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Abstract—The objective of this paper is to study the effect
of speaking mode on spoken term detection (STD) system. The
experiments are conducted with respect to query words recorded
in isolated manner and words cut out from continuous speech.
Durations of phonemes in query words greatly vary between
these two modes. Hence pattern matching stage plays a crucial
role which takes care of temporal variations. Matching is done
using Subsequence dynamic time warping (DTW) on posterior
features of query and reference utterances, obtained by training
Multilayer perceptron (MLP). The difference in performance
of the STD system for different phoneme groupings (45, 25,
15 and 6 classes) is also analyzed. Our STD system is tested
on Telugu broadcast news. Major difference in STD system
performance is observed for recorded and cut-out types of query
words. It is observed that STD system performance is better with
query words cut out from continuous speech compared to words
recorded in isolated manner. This performance difference can be
accounted for large temporal variations.

I. INTRODUCTION

In the present era, on account of data deluge over the Inter-
net, it often becomes cumbersome to find relevant information.
In a rural and uneducated setting, dissemination of information
via some public kiosk or any personal device, where the query
can be submitted by merely speaking out a keyword might
become a promising solution. In this case, spoken term detec-
tion (STD) technique assumes significance. The goal of STD
is to retrieve the occurrences of the user-spoken-term from the
given speech database. It is instrumental in applications such
as content retrieval, voice command detection etc [1]. In STD
the input is given in audio form.

The major point of emphasis in the task of STD is the
detection of accurate instance of query word in a given
reference sample. Conventional STD make use of Dynamic
time warping (DTW) technique to match the two time series
sequences [2], [3], [4], [5]. But implementation of DTW is less
efficient for continuous speech, which is the case with STD.
Many researchers had applied speech recognizer to solve this
problem, where they transformed the speech signal to acoustic
units such as word, syllable or phoneme [6], [7]; which in
turn were used to develop vocabulary independent STD model.
These methods are highly dependent on speech recognizer and
are also difficult to build for large number of speakers.
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In [8], a template matching technique based on conven-
tional DTW was used to match the posterior probabilities of
speech frames computed from frame-wise acoustic likelihoods
to locate the query word. In [9], Zhang et. al. employed Gaus-
sian mixture model (GMM) to compute posterior probabilities
of the query utterance and reference utterances, which were
then matched using DTW. Lee et. al. proposed an unsupervised
acoustics segment model (ASM) for STD [11]. Speech frames
were represented by frame label ASM posteriorgrams and
segmental DTW was used to match the query and reference
utterances. These frame based methods do not carry speech
information for long utterance. The methods proposed in [8],
[9], [11] are unsupervised techniques, which delivered poor
efficiency for large database system.

Speech signals generally exhibit both temporal and spectral
variability. Temporal variability can be accounted by DTW,
but spectral variability can not be properly handled. Recently a
certain class of artificial neural network particularly multilayer
perceptron (MLP) was used as a discriminative classifier and
was applied to a variety of problem domains in order to handle
spectral variability [12], [13]. MLP can be used in supervised
framework and has the ability to learn the underlying classes
from training dataset.

In this paper, a supervised technique for STD based on
posteriors obtained from an MLP is analyzed with respect
to different modes of query words and different groupings of
phoneme classes. For STD, the MLP is trained with respect
to continuous Telugu news bulletins database, using mel-
frequency cepstral coefficients (MFCCs) as features. After ob-
taining posterior features from the trained MLP, the matching
of sequences of features from query and reference utterances
is done using subsequence DTW (SubDTW) [15]. Most of the
research on STD were done with the query words extracted
from continuous speech. But, in real world scenario, query
words are spoken in isolated manner. In this paper, we analyze
the effects of two kinds of query words- those recorded in
isolation and those cut out from continuous speech. It is
found that the isolated query detection performed worse than
detection of query cut out of continuous speech, owing to
large differences in duration of recorded query and those
spoken in continuous speech. We have also performed classical
phoneme recognition task to study the effects of number of
classes chosen, considering classes with 45, 25, 15 and 6
phoneme groupings. It is noticed that the phoneme recognition
accuracy decreases as number of classes increases. In terms of
P@N performance measure, the class with 25 phonemes had978-1-4799-6619-6/15/$31.00 c© 2015 IEEE



delivered the best performance and is used for studying the
effects of different modes of query word detection.

