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Abstract

In the standard model the total lepton number is conserved.Thus the neutrinoless double beta decay

,in which lepton number violated by 2 units is a probe of Physics beyond the Standard Model.Here we

first discuss about the Standard Model and then we discuss about the Seesaw mechanism to generate

the small Majorana mass of the neutrinos , in which the lepton number is violated by 2 units. After

a brief summary we discuss then about the neutrino masses and mixing i.e.Cabbibo-Kobayashi-

Maskawa ( CKM ) matrix and PMNS matrix, normal and inverted hierarchy , the absolute scale of

neutrino masses ,effective Majorana mass.After brief discussion we plot the graphs for normal and

inverted hierarchy and find out the range of the normal and inverted spectrum and we discuss a

little bit about the Majorana phases and we plot the graphs between two Majorana phases.In the

next portion we discuss about the theory of neutrinoless double beta decay.In this case at first we

calculate the matrix element, then the decay rate of the neutrinoless double beta decay and finally

we calculate the half life-time of this process. Then we plot the half life-time vs lightest mass graphs

for normal and inverted hierarchy and make some conclusion.
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Chapter 1

The Standard Model and Neutrino

Masses

1.1 Introduction

We present here the basics of the Standard Model of the electroweak interaction and we make some

remarks on the perspectives for the discovery of the Higgs boson, the most important challenge of

the Standard Model.The electroweak interaction is described by gauge theory based on the SU(2)L⊗

U(1)Y group which is spontaneously broken through the Higgs mechanism.The model proposed by

Glashow, Salam and Weinberg in the middle sixties, has been extensively tested during the last 30

years. The discovery of neutral weak interactions and the production of intermediate vector bosons

(W± and Z0) with the expected properties increased our confidence in the model.The matter fields

- leptons and quarks are organized in families, with the left-handed fermions belonging to weak

isodoublets while the right-handed components transform as weak isosinglets. The vector bosons,

W±, Z0 and γ, that mediate the interactions are introduced via minimal coupling to the matter

fields. An essential ingredient of the model is the scalar potential that is added to the Lagrangian to

generate the vectorboson (and fermion) masses in a gauge invariant way, via the Higgs mechanism.

In 1957, Schwinger suggested a model based on the group O(3) with a triplet gauge fields (V +, V −,

V 0). The charged gauge bosons were associated to weak bosons and the neutral was identified with

the photon. This model was proposed before the structure V - A of the weak currents have been

established. Glashow, in 1961 suggested the gauge group SU(2)⊗U(1), where U(1) was associated

to the leptonic hypercharge (Y ) that is related to the weak isospin (T ) and the electric charge by

the Gell-MannNishijima formula Q = (T3 +Y/2).The theory now requires four gauge bosons: a

triplet (W 1,W 2,W 3) associated to the generators of SU(2) and a neutral field (B) related to U(1).The

charged weak bosons are the linear combination of W 1 and W 2, while the photon and a neutral

weak boson Z0 are both given by a mixture of W 3 and B. The Glashow-Weinberg-Salam model

is known as the Standard Model of Electroweak Interactions.
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1.2 Right and Left Handed Fermions

The Dirac spinors at high energies (i.e. for E ≫ m), u(p, s) and v(p, s) ≡ CuT (p, s) = iγ2u
∗(p, s)

are eigenstates of the γ5 matrix.

The helicity projectors are,

L ≡ 1

2
(1− γ5)

R ≡ 1

2
(1 + γ5)

which satisfy the properties of projection operators given below,

L+R = 1

LR+RL = 0

L2 = L

R2 = R

We have the conjugate spinors ,

ψL = ψR

ψR = ψL

The fermion mass term contains both the right and lefthanded fermion components,

ψψ = ψLψR + ψRψL

But on the other hand , the vector current, does not mix those components, i.e.

ψγµψ = ψRγ
µψR + ψLγ

µψL

So,we can write the (V −A) fermionic weak current as,

ψLγ
µψL = 1

2
ψγµ(1− γ5)ψ

From here we can see that only lefthanded fermions play a role in weak interactions.

1.3 Choosing the Gauge Group

We have to find the gauge group which would be able to unify the electromagnetic and weak inter-

actions.

Consider the charged weak current for leptons. Since electrontype and muontype lepton numbers

are separately conserved, they must form separate representations of the gauge group.
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Consider any lepton flavor ℓ (ℓ = e, µ, τ) and the final Lagrangian will be given by a sum over

all these flavors.

The weak current, for a lepton ℓ, is given by,

J+
µ = 2ℓLγµνL

Then we introduce the lefthanded isospin doublet (T = 1

2
),

L =

(
νL

ℓL

)
(1.1)

Since, there is no righthanded component for the neutrino, the righthanded part of the charged

lepton is accommodated in a weak isospin singlet (T = 0)

R = ℓR

The charged weak current is now given by,

Jµi = Lγµ
τ i

2
L

where τ i are the Pauli matrices.

