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Abstract

Modal analysis of non-uniform bolted structures are of critical significance in modeling many complex

mechanical structures such as airplanes, missiles, ships, etc. The study of vibration is of foremost

importance when it comes to mechanical and aerospace applications. The vibration measurement is

a powerful but a sophisticated tool for designing mechanical structures. It helps to unravel critical

system dynamics and hence designing the model in a better way. The use of joints is important for

a mechanical structure as due to its compatibility and access. A seamless mechanical structure of

large dimensions is difficult to be made hence the use of joints is required. There are vast literatures

available related with the analytical as well as numerical modeling of bolted joint. The bolted joints

are classified on the basis of frictional force, extension of joint, loading, etc. There exist different

models like Iwan model, Bou-Wen model, etc for modeling of bolted joint. For our case we take

the bolted joint as a torsional spring with no damping effect. The use of torsional spring is inspired

by the mechanics of the studied structure. The torsional spring takes care of the moment that is

transferred at the joint and as there is no axial force acting at the joint the need of linear spring

is not required. However, most of the analytical model discuss about the modeling of first mode

of uniform structures with bolted joint. In this thesis, we present the modeling of single as well as

bolted non-uniform beams using approximate mode shapes for higher modes. To develop the model,

we first studied a simply supported beam using approximate mode shape method. The study is done

for obtaining higher modes of single non-uniform beams and then the work is extended for bolted

beams with three sections. The results are verified using numerical study. We present the study for

second and third vibrational modes as compared to previous works for first mode.

Then we extended our study to beams with cantilever configuration which is important to structure

with fixed free boundary conditions. The modal analysis is done for the first three fundamental

modes. We carried out experiments to measure the modal frequencies and shapes of the test struc-

tures. Polytec. Vibrometer is used for the experimental study and capturing first three modes. It

uses the doppler effect principle to capture the vibrational modes. The beams are made of Aluminum

material and have same dimensions. Subsequently, we also did numerical modeling of non-uniform

beams in ANSYS to verify the validity of the Euler-Bernoulli beam theory in developing the analyt-

ical models. Finally, using the Euler-Bernoulli beam theory, we obtain the analytical mode shapes

using the approximate the mode shape method. Then with the help of Rayleigh Ritz method we

obtain the analytical value of frequencies. The analytical results are found to be closer to the ex-

perimental results with a maximum percentage error of about 15%. The model presented in the

thesis can be extended to the mechanical structures with many non-uniform sections with or without

bolted joints.

After the analytical modeling of bolted non-uniform beams with two and three sections, we did FEM

modeling in ANSYS for the same. The effect of variation of torsional stiffness is studied along with

the convergence of results. Importance is given to the modeling of joints in the FEM model with the

use of coupling at the joint which equalises the degree of freedom for the both nodes being coupled.

The results are found to be close to analytical and experimental results with minimal error.
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Chapter 1

Introduction

Majority of mechanical and aerospace structures like missiles, aircrafts, [1], [2], submarines,etc are

frequently modeled with the help of free-free Euler-Bernoulli beam. Euler Bernoulli beam theory

is a simplification of the linear theory of elasticity which provides a means of calculating the load-

carrying and deflection characteristics of beams. It covers the case for small deflections of a beam

that is subjected to lateral loads only. It is thus a special case of Timoshenko beam theory. This

theory can be used according to the boundary conditions of the structure such as free-free, fixed-free,

etc. A majority of work focuses on the modal analysis of the tapered or non-uniform beam but study

of a beam comprising of various varying cross sections beam connected by bolted joints which is the

case in most of the important mechanical structures is very less. The inability of making seamless or

monolithic mechanical and aerospace structures of large dimensions enforces a need to model jointed

structures or the assembled structures. These structures have a complex boundary conditions at the

joints and are critical with respect to vibrational analysis. The analysis of vibrational behaviour of

the assembled structure at the joint is an important parameter to study for system designing.

1.1 Jointed sections

Majority of the mechanical structures are an assembly of various components or sections. They are

joined together by means of different ways of fastening such as bolting, riveting, welding, extruding,

clamping,gluing, etc. The location and the nature of the joints of a structure strongly influence the

stiffness of the structure as well as the amount of damping and the occurrence of non linearities.

Especially in structures made of metal,the amount of damping resulting from joints is typically

higher than the material damping by a ten time to hundred times factor. The characterisation of

joints based on the type of loading is done as normally loaded and tangentially loaded joints. In

case of normally loaded joints the damping is very small compared to the tangentially loaded case.

Main damping mechanisms are due to a phenomena known as ’gas-pumping’ and local microscopic

deformations of the asperities in the contact zone.This involves elastic and plastic deformation as

well as microslip, especially if materials with different stiffness are in contact. Non-proportional

and nonlinear softening effect in the structure is created as a result if joint gapping occurs and

the resulting slapping or micro-impacts in the joint increase the influence of normal damping. For
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joint connections under tangential load it should be differentiated between the occurrence of micro

slip and macroslip. For tangential loading there is partial slip in the contact area while a larger

part of the joint is still sticking. If the driving force becomes larger and/or the normal pressure

decreases,at some instance the components begin to move relative to each other and macroslip

occurs. In general,microslip and macroslip are nonlinear phenomena meaning that the superposition

principle does not hold. However,experimental investigations often reveal a nearly linear behavior

of the joints,as long as the excitation amplitudes are small and macroslip is avoided. Micro slip and

macro slip are non linear phenomenon but in the case of jointed sections it is observed experimentally

that in case of small amplitudes and macro slip, a linear behaviour is observed. For a jointed section

subjected to periodic load, a hysteresis loop can be determined in the stress strain curve, which

turns into elliptical shape if the case is that of sinusoidal load.

The jointed sections are classified as lumped models, line models and interface models depending

on the dimensions of the model. In the case of the lumped model no spatial extension is considered

if the joint size is small compared to the structure size. The contact area is also considered to be

constant. The line models are 1-D models in which the contact area exhibits same properties in one

direction while in interface models the phenomenon extends to 2-D.

1.1.1 Friction models

The friction force is a critical component of a joint. Based on the friction force the jointed models

are classified as

• Quasi-Static Models

• Dynamic Models

• Hysteretic friction models

Quasi-static friction models

The Quasi-static models assume the frictional force to be static function of the relative velocity of

joint surfaces. Dynamic models introduce more variables which change with respect to time. And

the hysteretic models use dissipation energy and deformation criteria. The Coulomb model specifies

a friction force in case of sliding and sticking should be treated separately. As an alternative to

viscous model a constant hysteresis model can be used.It is based on the fact that many materials

and joints show frequency/velocity- independent dissipation properties and depend solely on strain.

An extension of the classical Coulomb model is introduction of stiction,which describes the friction

force at rest. This force may be higher than Coulomb friction and it counteracts the motion of a

structure until the initial displacement occurs.

Stribeck observed that the stiction force does not decreased is continuously, like in case with stic-

tion,and defined a more complex nonlinear relation between the friction force and the sliding velocity.

It is based on an observation that for low velocities the friction force continuously decreases and

after reaching a certain minimum,called Stribeck friction,the force starts to increase again.

Jenkins element are the hysteresis curves for the Coulomb model and a combination of the

Coulomb element with an elastic spring. The non-linear relationship between the force and displace-

ment is shown from this curve, and the area enclosed corresponds to the dissipated friction energy.

2



Figure 1.1: Quasi-static models(a)Basic Coulomb model (b)Coulomb model with viscous friction
(c)Stiction with Coulomb model

The inability to describe the inelastic behaviour just before slip occurs at the joint necessitates for

dynamic models.

Dynamic friction models

Fast and accurate friction models are required for control engineering which enforces the need to

develop dynamic models. Dahl developed a dynamic friction model which is the generalization of

Coulomb’s model but with smooth transition around zero velocity. LuGre model further extends

Dahl’s model to reproduce additional friction phenomenon over wide range of operating conditions.

Haessig and Friedland’s model uses bristles for representing the two rough contact surfaces. A

restoring force acts when the joint is subjected to tangential loading and the bristles deform. Leuven

model is the extension of the LuGre model which aimed at improving the hysteretic behaviour in

the microslip domain. Here the microslip behavior is substituted with hysteretic force function, with

sliding regimes described by the same parameters as in the LuGre model.

Hysteretic friction models

These models take in account the elastic and plastic deformations at the joints along with the

dissipative energies. Masing developed such kind of model which consisted of Jenkins elements in

parallel. Masing’s model can be generalized in two ways,

• Several Jenkins element with a spring

• Several springs with Coulomb element in series

The first model is generally called the Masing model while the second one is termed as Iwan

model. The hysteresis curve for Masing model converges for an increasing number of Jenkins ele-

ments.Alternatively, the Masing model can be modified by smoothing of the signum function, used

to describe switching of various friction elements, by approximating the signum with an exponential

3



Figure 1.2: Hysteretic Friction models(a)Masing Model (b)Iwan Model

function Next model is the Bouc-Wen model which describes restoring force in system with hystere-

sis. It can be transformed into regularized Masing model and fit the measured hysteresis loops using

certain parameters.

1.2 Literature review

Majority of mechanical and aerospace structures like missiles, aircrafts, submarines, etc., are fre-

quently modeled as non-uniform free-free Euler-Bernoulli beam [1, 2, 3]. Although, there have been

many work on the modal analysis of a structure with varying mass but there are limited studies

available for a system of structures with varying cross sections which are connected by bolted joints.

Since, most of important mechanical structures are the assembly of many sub structures, the analysis

of non-uniform beams connected by bolted joint is very significant. In this paper, we deal with the

modal analysis of single as well as bolted cantilever beams with non-uniform sections.

Abrate [4] studied the vibration of non-uniform rods for which he transformed the equation of

motions into the wave equation and found out that the natural frequencies of non uniform rods fixed

at both ends is same as that of uniform rods. Wu and Ho [5] obtained the natural frequencies and

mode shapes corresponding to the longitudinal and torsional vibrations of a non-uniform ship hull

with large hatch openings using the finite-element method. Platus [1] employed Lagrangian approach

to study nonlinear aeroelastic stability of flexible missiles having non-uniform sections. Pourtakdoust

and Assadian [6] studied the effect of thurst on the bending behaviour of non-uniform flexible missiles.

Jaworski and Dowell [7] obtained the theoretical and experimental frequencies of a cantilever beam

with multiple steps using the Rayleigh-Ritz method. Zheng et al. [8] developed modified vibration

functions by satisfying the required boundary conditions to compute the frequencies of a multi-span

beams with non-uniform sections subjected to moving loads.