The rest of the paper is organized as follows: Extraction
of posterior features by training MLP is explained in section
II. Section-III explains matching of two time-series sequences.
Experimental setup and evaluation results of STD are discussed
in section-IV. Section-V features with conclusion and future
work.

II. EXTRACTION OF PHONEME POSTERIORS

Conventional features of speech such as MFCC, perceptual
linear prediction (PLP) etc. exhibit speaker variability across
the utterances. Fig. 1(a) illustrates the similarity matrix based
on MFCC features obtained between reference and query
utterances spoken by same speaker and Fig.1 (b) illustrates
the same for different speakers. Black color indicates more
similarity and white indicates less similarity. It can be seen
from Fig. 1(a) that the match between the query and the
segment of reference utterance is clearly visible. However in
Fig. 1(b) this match is not noticeable because of the speaker
variability.

A stabilized set of features, which is invariant to speaker is
required for efficient STD system. Features based on posterior
probabilities of acoustic classes are known to be robust to
speaker variability [16]. In this paper, MLP has been employed
to capture nonlinear relationships in speech utterances, thereby
computing posterior features of utterances.
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Fig. 1. Similarity matrices using MFCC as feature vector. Query spoken by
(a) same speaker in a different context, (b) different speaker

A. Training MLP

The framework of MLP training used in this work is shown
in Fig.2. MFCC vectors are fed into MLP at the input layer and
training is carried out in supervised manner. Back propagation
(BP) algorithm is used to maximize the cross entropy function
[12], [14]. The MLP contains 3 layers, namely input, output
and hidden layer. Context based information is exploited by
concatenating adjacent speech frames. Combining P dimen-
sional MFCC features from L consecutive frames, the M

dimensional input vectors are obtained. Z is the dimension of
the hidden layer and N is the dimension of output layer, where
N is the number of phonemes used for classification. Sigmoid
function is used as the activation function in hidden layer. To
get the posterior probability we use Softmax function at the
output layer [14]. Required phoneme labels (to train the MLP
in supervised manner) are obtained by force alignment, which
in turn is done using hidden markov model(HMM) training.

The number of phonemes varies from 20 to 50 for most
of the languages. For training this network, we investigated
the usage of different number of phonemes at the output
layer. Initially, 45 classes were used for training MLP and for
comparative study, these 45 classes are quantized depending
upon the manner of articulation into 25 classes, 15 classes and
6 classes as shown in TABLE I.

Fig. 2. MLP Network, where W 1 is the weight matrix at the input layer
and W 2 is the weight matrix at the output layer. X and Y are the input
and output vectors respectively. M, Z and N denote the number nodes at the
input, hidden and output layer respectively. f1 and f2 denotes the activation
function at hidden and output layer respectively.

B. Posterior feature

A word can be represented as a sequence of phonemes.
Given a speech frame, posterior probabilities represent the
posterior distribution over the defined class of phonemes. The
sequence of frames for a speech utterance is defined as

F = [f1, f2, ..., ft, ..., fT ] (1)

and the sequence of posterior features are

G = [g1, g2, ..., gt, ..., gT ] (2)

Each posterior feature is represented by

gt = [P (C1|ft), ..., P (Ck|ft), ..., P (CN |ft)] (3)

where {Ck}Nk=1 represents set of phoneme class and P (Ci|ft)
represents the posterior probability of ith class given frame
ft. Each speech frame can be written as posterior vector of
given phoneme class size. Thus, speech utterance containing
T frames can be written as a N×T matrix, where each column
represents the posterior probabilities of the corresponding



