolds number of 1000. The inflow conditions are summarized in Table 5.4
and the present results have been compared with those from the commercial software Fluent.
A Courant number of 0.3 was used for both AUSM+ and MacCormack. The steady-
state contours of Mach number shown in Fig. 5.16, for static pressure in Fig. 5.17, and
temperature in Fig. 5.18. Mach number at the outlet has been compared with Fluent
results in Fig. 5.19.

Figure 5.15: Computational domain.

Properties of the fluid

dynamic Viscosity µ = 0.83378260405 kg/(m-sec)
Prandtl number Pr=0.71
Thermal conductivity K=1181.8927 W/(mK)

Boundary Conditions

Quantity Inflow Outflow
Pressure 101325 Pa -
Temperature 288.16 K -
U velocity 2 Mach -
V velocity 0 -
W velocity 0 -

Table 5.4: Boundary conditions for supersonic wedge

Both the MacCormack and AUSM+ gives similar results and both have high accuracy,
corresponding with the Fluent results. AUSM+ scheme however gives a solution with less
oscillations.
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(a) MacCormack Scheme

(b) AUSM+ Scheme.

(c) Fluent

Figure 5.16: Contours for Mach Number
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(a) MacCormack Scheme

(b) AUSM+ Scheme.

(c) Fluent

Figure 5.17: Contours for Pressure
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(a) MacCormack Scheme

(b) AUSM+ Scheme.

(c) Fluent

Figure 5.18: Contours for Temperature
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Figure 5.19: Comparision of mach number along outlet
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Chapter 6

Conclusions and Future work

Building on the earlier work of Kalkote [11], Ashwani [7] we have created a stand-alone
version of the AnuPravaha Solver for compressible flows. Two discretization schemes are
implemented for viscous fluxes in the solver, and validated for subsonic and supersonic cases.
Boundary conditions for complex and curved boundaries have also been implemented.

As a preliminary part of the thesis we developed finite-difference 2-D rectangular solver
based on the MacCormack scheme [5] (Sec. 4.7.1). We, however, used central differnce
for the viscous term in the predictor and corrector steps of the scheme (Sec. 4.7.1). This
formulation gave spurious oscillations, which was removed by adding artificial viscosity
term. Then we developed the 2-D finite volume rectangular code using the same scheme
(Sec. 4.7.3). In this for discretization of the viscous term we used the formulation of Chan-
drashekar [6]. A point to be noted was using this formulation which needed no artificial
viscosity term, we did not get any spurious oscillations.

In the later part of the thesis, the discretization of viscous terms for momentum and
energy equations was done, which were then implemented in the 3D Anupravaha solver
(Sec. 4.2). The Least square cell method was used to find the gradients at the cell-center
(Sec. 4.6.2).

Also, the viscous terms have been implemented using the AUSM+ scheme for the con-
vective part of the governing equation. The code was validated for both MacCormack and
AUSM+ formulation for the subsonic and supersonic cases.

At the end, we are presenting a standalone density-based solver catering for aerospace
applications exclusively.

We list down following points which can be used for future work.

1. An Implicit version of the code can be developed. Also, a 2D version of the code for
faster execution of two-dimensional cases is needed.

2. Acceleration Techniques(multigrid, residue smoothing) can be implimented to get the
solution even more faster.
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3. Turbulence models should be implemented to handle real aerospace applications.

4. A review of convergence criteria has to be performed. At present, our measure for
steady-state has been based on post-processing results.

5. Preconditioning can be implemented in order to capture the flows which are Mach
number(Ma < 0.3).

Our future goal is to develop an unstructured version of AnuPravaha density based
solver for all-speed flows.
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Appendix A

Artificial Viscosity Formulation

The following explains the artificial viscosity formulation which has been frequently used in
connection with the MacCormack technique. We show here the formulation for an unsteady,
two-dimensional equation.

∂U

∂t
= −∂U

∂x
− G

y
+ J (A.1)

where U is the solution vector, U =
[
ρ ρu ρv ρ(e+ V 2/2)

]
.

At each step of the time-marching solution, a small amount of artificial viscosity can be
added in the following form:

Sti,j = Cx

∣∣∣pti+1,j − 2pti,j + pti−1,j

∣∣∣
pti+1,j − 2pti,j + pti−1,j

(U ti+1,j − 2U ti,j + U ti−1,j)

+Cy

∣∣∣pti,j+1 − 2pti,j + pti,j−1

∣∣∣
pti,j+1 − 2pti,j + pti,j−1

(U ti,j+1 − 2U ti,j + U ti,j−1)

(A.2)

where we have taken, Cx = Cy = Cz = 0.12

Eq. A.2 is a fourth order numerical dissipation expression. On the predictor step Sti,j is
evaluated based on the known quantities at time t. On the corrector step, the corresponding
value of Sti,j is obtained by using the predicted (barred) quantities as S̄ti,j .

S̄ti,j = Cx

∣∣∣p̄ti+1,j − 2p̄ti,j + p̄ti−1,j

∣∣∣
p̄ti+1,j − 2p̄ti,j + p̄ti−1,j

(Ū ti+1,j − 2Ū ti,j + Ū ti−1,j)

+Cy

∣∣∣p̄ti,j+1 − 2p̄ti,j + p̄ti,j−1

∣∣∣
p̄ti,j+1 − 2p̄ti,j + pti,j−1

(Ū ti,j+1 − 2Ū ti,j + Ū ti,j−1)

(A.3)

where we have taken, Cx = Cy = Cz = 0.12
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The value of Sti,j and S̄ti,j are added at various stages of MacCormack scheme as shown
below with the help of calculation of density from the continuity equation. For this U = ρ.

On the predictor step,

ρ̄t+∆t
i,j = ρti,j +

(
∂ρ

∂t

)t
i,j

∆t+ Sti,j (A.4)

On the corrector step,

ρt+∆t
i,j = ρti,j +

(
∂ρ

∂t

)
a

v∆t+ S̄t+∆t
i,j (A.5)
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