However, none of the above studies assumed the joints as bolted joint. To model the jointed structure,

there exist different types of models which are classified based on loading, damping, flexibility of the

joints, etc [9]. While the normally loaded joint produces less damping as compared to tangentially

loaded joint, the damping in tangentially loaded joint depends on its elastic and plastic deformation
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due to micro- and macro-slip phenomena. Such behavior can be modeled using finely meshed finite

element models or different friction models. Some of friction models are the Coulomb models,

Masing model, Iwan model, etc. The nonlinear hysteretic behavior can be capture by different

arrangements of Jenkin element, which is a combination of spring and friction slider, or the Bouc

Wen model, etc. More details about the joint modeling can be found in reference [9, 10]. Oldfield et

al. [11] used simplified models of bolted joints as a combination of the number of Jenkins elements

and the Bouc-Wen model to study the effect of harmonic loading on a bolted joint using finite

element method. Todd et al. [12] performed experiments on a beam with its boundaries supported

by spring modified fasteners. Subsequently, they modeled the bolted joint with an effective spring

stiffness based on the perpendicular load acting normal to the axis of the joint, i.e., neglecting the

shearing effect, and thus, the effect of friction. Ouyang et al [13] conducted experiment on a single

joint of two beams under torsional dynamic loads and described the hysteresis phenomena under

different preloads and excitation amplitudes. Finally, they correlated the results with the micro

and macro-slip phenomena at the joint interface. Ma et al [14] performed experiment on the bolted

and unbolted structure. They found the nonlinear stiffness and damping associated the bolted

joint by comparing the numerical model with the unbolted joint. Hartwigsen et al [15] performed

experiment to characterize the non-linear effect of a shear lap joint on the dynamics of two mechanical

structure. They modeled the effective stiffness and damping effect using Iwan models. Quinn [16]

presented the modal analysis of jointed structures by modeling the elastic effect of the joint using

a linear modal equation and the dissipative effect of the joint with a continuum series-series Iwan

model. Tol and Özgüven [17] described an experimental identification method based on frequency

response function decouling and optimization to extract the joint properties in terms of translation,

rotational, and cross-coupling stiffness and damping values. Chen et al. [18] used the numerical

assembly method (NAM) for computing the natural frequencies of a cantilever beam having multiple

spans of different cross-sections carrying spring-mass system at different locations. In this method,

they considered the joints as attaching points of two beams, and, then, used the equilibrium and

compatibility equations to form element matrices to compute the natural frequencies. Song et al

[19] presented the modeling of bolted beam structure using finite element method with adjusted

Iwan beam elements obtained by taking two adjusted Iwan model corresponding to each degrees of

freedom of 2-noded beam element. Subsequently, they used multi-layer feed forward neural network

to optimize the joint parameters obtained from FEM model with the measured results. Eriten et

al [20] ultilized nonlinear system identification and reduced order modeling to extract the nonlinear

damping of beams with bolted joints. They have also compared the results with monolithic structure.

Ahmadian and Jalali [21] presented a nonlinear parametric formulation through a generic element

under the conditions of a joint interface. They obtained the dynamic characteristics of joint by

comparing the dynamic response of generic element using the incremental harmonic balance with

the observed behavior of the structure. To do accurate nonlinear friction modeling of the jointed

structure for general structure, Süß and Willner [22] first used three degree-of-freedom model using

Multiharmonic Balance Method (MHBM) and then extended it to n degrees-of-freedom model using

the finite element method. Since the accuracy of harmonic balance method increases with the number

of harmonics, increase in harmonics leads to larger computation time. To reduce the computation

time, Jaumouillé et al [23] proposed an adjusted harmonic balance method which adjusts the number

of retained harmonics for a given precision and frequency value. Although there have been many
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improvement in the modeling of bolted structures, however, some level of uncertainties remains due

to non-smooth nonlinear dynamic characteristics [24]. It is also important to note that most of the

above literatures dealt with the bolted joint of only uniform beams. To do the modeling of jointed

beams with non-uniform beams, Sarkar and Ganguli, [25], adopted an inverse problem approach to

obtain fundamental mode shape of a single as well as bolted non-uniform Euler Bernoulli beams

by approximating the variation of mass and flexural rigidity by polynomial of required order in

conjunction with free-free Euler-Bernoulli beam. To do the analysis of bolted non-uniform beam,

they modeled the bolted joint with torsional spring. However, their analysis is limited to the first

mode of free-free non-uniform beam.

In this thesis, we focus on the modal analysis of jointed cantilever beams with non-uniform sections

using higher modes. To do the analysis, we first compute the mode shapes and frequencies of

Figure 1.3: Application of non-uniform beam

first three modes of a non-uniform cantilever beam using experimental and numerical analysis.

Subsequently, we follow the approach proposed by Sarkar and Ganguli [25] to theoretically compute

the mode shapes and frequencies, and then, compare them with the experimental and numerical

results. To characterize the bolted joint, we use the same approach to model the system of bolted

non-uniform beams with two and three sections, separately. Finally, we compare the results with

the experimental as well as numerical values.

1.3 Outline of thesis

This thesis is divided into five chapters. In the first chapter we introduce the topic of our study.

The chapter presents the previous works done in the corresponding field and the approach that

we follow. Various literature dealing with non-uniform beam is studied along with the literature

on jointed structures. The chapter also presents the type of modal analysis approached that can

be adopted for the vibrational analysis of non-uniform bolted beams. The second chapter presents

the frequency analysis of a simply supported cantilever beam. The study is conducted on single

non-uniform beams and continued for bolted three section beams. The dimensions are taken as

mentioned by Sarkar and Ganguli, [25]. The frequency analysis is done analytically and numerically

for the first three modes. Different types of non-uniform beams based on the variation of stiffness

and mass are studied. The use of approximate mode shape method for the modal analysis of bolted

beams is introduced for the higher modes. In the next chapter the approach adopted in the second

chapter is extended to a beam which is treated as a cantilever beam. This chapter presents the

work which is based on the mechanical structures in fixed free configuration. Single non-uniform

beams are studied and then the study is extended to two section and three section bolted beams.

Also to find the effect of bolted joints on structure, a monolithic beams consisting of no bolts is

studied analytically and experimentally. First step is the experimental procedure conducted on

vibrometer and then the results are validated with the help of analytical and numerical model. The

6



analytical modeling is done with the help of approximate mode shape expressions based on the

approach adopted by Sarkar and Ganguli,[25]. The fourth chapter presents the numerical analysis

of bolted beam with two and three sections. This chapter presents the numerical analysis of only

bolted structures. The use of coupling element is is presented and different cases are studied. The

effect of bolted stiffness is studied for the beams. The last chapter concludes the work and suggests

the future work that can be done. The limitations and the scope to which this work can be extended

is discussed.
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Chapter 2

Frequency analysis of non-uniform

simply supported beams

In this section, we present systematic approach to compute the mode shape of a non-uniform beam

with variable mass and elastic rigidity by following the approach for first mode as mentioned by

Sarkar and Ganguly,[25]. In this chapter,we assume a prescribed polynomial,as the fundamental

mode shape which satisfies the boundary conditions of a non-uniform freefree beam.Then we have

used the inverse problem approach to show that for certain mass and stiffness distributions of the

beam,there exists a simple closed-form solution given by the assumed polynomial. Subsequently, we

compare the mode with the numerical solution obtained from ANSYS. Later, we extend the method

to compute the second and third modes of a single non-uniform beam, and to the second mode of

bolted non-uniform beam system. Finally, we also compute the frequencies using the obtained mode

shapes of a single beam as well as bolted beam systems, respectively, and compare the results with

numerical results from ANSYS. The proposed approach also allows us to design freefree beams with

tailored mode shapes and specified nodal locations.

2.1 Mode shape computation

In this section, we compute the mode shapes of a single non-uniform beam for the first three modes

and then extend the theory to compute the first two modes of a bolted system of three non-uniform

beams. The approach followed is the approximate mode shape approach where we assume the mode

shape as polynomial expression and used the boundary conditions of a free-free beam to find out

the variables in the expression. Also the variations of mass and stiffness is takes as polynomial

expressions and is obtained after the mode shape is calculated. For the higher modes we use the

zero location boundary conditions observed from the numerical analysis. For the bolted joint beam

we use the torsional spring boundary condition as to take care of the moment being transferred at

the joint. No damping is considered in our case.
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2.1.1 Single non-uniform beam

A non-uniform beam of length L, width W, thickness H, mass m, elastic modulus E, area moment of

inertia I, etc., can have varying section along its length based on a variation having inclined line with

zero curvature, concave curve with negative curvature and a convex curve with positive curvature

as shown in Figure 2.1. Based on the type of non-uniformity, the zero position of the higher order

modes change to different location. To demonstrate such variation, we take a non-uniform beam

with linearly varying section in this paper. We first validate the approach with that obtained by

Sarkar and Ganguli, [25], and then extend the theory to the second and third modes, respectively.

The mathematical formulation of a single non-uniform free-free beam can be modeled by the Euler

Figure 2.1: A single non-uniform beam with the side curve having curvature of (a) zero, (b) negative,
and (c) positive, respectively.

Bernoulli beam equation. The modal analysis can be done with the help of assumption of mode

shapes satisfying the respective boundary conditions for the modes. Taking the same variation of

mass per unit length, m(x), and the flexural rigidity, EI(x), due to non-uniform variation of section

of the beam along its length as mentioned by Sarkar and Ganguli, [25], we get

m(x) = a0 + a1x (2.1)

EI(x) = b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 (2.2)

where, ais, and bis are constant coefficients.