TABLE I. GROUPING OF THE PHONEMES INTO DIFFERENT CLASSES

45 classes a a: i i: j u u: e e: o o: V S ù s h f m n k kh g gh c ch z jh h Z é ú úh ã ãh t th d dh p ph b bh r l sil
25 classes a i j u e o V s h f m n k g c j ú ã t d p b r l sil
15 classes a i u e o F(Fricatives) N(Nasal) G(Glottal) P(Palatal) R(Retroflex) D(Dental) B(Bilabial) r l sil
6 classes V(Vowel) F(Fricatives) N(Nasal) C(Consonants) T(Trill and Liquid) sil(Silence)
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Fig. 3. Comparison of variability of MFCC coefficients in a word “Mukhya-
mantri” spoken by two different speaker

frame. The variation in the 3rd coefficient of P dimensional
MFCC vectors of query word spoken by the same speaker
and a different speaker as that of reference utterance are
shown in Fig. 3. It can be seen that, when the query word
and reference utterance are spoken by the same speaker, the
MFCC coefficients are closely following each other. But in the
case of distinct speakers for query and reference utterances, a
large deviation in MFCC coefficients can be observed. Fig. 4
shows the posterior probabilities of phoneme from query word
uttered by the same as well as different speaker as of reference
utterance. The robustness of posterior features towards speaker
variabilities are portrayed in this figure by the close matching
of posteriors of query and reference utterance irrespective of
speakers.

To visualize the significance of posteriorgrams, the
phoneme posteriorgrams for 15 phoneme classes are shown in
Fig. 5. Posteriorgram of reference is plotted in Fig. 5(a) and the
highlighted region shows the presence of query word. Fig. 5(b)
and 5(c) represent the posteriorgrams of query spoken by a
different speaker and same speaker as that of the reference.
It can be seen from this figure that, same phonemes are
getting activated upon time frames irrespective of the speaker.
Thus the posterior features were able to overcome the speaker
dependency in MFCC features, and hence are more stable than
MFCCs. Therefore we move further by considering posterior
features to represent the speech frames.

Similarity matrices using posterior probabilities as input
vectors are shown in Fig. 6, in cases when query and refer-
ence utterances spoken by same and different speakers. An
unambiguous DTW path can be observed in both Fig. 6(a)
and Fig. 6(b) at the marked area. This depicts the effectiveness
of posterior features in bringing out the speaker independent
acoustic information from utterances, thereby delivering better
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Fig. 4. Comparison of variability in posteriors of phonemes in a word
“Mukhyamantri” spoken by two different speaker
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Fig. 5. This figure illustrate stability of posterior representation. (a) Reference
posteriorgram. Posteriorgrams of same query word spoken by (b) different
speaker, (c) same speaker in a different context

STD performance.

III. TEMPLATE MATCHING

Template matching is expected to bring out pairs of most
similar frames from two templates. In STD task template rep-
resents speech utterances. Since, durations of phonemes vary
from one template to another, the warping path is nonlinear.
DTW is a widely used technique to capture temporal alignment
between two speech utterances. DTW performs well if both
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Fig. 6. Similarity matrices using posterior probability as feature vector. Query
spoken by (a) same speaker with a different context,(b) different speaker

query and reference utterances are of comparable lengths, so
it is not suitable for the task of detecting spoken term in
continuous speech.

Since the query word can start from anywhere in reference
we keep individual distances in the first row of accumulated
distance matrix i.e., we do not accumulate distances along the
first row as in the case of conventional DTW. The concept of
SubDTW renders the requirement of STD system, where the
best matching paths between query and reference utterances
can be traced by backtracking from local minimum points
along the last row of accumulated distance matrix. In Fig. 7(a)
shows the path followed to calculate the accumulated matrix
in case of conventional DTW and Fig. 7(b) shows the path
followed for the same in case of SubDTW with local weights
a, b, c, d, e. These local weights can be adjusted to account for
the incomparable durations of query and reference utterances.

To perform the DTW task on posterior feature vectors,
an efficient distance metric to calculate the similarity matrix
is needed. Authors have shown in [10] that Kullback-Leibler
divergence works well for posterior features compared to dot
product and euclidean distance. Let r and s are posterior
vectors in reference and query words respectively.
Kullback-Leibler divergence : KL-divergence will give the
difference between two probability distribution r and s.