First mode

Taking the assumed mode shape (x) for the first mode as

ϕ(x) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 + c6x
6 (2.3)

where, the coefficients c0, c1, c2, c3, c4, c5, c6 are obtained based on the boundary conditions corre-

sponding to free-free simply supported beam and normalization condition. The order of polynomial

expression used for mode shape depends on the boundary condition that are to be satisfied by the

concerned mode shape. The use of exact mode shape is restricted as it’s adoption will not be helpful

in capturing all the boundary conditions. The order of the polynomial mode shape used by us is

flexible and hence can be increased or decreased depending on the boundary conditions. Since the

free-free simply supported beam has two zero locations corresponding to its first mode, we obtain

the above coefficients associated with ϕ(x) in terms of α and β, where, α and β represent the two

zero locations from origin O . Approximating the displacement by a single mode, Euler Bernoulli
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equation can be written as,

∂2

∂x2

(
EI(x)

∂2ϕ

∂x2

)
−m(x)ω2ϕ(x) = 0 (2.4)

where, ω denote the first modal frequency. Substituting the expressions of m(x), EI(x), and ϕ(x)

in equation 2.4, and then comparing the coefficients of different powers of x, we obtain a set of alge-

braic equation in terms of α,β,a0, a1, b0, b1, b2, b3, b4, b5, b6. Taking X = [a0; a1; b0; b1; b2; b3; b4; b5; b6],

algebraic equation can be written in the form of a matrix, AX = 0. For a non-trivial solution, we

set the determinant of the matrix A to zero, and, obtain the characteristics equation in terms of

α and β. By setting one of the value of zero location of the beam with length L=5 m, say, α =

0.78L=3.9, we obtain β=0.226L= 1.13. The results are found to be same as that obtained by Sarkar

and Ganguli [25]. Finally, the analytical mode shape corresponding to the first mode is obtained as

ϕ(x) = 1.05− 0.96x+ 0.038x4 − 0.009x5 + 0.0006x6 (2.5)

To compare the validity of the mode shape, we also did modeling in ANSYS. For the modeling, we

take a non-uniform beam of elastic modulus, E = 200GPa, and ρ,= 7840kg/m3 with a length of L=5

m. At x=0, we take the width W=0.0560 m and thickness H=0.00428 m, and at x = L, the width

and thickness are taken as W=0.05413 m and H=0.00443 m. Subsequently, we do modal analysis to

find the frequencies and the corresponding mode shapes. On comparing the zero positions obtained

numerically from ANSYS with the analytical results from equation 2.5 as shown in Table 2.1 and

Figure 2.2 , we found a good match with a percentage error of about 2%. Thus, our analytical

and numerical models are now validated. In the subsequent sections, we extend the analytical and

numerical modeling to obtain the mode shapes of second and third modes.

Second mode

Using the numerical solution in ANSYS as described in the previous section, we also obtain the

mode shapes of second and third modes. Using the second mode shape as obtained in Figure 2.1,

we noticed that there are three zero positions in the second mode. Therefore, it requires additional

boundary condition as compared to the case of first mode. Consequently, the order of the assumed

polynomial for the second mode shape is increased by one in order to satisfy additional zero position

boundary condition. Therefore, the assumed mode shape can be written as

ϕ(x) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 + c6x
6 + c7x

7 (2.6)

The corresponding boundary conditions can be written as,

ϕ′′(0) = 0, ϕ′′′(0) = 0, ϕ′′(L) = 0, ϕ′′′(L) = 0, ϕ(α) = 0, ϕ(β) = 0, ϕ(γ) = 0, ϕ(L) = −1, (2.7)

Using the boundary conditions given by eqn. (7), cis can be written in terms of zero position α,β

, andγ. Substituting the expressions of m(x), EI(x), and ϕ(x) in eqn. (4), and then comparing

the coefficients of different powers of x, we obtain a set of algebraic equation in terms of α, β,γ

,a0, a1, b0, b1, b2, b3, b4, b5, b6. Taking X = [a0; a1; b0; b1; b2; b3; b4; b5; b6], the algebraic equation can

be written in the form of a matrix, AX=0. For a non-trivial solution, we set the determinant of the

10



matrix A to zero, and, obtain the characteristics equation in terms of α ,β and γ. Taking the values

of α = 0.22L=1.1 and β=0.78L=3.9 based on the numerical mode shape, we obtain γ= 0.52L=2.6.

On comparing it with the numerically obtained values in Table 1 and Figures 3(b) and (e), we found

a percentage difference of about 4%. The analytical form of the second mode can be written as,

ϕ(x) = 1.12− 1.16x+ 0.19x4 − 0.09x5 + 0.01x6 − 0.0008x7 (2.8)
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Figure 2.2: Comparison of three mode shapes of a non-uniform beam obtained from numerical and
analytical methods, respectively.

Third mode

Like the case of second mode, we first obtain the mode shape corresponding to the third mode as

shown in Figure2.2(c). Based on numerically obtained mode shape, we found in addition to two zero

locations, the slopes at these locations are also zero. To capture the additional effects, we assume

the third mode shape as a polynomial of order eight as follows,

ϕ(x) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 + c6x
6 + c7x

7 + c8x
8 (2.9)

The corresponding boundary conditions can be written as,

ϕ′′(0) = 0, ϕ′′′(0) = 0, ϕ′′(L) = 0, ϕ′′′(L) = 0, ϕ(α) = 0, ϕ(β) = 0, ϕ′(α) = 0, ϕ′(β) = 0, ϕ(L) = 1,(2.10)

Following the similar approach as in the case of first and second mode, we obtain AX=0, where, X =

[a0; a1; b0; b1; b2; b3; b4; b5; b6]. To obtain the non-trivial solution, we set the determinant of the matrix

A to zero, and, obtain the characteristics equation in terms of α , and β. Taking β=0.78L=3.90, we

analytically obtain α= 0.278L=1.39, which is in close approximation of 0.28L as achieved in ANSYS.

Substituting the above ϕ(x) in the governing equation and solving the set of equations in matrix

form, i.e. keeping the determinant of A=0 for the non trivial solution we get an equation in terms of

α and ϕ. On providing the value of β=0.78L, we achieved the value of α= 0.278L=1.39, which is in

close agreement with numerically computed values of 0.28L=1.4 as obtained using ANSYS. Finally,

11



the approximate expression of third mode can be written as,

ϕ(x) = 2.36− 2.68x+ 1.13x4 − 0.83x5 + 0.23x6 − 0.03x7 + 0.001x8 (2.11)

Table 2.1: Frequency comparison for Single non-uniform beam

Mode
Parameters

Mode 1 Mode 2 Mode 3

α β α α γ α β

Theoritical 1.13 3.90 1.10 3.90 2.60 1.39 3.90

Numerical 1.10 3.90 1.10 3.90 2.50 1.4 3.90

The zero positions of the third mode obtained analytically and numerically are mentioned in

Table 2.1

2.1.2 Non-uniform beams with bolted joints

In this section, we apply the approach described in the previous section to obtain first and second

mode shape of bolted non-uniform beams as shown in Figure 4. To do the analysis, we take the same

dimensions as mentioned by Sarkar and Ganguli [25], who have done the similar analysis for the

first mode. In this section, we validate the modeling of bolted non-uniform beams with numerical

solution from ANSYS. To do the modeling, we take three non-uniform beams of elastic modulus,

E = 200GPa, and ρ,= 7840kg/m3 with a length of L1=1.1 m, L2=2.8m and L3=1.1m such that

L = L1+L2+L3=5 m. The width and height of initial and final sections of each beam are mentioned

in Table 2. The coupling of the beams which are bolted between the first and second beams and the

second and third beams are provided by coupling element COMBIN14. To induce the coupling at

the joint, we take the stiffness value of 100 Nm/rad at the junction of first and second beams and

150 Nm/rad at the junction of second and third beams. Finally, based on the modal analysis, we

obtain the first two modes of the bolted non-uniform beam as shown in Figures 5(a) and (c). In the

following sections, we compute the mode shape of bolted beams corresponding to first and second

mode using the information from numerically obtained mode shapes.

Figure 2.3: Schematic diagram of considered bolted beam
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Table 2.2: Width and height of three non-uniform beams bolted together

Non-Uniform Beam
Length
[m]

Initial Cross Section
[m]

Final Cross Section
[m]

Beam 1 L1=1.1
H=0.0059
W=0.0159

H=0.006802
W=0.01522

Beam 2 L2=2.8
H=0.003596
W=0.25795

H=0.003679
W=0.2409

Beam 3 L3=1.1
H=0.004722
W=0.17095

H=0.005239
W=0.12515

First mode

In this section, to analytically compute the first mode of a free-free bolted non-uniform beam, we

follow the same approach as proposed by Sarkar and Ganguli [25]. Based on the numerically

obtained mode shape as shown in Figure 2.4, it is noted that the zero positions are located at

the intersection of different beams. The boundary conditions are formulated with the help of the

information obtained from the numerical model. To obtain the complete mode, the mode shape of

individual beams are taken separately. Again the order of the polynomial depends on the boundary

condition needed to be satisfied by the mode shape. In this case as the second mode shape or the

mode shape for the second section needs to satisfy one extra boundary condition which is common

to both the sections, hence the order of the second section mode shape is chosen as one higher than

other two.

ϕ1(x) = a0 +
a1x

L
+

a2x
2

L2
+

a3x
3

L3
+

a4x
4

L4
+

a5x
5

L5

ϕ2(x) = b0 +
b1x

L
+

b2x
2

L2
+

b3x
3

L3
+

b4x
4

L4
+

b5x
5

L5
+

b6x
6

L6

ϕ3(x) = c0 +
c1x

L
+

c2x
2

L2
+

c3x
3

L3
+

c4x
4

L4
+

c5x
5

L5
(2.12)

Corresponding to the free-free boundary conditions and continuity conditions in the displacement,

slope, shear force and bending moment at the joints located at x= α and β, we get the following

conditions,

ϕ′′
1(0) = 0, ϕ′′′

1 (0) = 0, ϕ′′
3(L) = 0, ϕ′′′

3 (L) = 0, ϕ1(α) = 0, ϕ2(α) = 0, ϕ2(k) = 0, ϕ3(β) = 0,

ϕ2(β) = 0, ϕ3(L) = −1,EI 1
d2

dx2
ϕ1 (α) = −kr1

d

dx
ϕ1 (α) + EI 2

d2

dx2
ϕ2 (α)EI 2

d2

dx2
ϕ2 (β)

= −kr2
d

dx
ϕ2 (β) + EI 3

d2

dx2
ϕ3 (β)EI 1

d3

dx3
ϕ1 (α) = EI 2

d3

dx3
ϕ2 (α) ,EI 2

d3

dx3
ϕ2 (β)

= EI 3
d3

dx3
ϕ3 (β)

d

dx
ϕ1 (α) =

d

dx
ϕ2 (α) ,

d

dx
ϕ2 (β) =

d

dx
ϕ3 (β) (2.13)

Finally, satisfying the governing equation at the joints corresponding to x= α and β, such that

EIiϕ
′′′′
i (x) = mi(x)ω

2ϕi(x) , we get ϕ′′′′
1 (α) = 0, ϕ′′′′

2 (α) = 0 and ϕ′′′′
2 (β) = 0andϕ′′′′

3 (β) = 0. Solving

the above equations normalizing it at x=L, we obtain the unknown coefficients of the individual
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modes of the beams corresponding to the first mode. Finally, we get,

ϕ1(x) = 2.48− 1.39x+ 0.019x4 − 0.0019x5

ϕ2(x) = 2.91− 2.96x+ 2.11x2 − 1.37x3 + 0.46x4 − 0.0721x5 + 0.004x6

ϕ3(x) = −4.28 + 9.98x− 7.14x2 + 2.14x3 − 0.28x4 + 0.014x5 (2.14)

Second mode

To find the analytical expression of the second mode of a system of bolted non-uniform beams, we

first obtain the numerical mode shape in ANSYS as shown in Figure 2.4. It shows that there is

an additional zero position in the middle beam and the displacement of the free ends are in the

opposite directions. While the additional zero in the middle beam, say at x = k, can be captured

by increasing the order of the assumed mode by one, the displacement of the last beam at the free

end is captured by normalizing its mode shape with respect to −1. Taking the mode shapes of first,

second and third beams as,

ϕ1(x) = a0 +
a1x

L
+

a2x
2

L2
+

a3x
3

L3
+

a4x
4

L4
+

a5x
5

L5

ϕ2(x) = b0 +
b1x

L
+

b2x
2

L2
+

b3x
3

L3
+

b4x
4

L4
+

b5x
5

L5
+

b6x
6

L6
+

b7x
7

L7

ϕ3(x) = c0 +
c1x

L
+

c2x
2

L2
+

c3x
3

L3
+

c4x
4

L4
+

c5x
5

L5
(2.15)

and the boundary conditions can be written as,

ϕ′′
1(0) = 0, ϕ′′′

1 (0) = 0, ϕ′′
3(L) = 0, ϕ′′′

3 (L) = 0, ϕ1(α) = 0, ϕ2(α) = 0, ϕ2(k) = 0, ϕ3(β) = 0, ϕ2(β) = 0,

ϕ3(L) = −1,EI 1
d2

dx2
ϕ1 (α) = −kr1

d

dx
ϕ1 (α) + EI 2

d2

dx2
ϕ2 (α)EI 2

d2

dx2
ϕ2 (β) = −kr2

d

dx
ϕ2 (β)

+ EI 3
d2

dx2
ϕ3 (β)EI 1

d3

dx3
ϕ1 (α) = EI 2

d3

dx3
ϕ2 (α) ,EI 2

d3

dx3
ϕ2 (β) = EI 3

d3

dx3
ϕ3 (β)

d

dx
ϕ1 (α)

=
d

dx
ϕ2 (α) ,

d

dx
ϕ2 (β) =

d

dx
ϕ3 (β) (2.16)

Like the case of first mode, the assumed modes satisfying the governing equations at the joints

will lead to ϕ′′′′
1 (α) = 0, ϕ′′′′

2 (α) = 0 and ϕ′′′′
2 (β) = 0andϕ′′′′

3 (β) = 0. Normalizing the mode of the

third beam at the free end such thatϕ3(L)=-1 , we obtain the following form of the mode shape,

ϕ1(x) = 3.54− 3.44x+ 0.16x4 + 0.003x5

ϕ2(x) = −1.63 + 17.63x− 33.23x2 + 25.89x3 − 10.46x4 + 2.34x5 − 0.27x6 + 0.013x7

ϕ3(x) = −77.18 + 78.36x− 31.06x2 + 6.08x3 − 0.59x4 + 0.02x5 (2.17)

2.2 Frequency analysis

In this section, we utilize the mode shape computed in the previous section to compute the modal

frequencies of single as well as bolted non-uniform beams. The Rayleigh Ritz method has the

advantage that instead of discretization by dividing into elements we can discretize by assuming
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Figure 2.4: Modes of three non-uniform bolted beams obtained in ANSYS and MAPLE

solution in form of series. The method uses a series of assumed functions that satisfies kinematic

boundary condition and find coefficients by minimizing Rayleigh quotient.

ω2
n =

∑∫ L

0
∂2

∂x2

(
EI(x)i

∂2ϕi(x)
∂x2

)
ϕi(x)∑∫ L

0
m(x)iϕ2

i (x)dx
(2.18)

where,ω is the nth angular frequency and fn = ωn

2π is the corresponding frequency in Hz, i denotes

ith beam. Table 2.3 shows the comparison of frequencies of single non-uniform beam and bolted

beams computed by analytical method and that from the numerical simulation in ANSYS.

Table 2.3: Frequencies of single non-uniform beam and three non-uniform bolted beams

Mode Number
Single Non-Uniform Beam Three Non-Uniform Bolted Beams
FEM[Hz} Analytical[Hz] FEM[Hz] Analytical[Hz]

First Mode 0.90 0.85 1.24 1.23
Second Mode 1.73 1.61 3.11 2.66
Third Mode 2.90 2.227 - -

2.3 Summary and result discussion

In this section we presented the mode shape and frequencies of single non-uniform and bolted

cantilever beams. We start our work with mode shape computation for non-uniform single beams

analytically and numerically. The study is then is extended to the analytical model of bolted joints

sections with simply supported configuration. The study is extended to the higher vibrational modes.

On comparing the results with the numerical model we find reasonable match, thus proving closed

form solutions to be effective while studying vibration in non-uniform beams.

With the results as shown in Table 2.3 it can be seen that the analytically obtained frequency values

are less than the numerically obtained values. The reason for this can be accounted by the fact that

we use approximated mode shape approach for the analytical model instead of exact mode shape

approach. The use of this approach might be useful for some practical design applications where
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the fundamental frequency might be required to assume a desired value or if the location of the

internal nodes needs to be shifted. At the bolted section,the external elastic constraints are present,

where we consider two rotational constraints at the internal nodes,and consequently divided the

beam into three sections having variable mass and stiffness per unit lengths. We assumed simple

polynomial mode shapes for each of the three sections and derived them using all the relevant

boundary conditions of the non-uniform freefree beam, which leads to another class of closed-form

solutions and also enables us to tailor the internal node locations, given a certain fundamental

frequency and other beam parameters.
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Chapter 3

Frequency analysis of non-uniform

cantilever beam

This chapter extends the study done in previous chapter on simply supported configuration to

beams with cantilever configuration. This configuration is of critical importance for the mechanical

structures that is fixed to the ground with the other end free. The approach followed is same of

approximate mode shape analytical model. The study also presents the experimental procedure

conducted on the beam. The result for the same are verified with the analytical and numerical

models. First three vibrational modes are analysed for all the cases.

3.1 Experimental procedure

To measure the modal frequencies of single as well as bolted non-uniform beams as shown in

Fig. 3.1(b), we use Polytec scanning laser vibrometer as described in Fig. 3.1(a). To perform the

experiment, we first mount the test specimen on a shaker. Subsequently, we apply pseudorandom

signal from an internal function generator of vibrometer over a frequency bandwidth of around 200

Hz to 1600 Hz so as to cover the first three transverse modes of different configurations. In each case,

the FFT lines are taken as 3200 over the given bandwidth. The acceleration of shaker is controlled

through the amplifier. To capture the mode shape and modal frequencies, we defined scanning points

on the test sample using laser scanning head and start the measurements of displacement/velocity

at each points of the defined region. The movement of laser over the scan points are controlled

using OFV controller. Finally, the measured quantities such as the displacement or velocity and

input signal are stored using data acquisition system over a given frequency range. The accuracy of

frequency measurements depends on the number of FFT lines and frequency bandwidth. A detailed

description of measurement technique is described in the references [14, 26, 27].

3.2 Fixture design

The specimen on which the experiment is conducted are fixed on a fixture that is mounted on the

top of the shaker. As the fixture acts as the medium to transfer the vibration from the shaker to

the specimen, hence it is important to study the vibrational behaviour of the fixture. Therefore an
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Figure 3.1: (a) A picture showing the outline of experimental setup; (b) Test specimen showing the
images of single non-uniform beam, bolted beams with two and three non-uniform sections, and a
monolithic beam with three non-uniform sections without bolted joint.

experiment was conducted in which the frequency response of the fixture was acquired and analysed.

The fixture setup is shown as in figure 3.3.

For the experimental procedure a pseudorandom signal is used as an input. The bandwidth for

the procedure was ranging from 0 Hz to 4 KHz to capture all the behaviour. The FFT lines taken

are 3200. The frequency vs response graph obtained is as shown in Figure 3.4

• The frequency response curve obtained peak at 183.75 Hz which is a noise and no significant

mode. The next frequency at which peak was obtained is 878.75 Hz which is the first torsional

mode. The second torsional mode is obtained at 995 Hz. The first clear transverse mode is

obtained at 2063.25 Hz. From the frequencies obtained we can conclude that the effect of

fixture will be significant for the single non-uniform beams where the third mode is obtained

close to 1000 Hz. And it will have less significance for the bolted beams.

The experimental setup consisted of a PSV-500 Scanning Vibrometer, a Polytec product for

optical non-contact vibration mapping and analysis.The main components of a PSV-500 Scanning

vibrometer are PSV-I-500 Scanning Head with high precision scanner and HD video 20x zoom

camera PSV-F-500 Front-End with digital broadband decoder. It also comprises of PSV-W-500-M

Data Management System: 19 industrial PC with data acquisition and signal generator board.At

the heart of every Polytec vibrometer system is the laser-Doppler vibrometer a precision optical

transducer used for determining vibration velocity and displacement at a fixed point. The technology

is based on the Doppler-effect; sensing the frequency shift of back scattered light from a moving

surface. The working principle involves the Doppler effect in which a wave is reflected by a moving

object and detected by a measurement system (as is the case with the LDV), the measured frequency

shift of the wave can be described as

f = 2v/λ (3.1)

where, v is the object’s velocity and λ is the emitted wavelength. To be able to determine the

velocity of an object, the (Doppler-)frequency shift has to be measured at a known wavelength.

This is done in the LDV by using a laser interferometer. The Laser-Doppler vibrometer works

on the basis of optical interference, requiring two coherent light beams, with their respective light

intensities I1 and I2, to overlap. The resulting intensity is not just the sum of the single intensities.