DKL(r||s) =
∑
j

rj log(
rj
sj

) (4)

This symmetric KL-divergence has been successfully applied
to calculate the distance between two probability distribution
functions [17].

IV. EXPERIMENTAL SETUP AND RESULTS

Our STD system is evaluated on Telugu news data. The
total available data is divided into two subsets, training set
and testing set. The training dataset includes 3500 utterance
of 3 1

2 hours read by 6 male and 6 female speakers. The testing
dataset consists of 1 hour news data from 3 male and 3 female

(a) conventional DTW path (b) subDTW path with local
weights a b c d e

Fig. 7. Path shown for different DTW

TABLE II. RECOGNITION ACCURACY FOR USING DIFFERENT NUMBER
OF PHONEME GROUPING(C)

C HMM ANN
6 77.88 81.87
15 70.6 76.02
25 69.51 74.24
45 62.68 69.11

TABLE III. AVERAGE PERFORMANCE USING SUBSEQUENCE DTW BY
TAKING DIFFERENT PHONEME CLASSES

Performance
measure 6 classes 15

classes
25
classes

45
classes

raw
MFCCs

P@N 44.05 77.65 80.13 72.36 45.68
P@2N 55.68 86.50 89.13 80.57 54.91
P@3N 59.17 88.10 90.75 82.39 60.81
P@4N 61.19 88.71 91.28 83.10 63.23
P@5N 62.13 88.99 91.61 83.41 64.29

news readers. The training and testing dataset are constituted
by distinct speakers.

Each utterance is segmented into frames of 25 ms duration
with a shift of 10 ms. 39 dimensional MFCC vectors (13
cepstra + 13 ∆ + 13 ∆∆) are extracted from each frame. 13
adjacent frames are concatenated to exploit context dependent
information, thereby fixing input layer size of 507 (13 × 39)
for MLP. The posterior vectors of dimension 25 specifying 25
phonetic classes are obtained for each frame from the trained
MLP. SubDTW based template matching of posterior feature
vectors is done for STD. Each query word is tested against
5-10 minutes of Telugu news bulletin.

A comparison study is carried out by taking different
number of phoneme classes for classification. For phoneme
recognition we used both HMM and MLP and the results are
shown in TABLE II. In contrast to the traditional HMM, which
depends on the prior probability of the states to predict the
hidden states, the discriminative approach which is used in
MLP, utilizes observed output values to obtain the posterior
probabilities. Hence the posterior is directly obtained from the
observation sequence and this essentially circumvents the issue
of high model dependency and low efficiency which haunts the
HMM as shown in TABLE II. Corresponding to an increase in
number of phoneme classes, the nodes at the output layer of
MLP increases and this results in a notable drop in phoneme
recognition accuracy.

Evaluation was done using P@N according to [8], where
P@N is average precision for top N hits, where N is the



TABLE IV. AVERAGE PERFORMANCE USING SUBSEQUENCE DTW BY
TAKING 25 CLASSES

Performance
measure P@N P@2N P@3N P@4N P@5N

Cut
queries
from read
speech

80.49 88.61 90.10 90.67 90.84

Isolated
recorded
queries

56.02 66.70 69.66 70.82 71.25

TABLE V. P@N (%) MEASURE FOR QUERY WORDS FROM
CONTINUOUS SPEECH. THE SAME FOR RECORDED ISOLATED QUERIES IS

GIVEN IN PARENTHESIS.