This interference term relates to the path length difference between both beams. If this difference
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Figure 3.2: Experimental frequency response of a single non-uniform beam with (a) diverging section
and (b) converging section.

is an integer multiple of the laser wavelength, the overall intensity is four times a single intensity.

Correspondingly, the overall intensity is zero if the two beams have a path length difference of half

of one wavelength.

The beam of a helium neon laser is split by a beam splitter (BS 1) into a reference beam and a

measurement beam. After passing through a second beam splitter (BS 2), the measurement beam is

focused onto the object under investigation, which reflects it. This reflected beam is now deflected

downwards by BS 2 (see figure), is then merged with the reference beam by the third beam splitter

(BS 3) and is then directed onto the detector.

Using the above mentioned procedure, we perform experiments to find the modal frequencies and

mode shapes of single as well as bolted non-uniform beams as shown in Fig. 3.1. All the beams are

made of aluminium and are of length, L = 0.16 m, thickness, t = 0.002m and have varying width

of b1 = 0.03 m at one end to b1 = 0.05 m at another end. Each beam is provided with end holes

of diameter d = 0.01 m and an extra length of 0.02 m is provided for the fastening. The Young’s

modulus and the density of aluminium beam are taken as E = 69 GPa and ρ = 2700 kg/m3. The

bolts used are of 0.01 m and one bolt is used for each jointed section.

Table 3.1: Experimental results for single and bolted non-uniform cantilever beams.

FEA models 1st mode 2nd mode 3rd mode

Single beam(Small end fixed) 54.68 371.09 1146.48
Single beam(Bigger end fixed) 66.40 401.36 1160.15
Two section bolted beam 13.1 66.5 260.25
Three sections monolithic beam 6.75 43.50 118.0
Three sections bolted beam 5.625 33.43 73.44
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Figure 3.3: Experimental setup for fixture
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Figure 3.4: Frequency vs response curve obtained for fixture

To systematically perform the experimental studies, we first perform experiments on a single

non-uniform cantilever beam. Figures 3.2(a) and (b) show the frequency response of the single

non-uniform cantilever beam when its wider and smaller ends are fixed, respectively, as shown in

Fig. 3.1(b). For the beam having fixed wider end, the first three transverse modes are found at 54.68

Hz, 371.09 Hz, and 1146.48 Hz. For the beam with smaller end fixed, the corresponding frequencies

are found as 66.40 Hz, 401.36 Hz, and 1160.15 Hz. Based on the observation of second mode, it is

found that the first torsional and second transverse modes are closer to each other. Figure 3.5 show

the variation of frequency response of a bolted cantilever beam with two non-uniform sections. The

frequencies are found to be 13.1 Hz 66.5 Hz, and 260.25 Hz corresponding to first three transverse

modes of the beam. Similarly, Figs. 3.6(a) and (b) show the frequency response curves of cantilever

beams with three non-uniform sections with and without bolted joint. For the monolithic cantilever

beam of three non-uniform sections without any bolted joints, the transverse modes are found at

7.25 Hz, 42.75 Hz, and 120.75 Hz. The corresponding frequencies of the cantilever beam with

three non-uniform bolted sections are found at 5.625 Hz, 33.43 Hz, and 73.44 Hz, respectively.

Comparison of results show that beam with bolted joints has lower modal frequencies than that of
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Figure 3.5: Experimental frequency response of a bolted beam with two sections.

the monolithic beam due to reduction in stiffness at the joints. In the subsequent section, we first

present the modeling of single non-uniform beam and monolithic three sections beam using ANSYS.

Subsequently, we present analytical modeling of a single non-uniform beam and the bolted beam

using lumped spring at the joint. The error associated with the measured values may vary from 0.25

to 1 Hz.

3.3 Numerical modelling and results

In this section, we present numerical modeling of single as well as monolithic non-uniform beams

using 2D beam element in ANSYS. To model different sections, the cross-sections at x = 0 and x = L

are provided corresponding to the dimensions of single non-uniform beam. To model the beams of

monolithic beam with three non-uniform sections, we provide six cross-sections corresponding to

the ends of each section and glue them together. After providing the material properties of the

beams, we perform modal analysis using block lancoz method to compute modal frequencies and

corresponding modes of the single and bolted non-uniform beams. Figure 3.7(a), (b) and (c) show

the numerically computed first three transverse mode shapes of non-uniform beam when smaller and

wider ends are fixed, respectively. Similarly, we obtain the first three transverse modes of monolithic

cantilever beam with three non-uniform sections as shown in Fig. 3.7(c). The frequency values of

beams with single and three non-uniform sections are summerized in Table 3.2.

Table 3.2: Frequencies of cantilever beam with single and monolithic three non-uniform sections.

FEA models 1st mode 2nd mode 3rd mode

Single beam(Small end fixed) 54.49 380.75 1100
Single beam(Bigger end fixed) 74.30 419.22 1137.47
Three sections monolithic beam 6.64 41.88 118.43

On comparing the numerical results from Table 3.2 with the experimental results as mentioned

in Table 3.1, we get very good agreement with a minimum and maximum percentage errors of 0.3%

and 11%, respectively.
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Figure 3.6: Experimental frequency response of a cantilever beam consisting of three non-uniform
sections (a) without bolted joint, (b) with bolted joint.

3.4 Analytical procedure and results

In this section, we present approximate method to compute the first three transverse mode shapes

of the single non-uniform cantilever beam with variable mass and elastic rigidity by following the

approach proposed by Sarkar and Ganguli [25]. Later, we utilize the computed mode shape to obtain

the modal frequencies using Rayleigh-Ritz method. After validating the method with the results of

the single beams, separately, we compute the mode shapes and frequencies of bolted cantilever beams

with two and three non-uniform sections, separately. We also compare the analytical results with

experimental results for all the cases. The boundary conditions of the analytical model is formulated

with the help of the analysis of experimental results. The analysis of experimental results helped

us to identify the zero locations of the beams being tested for higher modes. The zero locations

were incorporated in the boundary conditions and satisfied by the corresponding mode shape for

the section.

3.4.1 Modal analysis of a single non-uniform beam

To compute the expression of mode shapes corresponding to first three transverse modes, we use

zero positions from the measured mode shapes. Subsequently, we use the Rayleigh-Ritz method

to compute the frequencies. Here, we apply this technique first for the single beam with linearly

diverging section and then for the beam with linearly converging section from the fixed end.
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Figure 3.7: Finite element models and mode shapes of (a)single beam with diverging section, (b)
single beam with converging section,

Non-uniform beam with diverging section

For a beam of length L, width b1 = 0.03 m at the small end and b2 = 0.05 m at the larger end,

thickness, h = 0.02 m, the elastic modulus of E = 69 GPa and the density of ρ = 2700 kg/m3, the

transverse motion can be governed by the Euler-Bernoulli beam equation as [25],

∂2

∂x2

(
EI(x)

∂2ϕ

∂x2

)
−m(x)ω2ϕ(x) = 0, (3.2)

where, ϕ(x) is the unknown mode shape corresponding to the modal frequency ω which is obtained

by satisfying the corresponding boundary conditions and the governing equation of the beam. Due

to the variation of width along the length, the variation of mass m(x) and the flexural rigidity EI(x)

can be obtained as

m(x) = 0.162 + 0.675x, and EI(x) = 1.38 + 5.75x. (3.3)

After finding the approximate mode shape, we obtain the corresponding frequency using the Rayleigh-

Ritz method as

ω2
n =

∑
i

∫ L

0
∂2

∂x2

(
EI(x)i

∂2ϕni(x)
∂x2

)
ϕni(x)dx∑∫ L

0
m(x)iϕ2

ni(x)dx
(3.4)

where, ωn is the angular frequency and fn = ωn

2π is the frequency in Hz, ϕni is the mode shape of ith

section of the bolted beam corresponding to nth mode and for the single beam, i = 1.

• First Mode: For the first mode of the single non-uniform cantilever beam, we approximate the

assumed mode shape ϕ11 by a polynomial expression

ϕ11(x) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4, (3.5)
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where, c0, c1, c2, c3, c4 are five unknown coefficients. These unknowns are determined using

the boundary conditions and normalization condition as follow.

ϕ11(0) = 0, ϕ′
11(0) = 0, ϕ′′

11(L) = 0, ϕ′′′
11(L) = 0, ϕ11(L) = 1, (3.6)

On solving the above equation, we obtain the following form of the first mode

ϕ11(x) = −390.62x2 + 1627.60x3 − 2543.13x4. (3.7)

Using Eqs. (3.4) and (3.7), we get the frequency of first mode as 54.52 Hz.

• Second Mode: By observing the second mode shape of single beam with lower end fixed from

the experimental and numerical simulation from Figs. 3.2 and 3.7, we noticed that there exist

an additional zero position at α = 0.1192m from the fixed end. Consequently, the order of the

assumed polynomial for the second mode shape is increased by one in order to satisfy additional

zero position boundary condition. Therefore, the assumed mode shape can be written as

ϕ21(x) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5. (3.8)

The unknown coefficients c0, c1, c2, c3, c4, c5 can be obtained from the following conditions:

ϕ21(0) = 0, ϕ′
21(0) = 0, ϕ′′

21(L) = 0, ϕ′′′
21(L) = 0, ϕ(α) = 0, ϕ21(L) = 1 (3.9)

where, α = 0.1192 m is the zero-location of second mode. Solving the above equations, we

obtain the final form of mode shape as

ϕ21(x) = −564.99x2 + 9042.19x3 − 45494.26x4 + 78414.39x5. (3.10)

Using Eqs. (3.4) and (3.10), we get the frequency of first mode as 377.32 Hz.

• Third Mode: Like the case of second mode, by observing the modes of single beam from the

experimental and numerical results as shown in Figs. 3.2 and 3.7, we noticed two additional

zero locations at β = 0.069 and α = 0.128 m from the fixed end. Consequently, the assumed

mode shape can be approximated with the polynomial expression of order six, i.e., one order

higher to the second mode to satisfy the extra zero conditions. The mode shape is given by

ϕ31(x) = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 + c6x
6 (3.11)

The unknown coefficients c0, c1, c2, c3, c4, c5 and c6 can be obtained from the following

conditions:

ϕ31(0) = 0, ϕ′
31(0) = 0, ϕ′′

31(L) = 0, ϕ′′′
31(L) = 0, ϕ31(β) = 0, ϕ31(α) = 0,

ϕ31(L) = 1 (3.12)

where, β = 0.069 and α = 0.128 m are zero positions. On solving Eq. (3.12), we get the
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following form of the mode shape

ϕ31(x) = 1249.98x2 − 39521x3 + 4.29× 105x4 − 1.95× 106x5

+5.23× 106x6. (3.13)

Using Eqs. (3.4) and (3.13), we get the frequency of third mode as 947.5 Hz.

Table 3.3: Frequencies of single non-uniform beam with diverging section.

Modes Exp. Result Anal. Result Num. Result

1st mode 54.68 54.42 54.49
2nd mode 371.09 377.32 380.75
3rd mode 1146.48 947.5 1100

On comparing the analytical solutions with the experimental and numerical results in Table 3.3,

we found that the percentage errors of the first and second modes are less than 2% error and the

third mode gives an error of about 17% with respect to the experimental results. The high error

percentage in the third mode can be accredited to the high order of mode shape polynomial being

used for the mode shape analysis. Also as the analytical boundary conditions are inspired by the

experimental results which are subjected to real life conditions. In the analytical model we don’t

take into account the material damping and the fixture design which might also contribute to the

natural frequency of the beam at higher modes.

Non-uniform beam with converging section

The next case is when the bigger cross section of the beam if fixed. As seen in the experimental case

the first mode of the beam with the diverging section came very close to the beam with the converging

section but there was significant difference in the frequency of the higher modes. The analytical

model for the beam with converging section follows the same procedure but the only difference is

in the mass and stiffness variation for the beam and the zero location boundary conditions. In the

case of non-uniform beam with converging section from the fixed end, the variation of mass, m(x)

and the flexural rigidity, EI(x) can be written as

m(x) = 0.675x+ 0.270, and, EI(x) = 2.30 + 5.75x. (3.14)

On observing the experimental and numerical mode shapes from Figs. 3.2 and 3.7, we found that the

location of zero points in second and third modes remain the same as that of the uniform beam with

diverging section. Therefore, the mode shapes obtained in the previous sections corresponding to

all the three modes will remain the same. Using the mode shapes from Eqs. (3.7), (3.9) and (3.13),

we computed the frequencies of first, second and third modes using Eq. (3.4). Finally, we compare

the analytical values of modal frequencies with the numerical and experimental results in Table 3.4.

The table 3.4 shows the frequency comparison for the beam with the converging section obtained

from the experimental, analytical and numerical result. The error in the first two modal frequencies

is below 2% and the third frequency is having high error percentage. The reasons being same as

explained in the previous section for the beam with diverging section.
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Table 3.4: Frequencies of single non-uniform beam with converging section.

Modes Exp. Result Anal. Result Num. Result

1st mode 66.40 57.50 74.30
2nd mode 401.36 395.66 419.22
3rd mode 1160.15 913.52 1137.47
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Figure 3.8: Analytical mode shapes of bolted cantilever beams with (a) two, and (b) three non-
uniform sections.

3.4.2 Modal analysis of a bolted cantilever beam with two non-uniform

sections

After the experimental and analytical analysis of the individual non-uniform cantilever beams with

converging and diverging sections we analysed an assembled beam comprising of two non-uniform

beams and using a bolt to join them as an assembly. To analytically compute the mode shapes

and frequencies of a bolted beam with two sections, we approximate the shape of each section by

a polynomial of required order. The length of each section is taken as L=0.16 m such that first

section ranges from x = 0 to x = L1 = 0.16m and second section ranges from x = L1 = 0.16 to

x = L2 = 0.32m. Using the dimensions and properties of the beam, the variation of mass and

flexural rigidity for the two sections can be written as,

m1(x) = 0.162 + 0.675x, EI1(x) = 1.38 + 5.75x.

m2(x) = 0.054 + 0.675x, EI2(x) = 0.46 + 5.75x. (3.15)

To find the frequencies of all the three modes, we first compute the mode shapes using approximate

methods in conjunction with the boundary conditions, normalization condition and bolted joint

condition, etc., in the following section.

• First Mode: The assumed first mode shape ϕ1 is written in terms of the mode shapes of all

the three sections, i.e., ϕ11 and ϕ12 such that ϕ1 = ϕ11 + ϕ12. The assumed mode shapes of
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ϕ11 and ϕ12can be written as

ϕ11(x) = a0 + a1
x

L
+ a2

x2

L2
,

ϕ12(x) = b0 + b1
x

L
+ b2

x2

L2
+ b3

x3

L3
+ b4

x4

L4
(3.16)

where, a0, a1, a2, b0, b1, b2,b3 and b4are unknown coefficients which can be obtained from the

boundary conditions, normalization conditions, and joint conditions. The equations associated

with all the necessary conditions can be written as

ϕ11(0) = 0, ϕ′
11(0) = 0, ϕ11(L1) = ϕ12(L1), ϕ

′
11(L1) = ϕ′

12(L1),

(EI(x)ϕ′′
11(x)) |x=L1 = −kr1ϕ

′
11(L1) (EI(x)ϕ′′

12(x)) |x=L1 ,

ϕ12(L2) = 1, ϕ′′
12(L2) = 0, ϕ′′′

12(L2) = 0, (EI(x)ϕ′′′
11(x)) |x=L1 =

(EI(x)ϕ′′′
12(x)) |x=L1 , (EI(x)ϕ′′′

12(x)) |x=L2 = (EI(x)ϕ′′′
13(x)) |x=L2 , (3.17)

where, kr1 is the torsional stiffness of the bolted joints located at x = L1. The boundary

conditions are of the fixed free beam. The value and the slope of the first section mode shape

is equal to zero at the fixed location, and the value of shear force and bending moment is

kept zero at the free end or the last point of beam for the third section. For the boundary

conditions at the joint the value of mode shape and slope is made equal to each other. To

involve the torsional spring effect we inducted the boundary condition where the moment is

made equal for both section at the joint location. At the end to normalise the mode shape

the end value is equal to one. Taking kr1 = 0.01 Nm/rad, the mode shapes of all the three

sections corresponding to first mode of the bolted beam can be written as

ϕ11(x) = 16.35x2 − 22.71x3,

ϕ12(x) = 0.19− 3.29x+ 36.34x2 − 75.70x3 + 59.14x4 (3.18)

• Second Mode: On observing the second mode shape of bolted cantilever beam with two-single

non-uniform sections obtained from the experimental result , we noticed that there exist an

additional zero position at x = α = 0.21 m which is located in second section. Consequently,

the order of the assumed polynomial for the second section is increased by one in order to

satisfy additional boundary condition, i.e., ϕ22(α) = 0. Writing the second mode shape as

ϕ2 = ϕ21 + ϕ22, where, ϕ21 and ϕ22 are the assumed mode shapes of three sections which are

represented the following polynomials

ϕ21(x) = a0 + a1
x

L
+ a2

x2

L2
,

ϕ22(x) = b0 + b1
x

L
+ b2

x2

L2
+ b3

x3

L3
+ b4

x4

L4
+ b5

x5

L5
(3.19)

where, a0, a1, a2, b0, b1, b2,b3, b4 and b5 are unknown coefficients which can be solved using

the boundary conditions, normalization conditions, condition of additional zero position and
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joint conditions which are given by

ϕ21(0) = 0, ϕ′
21(0) = 0, ϕ21(L1) = ϕ22(L1), ϕ

′
21(L1) = ϕ′

22(L1)

, (EI(x)ϕ′′
21(x)) |x=L1

= −kr1ϕ
′
21(L1) (EI(x)ϕ′′

22(x)) |x=L1
,

ϕ22(L2) = 1, ϕ′′
22(L2) = 0, ϕ′′′

22(L2) = 0, (EI(x)ϕ′′′
21(x)) |x=L1 =

(EI(x)ϕ′′′
22(x)) |x=L1 , (EI(x)ϕ′′′

22(x)) |x=L2 = (EI(x)ϕ′′′
23(x)) |x=L2 , ϕ22(α) = 0, (3.20)

Solving the above equations for the same values of k1 we get the mode shapes corresponding

to all the sections as

ϕ21(x) = −23.40x2 + 106.68x3,

ϕ22(x) = −1.59 + 46.81x− 526.86x2 + 2581.64x3 − 5495.07x4

+ 4347.71x5 + 31.52x3 (3.21)

Using Eqs. (3.4) and (3.21), we get the second modal frequency as 68.49 Hz.

• Third Mode: Similarly, on observing the modes of single beam from the experimental result as

shown in Fig. 3.6(b), we noticed two additional zero locations at x = β = 0.14 and x = α = 0.28

m from the fixed end. Consequently, the order of the assumed mode shape for the first

section and the second section are increased by one order each as compared to that in the first

mode. Consequently, the assumed mode shapes satisfy additional boundary conditions, i.e.,

ϕ31(β) = 0 and ϕ32(α) = 0. Writing the third mode shape as ϕ3 = ϕ31 + ϕ32, where, ϕ31 and

ϕ32are the assumed mode shapes of two sections which can be written as

ϕ31(x) = a0 + a1
x

L
+ a2

x2

L2
+ a3

x3

L3
+ a4

x4

L4
,

ϕ32(x) = b0 + b1
x

L
+ b2

x2

L2
+ b3

x3

L3
+ b4

x4

L4
+ b5

x5

L5
(3.22)

where, a0, a1, a2,a3,a4,b0, b1, b2, b3,b4, and b5 are unknown coefficients which can be solved

using the boundary conditions, normalization conditions, condition of additional zero position

and joint conditions which are given by

ϕ31(0) = 0, ϕ′
31(0) = 0, ϕ31(L1) = ϕ32(L1), ϕ

′
31(L1) = ϕ′

32(L1)

, (EI(x)ϕ′′
31(x)) |x=L1 = −kr1ϕ

′
31(L1) (EI(x)ϕ′′

32(x)) |x=L1 , ϕ32(L2) = 1,

ϕ′′
32(L2) = 0, ϕ′′′

32(L2) = 0, (EI(x)ϕ′′′
31(x)) |x=L1 = (EI(x)ϕ′′′

32(x)) |x=L1 ,

(EI(x)ϕ′′′
32(x)) |x=L2

= (EI(x)ϕ′′′
33(x)) |x=L2

, ϕ22(α) = 0, ϕ31(β) = 0, (3.23)

The mode shapes corresponding to two sections are,

ϕ31(x) = 266.20x2 − 2967.18x3 + 7612.58x4,

ϕ32(x) = −27.24 + 675.76x− 6167.94x2 + 2580.49x3

+ 50665.90x4 + 38087.75x5 − 266.66x3 + 354.59x4 (3.24)

Using Eqs. (3.4) and (3.24), we get the third modal frequency as 251.33 Hz.
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Table 3.5: Frequency comparison for bolted beam with two sections

Mode Exp. results Anal. results % Error

First mode 13.1 14.07 7.4
Second mode 66.5 68.49 3.0
Third mode 260.25 251.33 3.4

3.4.3 Modal analysis of a bolted cantilever beam with three non-uniform

sections

To compute correct expression of mode shapes corresponding to first three modes of a bolted can-

tilever beam with three non-uniform sections, we capture the contribution of each section by different

functions. To do the analysis, we take non-uniform sections with same length L, thickness t and

varying width of b1 to b2 over a length of L as shown in Fig. 3.8. Section 1 is located from x = 0

to x = L1 = L, section 2 is located from x = L1 = L to x = L2 = 2L, and section 3 is from

x = L2 = 2L to x = L3 = 3L. Using the previously defined values of dimensions, the variation of

mass, m(x) and flexural rigidity EI(x) over the three sections can be written as

m1(x) = 0.162 + 0.675x, EI1(x) = 1.38 + 5.75x.

m2(x) = 0.054 + 0.675x, EI2(x) = 0.46 + 5.75x. (3.25)

m3(x) = −0.054 + 0.675x, EI3(x) = −0.46 + 5.75x.