Query word P@N Query word P@N
pr@n@bmukh@rji 99.75(97.50) digvié@jsiNg 82.78(80.00)
tel@nga:n@ 83.50(60.00) adj@kshura:lu 76.96(50.00)
s@ma:Ve:s@m 88.97(81.73) pr@bhutV@m 71.43(68.00)
săil@éa:na:th 84.64(81.17) adhika:rulu 85.31(69.28)
alp@pi:ã@n@m 84.62(77.69) hăidra:ba:d 83.57(82.14)
pa:rl@menú 88.24(81.17) k@m:úi 58.82(47.06)
b@nga:la:kha:t@m 81.75(75.00) en

˚
nik@lu 72.25(48.75)

kaNgres 78.00(74.70) erpa:úu 63.38(40.68)
ra:éi:na:ma 85.19(79.62) va:ta:v@r@n@m 67.00(71.49)
ne:p@thj@m 62.69(61.94) vibh@é@n@ 71.43(47.62)
p@nca:j@ti 76.62(73.79) s@măikhj@ 93.55(74.19)
so:nija:ga:ndhi 90.83(81.47) ãil

˚
li: 50.00(30.00)

po:liNg 63.75(31.25) ViV@ra:lu 80.00(80.00)
kir@nkuma:rreã

˚
ãi 95.53(98.57) ru:pa:ji 70.00(38.00)

nirn@j@m 83.33(38.89) m@ntri 32.73(28.57)

number of times query occurs in reference utterance. TA-
BLE III shows P@N by considering different phoneme classes.
TABLE II and III elucidates the independence of STD and
phoneme recognition. We observed that there is significant
decrease in P@N from 15 to 6 classes. As more information
lies in vowels compared to consonants and in case of 6 classes
we grouped all the vowels into one class caused this reduction
in performance. Segregation of the different phoneme classes
into further sub-classes helps to bring up phoneme accuracy
index. The number of these sub-classes can be anything from
2 to 45. However even by dividing the phoneme classes
into merely 2 sub-classes namely voiced and unvoiced, does
not assure an increase in STD performance. Concluding 25
phoneme classes giving better results, further analysis was
carried out only for this class.

The experiment was done for 30 queries cut from con-
tinuous read speech and from recordings of isolated queries
spoken by the 20 Telugu regional speakers. As the channels are
different in read as well as recorded speech, (it is TV channel
in read speech and microphone channel in recorded speech),
mean normalization was performed. The average performance
of STD with 20 speakers over 30 queries is given in the
TABLE IV for both read speech and recorded queries. Because
of channel mismatch and huge differences in number of frames
between the recorded isolated queries and cut queries from
read speech, the STD performance for recorded queries was
consistently worse than those with read queries. To get rid
of frame length mismatch problem, local weights are updated
differently for both the recorded and cut out queries. The
local weights used for isolated queries [2 3 1.5 1 2.5] and for
recorded queries [2 3 2 1 1 ]. It was observed that the isolated
queries contain 1 1

2 times the number of frames as those in
queries cut from continuous speech, on an average.

Individual query words and corresponding precision rates
have been tabulated in TABLE V using subDTW. A very
obvious observation to be made is the decrease in precision
scores with drop in the number of syllables present in the
query word. The query word “m@ntri” is an epitome of this
property. m@ntri with only two syllables(‘man’,‘tri’) this query
has a low P@N(%) of only 28.57. Longer spoken terms are
detected with high accuracy.

V. CONCLUSION AND FUTURE WORK

An analysis of effect of speaking mode of query for STD
was presented in this paper. Experiments were carried on
two types of speaking modes of queries: words spoken in
isolation and extracted from continuous speech. Representation
of utterance was done using posteriorgrams as they were
performing well in nullifying speaker variabilities for the task
of STD. The required posteriorgrams for speech utterances
were obtained by training MLP. The posterior features for
query and reference utterances were matched for STD using
SubDTW, as they outperformed classical DTW in terms of
computational as well as time complexity. A comparison of
different grouping of phoneme classes was studied and 25
phoneme classes was resulted a better performance among
all. Experimental evaluation of the this method was carried
out on Telugu News bulletin database. The query words
were obtained by cutting from continuous speech as well as
recording isolated queries. This SubDTW method on posterior
features had delivered improved STD accuracy in comparison
with conventional MFCCs. Also the performance of STD with
query words cut from continuous news speech was consistently
better than that of isolated recorded queries, owing to lack of
disparities in terms of number of frames.
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