To find the mode shapes of first three modes of bolted beam with three non-uniform sections, we

write the combined mode shape in terms of the shape of each section, respectively. Subsequently,

we obtain the unknowns associated with the assumed mode shapes by satisfying the boundary

conditions, normalization condition and the joint conditions.

• First Mode: The assumed first mode shape ϕ1 is written in terms of the mode shapes of all

the three sections, i.e., ϕ11, ϕ12, and ϕ13, such that ϕ1 = ϕ11 + ϕ12 + ϕ13. The assumed mode

shapes of ϕ11, ϕ12, and ϕ13 can be written as

ϕ11(x) = a0 + a1
x

L
+ a2

x2

L2
, ϕ12(x) = b0 + b1

x

L
+ b2

x2

L2
,

ϕ13(x) = c0 + c1
x

L
+ c2

x2

L2
+ c3

x3

L3
+ c4

x4

L4
(3.26)

where, a0, a1, a2, b0, b1, b2, c0, c1, c2, c3 and c4 are unknown coefficients which can be obtained

from the boundary conditions, normalization conditions, and joint conditions. The equations

associated with all the necessary conditions can be written as

ϕ11(0) = 0, ϕ′
11(0) = 0, ϕ11(L1) = ϕ12(L1), ϕ′

11(L1) = ϕ′
12(L1),

(EI(x)ϕ′′
11(x)) |x=L1 = −kr1ϕ

′
11(L1) + (EI(x)ϕ′′

12(x)) |x=L1 , ϕ12(L2)

= ϕ13(L2), ϕ′
12(L2) = ϕ′

13(L2), (EI(x)ϕ′′
12(x)) |x=L2 = −kr2ϕ

′
12(L2)

+ (EI(x)ϕ′′
13(x)) |x=L2 , ϕ13(L4) = 1, ϕ′′

13(L4) = 0, ϕ′′′
13(L4) = 0,

(EI(x)ϕ′′′
11(x)) |x=L1 = (EI(x)ϕ′′′

12(x)) |x=L1 ,

(EI(x)ϕ′′′
12(x)) |x=L2 = (EI(x)ϕ′′′

13(x)) |x=L2 , (3.27)
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where, kr1 and kr2 are the torsional stiffness of the bolted joints located at x = L1 and x = L2.

Taking kr1 = kr2=0.01, the mode shapes of all the three sections corresponding to first mode

of the bolted beam can be written as

ϕ11(x) = 6.05x2 − 5.04x3, ϕ12(x) = 0.08− 1.03x+ 10.08x2 − 8.40x3,

ϕ13(x) = 0.63− 6.48x+ 30.26x2 − 40.03x3 + 21.89x4 (3.28)

and also shown in Figs. 3.8(b). Using Eqs. (3.4) and (3.28), we get the first mode frequency

as 6.10 Hz.

• Second Mode: On observing the second mode shape of bolted cantilever beam with three-single

non-uniform sections obtained from the experimental result as shown in Fig. 3.6(b), we noticed

that there exist an additional zero position at x = α = 0.33 m which is located in third section.

Consequently, the order of the assumed polynomial for the third section is increased by one

in order to satisfy additional boundary condition, i.e., ϕ23(α) = 0. Writing the second mode

shape as ϕ2 = ϕ21 +ϕ22 +ϕ23, where, ϕ21, ϕ22, and ϕ23 are the assumed mode shapes of three

sections which are represented the following polynomials

ϕ21(x) = a0 + a1
x

L
+ a2

x2

L2
, ϕ22(x) = b0 + b1

x

L
+ b2

x2

L2
,

ϕ23(x) = c0 + c1
x

L
+ c2

x2

L2
+ c3

x3

L3
+ c4

x4

L4
+ c5

x5

L5
(3.29)

where, a0, a1, a2, b0, b1, b2, c0, c1, c2, c3, c4 and c5 are unknown coefficients which can be

solved using the boundary conditions, normalization conditions, condition of additional zero

position and joint conditions which are given by

ϕ21(0) = 0, ϕ′
21(0) = 0, ϕ21(L1) = ϕ22(L1), ϕ′

21(L1) = ϕ′
22(L1),

(EI(x)ϕ′′
21(x)) |x=L1

= −kr1ϕ
′
21(L1) + (EI(x)ϕ′′

22(x)) |x=L1
, ϕ22(L2)

= ϕ23(L2), ϕ′
22(L2) = ϕ′

23(L2), (EI(x)ϕ′′
22(x)) |x=L2 = −kr2ϕ

′
22(L2)

+ (EI(x)ϕ′′
23(x)) |x=L2 , ϕ23(L4) = 1, ϕ′′

23(L4) = 0, ϕ′′′
23(L4) = 0,

(EI(x)ϕ′′′
21(x)) |x=L1 = (EI(x)ϕ′′′

22(x)) |x=L1 ,

ϕ23(α) = 0, (EI(x)ϕ′′′
22(x)) |x=L2 = (EI(x)ϕ′′′

23(x)) |x=L2 . (3.30)

Solving the above equations for the same values of k1 and k2, we get the mode shapes corre-

sponding to all the sections as

ϕ21(x) = −7.15x2 + 18.91x3, ϕ22(x) = −0.02 + 0.57x− 11.96x2

+31.52x3, ϕ23(x) = −16.24 + 231.18x− 1280.31x2 + 3398.8x3

−4302.38x4 + 2110.14x5. (3.31)

The final second mode shape can also shown in Fig. 3.8(c). Using Eqs. (3.4) and (3.31), we

get the second modal frequency as 38.38 Hz.
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• Third Mode: Similarly, on observing the modes of single beam from the experimental result ,

we noticed two additional zero locations at x = β = 0.23 and x = α = 0.37 m from the fixed

end. Consequently, the order of the assumed mode shape for the second section and the third

section are increased by one order each as compared to that in the first mode. Consequently, the

assumed mode shapes satisfy additional boundary conditions, i.e., ϕ32(β) = 0 and ϕ33(α) = 0.

Writing the third mode shape as ϕ3 = ϕ31+ϕ32+ϕ33, where, ϕ31, ϕ32, and ϕ33 are the assumed

mode shapes of three sections which can be written as

ϕ31(x) = a0 + a1
x

L
+ a2

x2

L2
, ϕ32(x) = b0 + b1

x

L
+ b2

x2

L2
+ b3

x3

L3
,

ϕ33(x) = c0 + c1
x

L
+ c2

x2

L2
+ c3

x3

L3
+ c4

x4

L4
+ c5

x5

L5
(3.32)

where, a0, a1, a2, b0, b1, b2, b3, c0, c1, c2, c3, c4, and c5 are unknown coefficients which can be

solved using the boundary conditions, normalization conditions, condition of additional zero

position and joint conditions which are given by

ϕ31(0) = 0, ϕ′
31(0) = 0, ϕ31(L1) = ϕ32(L1), ϕ′

31(L1) = ϕ′
32(L1),

(EI(x)ϕ′′
31(x)) |x=L1

= −kr1ϕ
′
31(L1) + (EI(x)ϕ′′

32(x)) |x=L1
, ϕ32(L2)

= ϕ33(L2), ϕ′
32(L2) = ϕ′

33(L2), (EI(x)ϕ′′
32(x)) |x=L2 = −kr2ϕ

′
32(L2)

+ (EI(x)ϕ′′
33(x)) |x=L2 , ϕ33(L4) = 1, ϕ′′

33(L4) = 0, ϕ′′′
33(L4) = 0,

(EI(x)ϕ′′′
31(x)) |x=L1 = (EI(x)ϕ′′′

32(x)) |x=L1 ,

ϕ32(β) = 0, ϕ33(α) = 0, (EI(x)ϕ′′′
32(x)) |x=L2 = (EI(x)ϕ′′′

33(x)) |x=L2 . (3.33)

Solving the above equations using the same values of k1 and k2, we get the mode shapes

corresponding to all the three sections as

ϕ31(x) = 5.77x2 − 23.83x3, ϕ32(x) = 0.2− 5.82x+ 64.1x2

−266.66x3 + 354.59x4, ϕ33(x) = −54.50 + 736.71x− 3863.81x2

+9796.72x3 − 12024.83x4 + 5768.64x5. (3.34)

The final second mode shape can also shown in Fig. 3.8(d). Using Eqs. (3.4) and (3.34), we

get the second modal frequency as 91.88 Hz.

Finally, when we compare the analytical results with experimental results in Table 3.6, we find

the maximum percentage error of about 15%. Error may be due to the approximate mode shapes,

minor difference in the symmetry of the tapering and holes provided at the end of the fabricated

non-uniform beams, some uncertainties associated with the bolted joints, frequency resolution in

the measured signal, etc. It is also found that by increasing the torsional stiffness, we can obtain

the changes in the mode shapes. Since the values of kr1 = kr2 = 0.01 are found to be small in the

present case, therefore, modal frequencies of bolted beams may found to be closer to the monolithic

beam with three sections without any bolted joints.
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Table 3.6: Frequency comparison for bolted beam with three sections

Mode Exp. results Anal. results % Error

First mode 5.63 6.10 8.35
Second mode 33.43 38.44 14.99
Third mode 73.44 74.97 2.0

Table 3.7: Frequency comparison for three section monolithic beam

Mode Exp. results Anal. results % Error

First mode 6.75 6.10 9.63
Second mode 43.25 47.54 9.9
Third mode 118.0 110.55 6.74

3.4.4 Modal analysis of three-sections monolithic beam

In this section, we compute modal frequencies of monolithic beam with three sections without any

joint by neglecting the terms associated with torsional stiffness at the joints. Using the zero position

of second mode at x = α = 0.36 and the third mode at x = α = 0.4 and x = β = 0.23 obtained

from the experimental mode shapes, we get the following form of the mode shapes using the same

procedure as described in the previous section. For the first mode, we get the following shape

functions

ϕ11(x) = 6.05x2 − 5.04x3, ϕ12(x) = 0.08− 1.03x+ 10.08x2 − 8.40x3,

ϕ13(x) = 0.63− 6.48x+ 30.25x2 − 42.02x3 + 21.89x4. (3.35)

For the second mode, we obtain the mode shape as

ϕ21(x) = −10.50x2 + 24.98x3, ϕ22(x) = −0.04 + 0.96x− 17.50x2 + 41.62x3,

ϕ23(x) = −20.49 + 291.00x− 1610.05x2 + 4264.21x3 − 5389.75x4 + 2640.77x5. (3.36)

Similarly, the corresponding mode shapes for the third mode are obtained as,

ϕ31(x) = 11.56x2 − 47.53x3, ϕ32(x) = 0.33− 9.82x+ 110.99x2 − 461.40x3

+597.17x4, ϕ33(x) = −84.59 + 1137.73x− 5935.53x2 + 14972.72x3

−18312.23x4 + 8761.62x5 (3.37)

Using the mode shape expressions, we obtained the modal frequencies from Eq. (3.4) as 6.10 Hz,

47.54 Hz, and 118.0 Hz corresponding to first three transverse modes. On comparing the analytical

results with the experimental results as mentioned in Table 3.7, the percentage errors are found to

be below 10%.It is also noticed that due to small values of torsional stiffness at the joints, the first

mode frequency is found to be same as that of the bolted beam. At the outset, we state that the

method presented in the paper can be easily extended to the bolted beams of several complicated

bolted non-uniform sections where the stiffness of the bolted joint is significant.
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3.5 Summary

The study in this chapter presents the modal analysis of non-uniform beams with cantilever config-

uration. The beams studied are single non-uniform beam with diverging section, single non-uniform

beam with converging section, two section bolted beams, three section monolithic beam and finally

three section bolted beams. Experiments are conducted on all beams with the help of vibrometer

and the frequency response graph is acquired. The frequency at which transverse modes are obtained

is acquired. The experimental result also gave information about the torsional modes for the beam.

The results are then verified with the help of analytical model following approximate mode shape

approach as used in the previous chapter. The boundary conditions used take care of the fixed end

and other end free. Also the bolted beam is represented by the torsional stiffness as in the previous

chapter for the simply supported beam configuration. The mode shape polynomial were altered

according to the modified boundary conditions for the corresponding modes. The modification in

the boundary condition in contrast to previous chapter which was based on numerical model was

based on the experimental results. The mode shape expression were then used to obtain natural

frequencies with the help of Rayleigh-Ritz method.

The results obtained for the bolted section beams from the experimental and analytical result show

a maximum error of 15%. The use of approximate mode shape instead of exact mode shape ap-

proach can be a reason for this discrepancy. Also the difference between the values obtained can be

accounted to the real life conditions in which the experiment is conducted. The beam is fixed on a

fixture that has its own natural frequencies and hence it affects the frequency of the specimen. The

material damping and the bolted damping effect is also found in the experimental measurements

which is assumed to be negligible in the analytical model.
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Chapter 4

Numerical Analysis of bolted

beams

In this chapter we present the numerical modeling of bolted beams. The study is initiated with

a two section non-uniform beam bolted together and later the study is extended to three section

non-uniform bolted cantilever beam. First three fundamental modes are extracted and the analysis

is done for the number of elements and the effect of value of torsional stiffness of bolted joint ”k”

on the frequency.

4.1 Numerical procedure

Direct modeling method is used for modeling bolted beams. The study is initialised with defining

nodes. Separate nodes are defined at bolted connection for the coupling element along with the node

present at the joint. Next step is to assign the material properties to the elements. The Young’s

modulus of rigidity is taken as, E = 69e9 Nm/rad2, density,ρ = 2700 kg/m3 and poisson’s ratio as

µ = 0.3. After this step the real constant are defined in which area, inertia and the thickness of the

section is provided. The elements are assigned to material properties after this step. The element

taken for the study is ”BEAM3”.

• BEAM3 is a uniaxial element with tension, compression, and bending capabilities. The element

has three degrees of freedom at each node: translations in the nodal x and y directions and

rotation about the nodal z-axis.

While assigning elements to material properties it is important to note that at the joint the con-

nection is to be made between the separate node and the next node located on other beam not the

node of the previous beam. The bolted joint is treated as a spring with torsional stiffness. For this

the element used is ”COMBIN14” which is a spring damper model element.

• COMBIN14 has longitudinal or torsional capability in one, two, or three dimensional applica-

tions. The longitudinal spring-damper option is a uniaxial tension-compression element with

up to three degrees of freedom at each node: translations in the nodal x, y, and z directions.

No bending or torsion is considered. The torsional spring-damper option is a purely rotational
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element with three degrees of freedom at each node: rotations about the nodal x, y, and z

axes. No bending or axial loads are considered.

For our case we have considered normally loaded joint hence the damping effect can be neglected.

Hence, we have only provided value for the element stiffness and not for the damping constant. This

element is defined between the nodes at same location. For our case we have considered different

values of ”k” and analysed the result. The last step is to assign mass to the elements. The mass is

calculated for each element length and assigned with the help of MASS21 element.

• MASS21 is a point element having up to six degrees of freedom: translations in the nodal x, y,

and z directions and rotations about the nodal x, y, and z axes. A different mass and rotary

inertia may be assigned to each coordinate direction.

The mass for each element is found by the expression,

m(x) = (ρ)b(x)hl (4.1)

where, ′b(x)′ is the variation of breadth along the beam. The height ′h′ remains constant for the

whole beam and ′l′ is the length of the element. The length decreases as the number of elements is

increased.

The analysis is done for varying values of ′k′ and then the convergence of the results is analysed by

increasing the elements.

Figure 4.1: Finite element models and mode shapes of (A)two section beams, (B)three section
beams,

4.2 Numerical results

The modal analysis is done using Block Lancoz method. First three vibrational modes are extracted

for each beam for which the results are shown in Fig. 4.1. Fig. 4.1 (A) shows the modes obtained

for the two section bolted beam and (B) shows the modes obtained for three section bolted beam.

35



4.2.1 Effect of variation of ’k’

The aim of the analytical model for our study is to find an optimised value of stiffness ′k′ for

which the frequency difference is minimum for all three modes compared to experimentally obtained

frequency. In the similar way we tried to study the effect of stiffness on the numerical model. The

values of ′k′ are varied, and the results are as shown in Table. 4.1. For the study we have divided

the three beam into 24 elements. The Table. 4.1 shows that the frequency decreases with the value

of ′k′. The value of ′k′ for which the error is minimised is ′k′ = 8. The numerical study shows the

effect of the bolted joint stiffness on the beams. The use of torsional spring stiffness as a element

for bolted joint is proved to be effective. The frequencies also depend on the number of elements

taken in the beam. As we increase the number of elements the result comes in close proximity of

analytical and experimental results.

Table 4.1: Frequency comparison for three section bolted beam based on stiffness variation

’k’ 1st mode 2nd mode 3rd mode

100 6.89 48.56 115.41
50 6.24 42.57 108.74
20 6.22 37.24 93.31
15 6.035 35.86 87.42
12 5.86 34.68 82.67
10 5.71 33.66 78.12
8 5.52 32.35 73.97
5 4.12 29.74 64.75

4.3 Summary

In this chapter we presented the numerical analysis of the bolted beams with two and three sections

respectively. The effect of variation of torsional stiffness ’k’ was studied using COMBIN14 element.

The frequencies were found to be closer to experimental and analytical results at a smaller value of

’k’.
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Chapter 5

Conclusion and future work

This thesis presents work on studying vibrational behaviour of non-uniform beams in different con-

figuration such as simply supported and cantilever beam. Closed form solutions or approximate

mode shape are formulated for the analytical study. The study is first done on beams with simply

supported configuration. We first analytically computed the results for the first mode by following

the closed solution approach and then compared the result with numerical results obtained using

ANSYS. Subsequently, we extended the method to compute the mode shapes and frequencies of

second and third modes of a single non-uniform beam and compare the results with numerical re-

sults. Finally, we extend the analytical and numerical methods to compute the mode shapes and

frequencies of three non-uniform beams bolted together to form a long simply-supported beam. On

comparing the results, we found reasonable match of the analytically computed results with the

numerical results. For the next stage we study non-uniform beams with cantilever configuration.

To develop the model, we first carry out experiments to measure the modal frequencies and shapes

for single as well as bolted non-uniform beams. On comparing the results, we found that the fre-

quencies of bolted beams reduce due to reduction in the stiffness at the joints as compared to that

of the monolithic beam with three sections without joints. To understand the modeling, we also

develop numerical models of cantilever beams with single and three non-uniform sections without

joint. On comparing the numerical and experimental results, we found that the model based on

the Euler-Bernoulli beams can be used to develop analytical model. Finally, we develop approxi-

mate analytical model to first find the mode shapes using the information of zero position of the

experimental mode shapes for the single beam and then compare the results with the experimental

and numerical values. Subsequently, we extend the method to model the bolted beams by replacing

each bolted joint by a torsional spring of stiffness, kr = 0.01Nm/rad. On comparing the analytical

results with experiment values, we found the maximum percentage error of about 15% in found in

the bolted beam with three non-uniform sections. For the case of bolted beam with two sections,

the percentage error is found to be less than 10%. The error may be due to the approximate mode

shapes as well as differences in the physical dimensions of fabricated non-uniform beams. Finally, we

state that the method presented in this thesis can be easily extended to the bolted structures with

many non-uniform sections.The work can be extended to introduce non-linearity in the vibration.

Non-linear stiffness term can be modified to the existing governing equation for study of non-linear

behaviour.
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