Explicitly we can write,

J1
µ = 1

2
(ℓLγµνL + νLγµℓL)

J2
µ = i

2
(ℓLγµνL − νLγµℓL)

J3
µ = 1

2
(νLγµνL − lLγµℓL)

Therefore, the weak charged current that couples with intermediate vector boson W−
µ can be

written in terms of J1 and J2 as,

J+
µ = 2(J1

µ − iJ2
µ)

To accommodate the neutral current J3, we can define the hypercharge current by,

JY
µ = −(LγµL+ 2RγµR)

The electromagnetic current can be written as,

Jem
µ = J3

µ + 1

2
J3
µ

3



now, the Gell-Mann-Nishijima relation between Q and T3 ,

Q = T3 +
Y
2

So. we have the candidate for the gauge group given by,

SU(2)L ⊗ U(1)

Next we have to introduce the gauge fields corresponding to each generator,

SU(2)L → W 1
µ ,W

2
µ ,W

3
µ

U(1)Y → Bµ

The strength tensors for the gauge fields is defined as,

W i
µν = ∂µW

i
ν − ∂νW

i
µ + gǫijkW j

µW
k
ν

Bµν = ∂µBν − ∂νBµ

The free Lagrangian for the gauge fields is given by,

Lgauge = − 1

4
W i

µνW
iµν − 1

4
BµνB

µν

The free Lagrangian for the leptons is,

Lleptons = ℓiðℓ+ νiðν

Now we introduce the fermiongauge boson coupling via covariant derivative, i.e.

L : ∂µ + i g
2
τ iW

i

µ + i g
′

2
Y Bµ

R : ∂µ + i g
′

2
Y Bµ

where g and g
′

are the coupling constant associated to the SU(2)L and U(1)Y groups respectively.

The charged leptons can be written as,

L±

leptons = − g

2
√
2
(νγµ(1− γ5)ℓW

+
µ + ℓγµ(1− γ5)νW

−
µ )

where

W±
µ = 1

2
(W 1

µ ∓W 2
µ)

4



For low energy phenomenology we obtain the relation,

g

2
√
2
=

√
M2

wGF√
2

Now consider a neutral piece of Leptons containing both left and right fermion components,

L0
leptons = −gJµ

3 W
3
µ − g

′

2
Jµ
Y Bµ

The charges respect the Gell-MannNishijima relation and currents satisfy the relation given by,

Jem = J3 +
JY
2

For obtaining the right combination of fields which couples to the electromagnetic current, we

make a rotation of the neutral fields and define the new fields A and Z by,

(
Aµ

Bµ

)
=

(
cosθW sinθW

−sinθW cosθW

)(
Bµ

W 3
µ

)
(1.2)

where θW is called Weinberg angle.

And we have the relation,

sinθW =
g

′

√
g2 + g′2

cosθW =
g√

g2 + g′2

In terms of the new fields, the neutral leptons can be written as,

L0
leptons = −gsinθW (ℓγµℓ)Aµ −

g

2cosθW
Σψiγ

µ(giV − giAγ5)ψiZµ

The electromagnetic charge,

e = gsinθW = g
′

cosθW

And we have

giV = T i
3 − 2Qisinθ

2
W

giA = T i
3

Up to now we have in the theory:
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4 massless gauge fields : W±
µ ,Zµ and Aµ

2 massless fermions : ν and ℓ

Now we have to add scalar fields to break the symmetry spontaneously and use the Higgs mech-

anism to give mass to the three vector bosons, but the photon will remain massless.

1.4 The Higgs Mechanism and The W and Z mass

For applying the Higgs mechanism to give mass to W± and Z0, we introduce the scalar doublet,

φ =

(
φ+

φ0

)
(1.3)

We introduce the Lagrangian given below,

Lscalar = ∂µφ † ∂µφ− V φ † φ

where the potential,

V (φ † φ) = µ2φ † φ+ λ(φ † φ)2

For gauge invariance under the SU(2)L ⊗ U(1)Y , we should introduce the covariant derivative,

∂µ → Dµ = ∂µ + i g
2
τ iW

i

µ + i g
′

2
Y Bµ

We can choose the vacuum expectation value of the Higgs field as,

< φ >0=

(
0
v√
2

)
(1.4)

where,

v =
√

−µ2

λ

To maintain the electric charged conserved, we must break the original symmetry group as,

SU(2)L ⊗ U(1)Y → U(1)em

6



In this case the corresponding gauge boson, the photon will remain massless.Let the vacuum

invariant under U(1)em. This invariance requires that,

eiαQ < φ >0=< φ >0

The electric charge of the vacuum is zero,

Q < φ >0= 0

The gauge bosons, corresponding to the broken generators T1 , T2 , (2T3−Q) should acquire mass.

Now parametrize the Higgs doublet,

φ =
1
√
2

(
i
√
2ω+

v +H − iZ0

)
(1.5)

where ω± and Z0 are the goldstone bosons.

Now, if we make a SU(2)L gauge transformation then the field becomes ,

φ → φ
′

=
v +H
√
2

(
0

1

)
(1.6)

The quadratic terms in the vector fields are,

g2v2

4
W+

µ W−µ +
g2v2

8(cosθW )2
ZµZ

µ

When it is compared with the usual mass terms for a charged and neutral vector bosons , then

we get ,

M2
WW+

µ W−µ + 1

2
M2

ZZµZ
µ

and also we can have ,

MW =
gv

2
MZ =

gv

2cosθW

For lowenergy phenomenology , we obtain the vacuum expectation value,
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v = 246Gev

The term containing the scalar field H given by,

−1

2
(−2µ2)H2 + 1

4
µ2v2( 4

v2H
3 +

H4

v4
− 1)

The Higgs boson mass term is given by,

MH =
√
−2µ2

In spite of predicting the existence of the Higgs boson, the Standard Model does not give a hint

on the value of its mass since µ2 is a priori unknown.

1.5 Introducing the Quarks

For introducing the strong interacting particles in the Standard Model we shall first examine what

happens with the hadronic neutral current when the Cabibbo angle is taken into account.

JH
µ (0) = uγµ(1−γ5)u+cosθ2cdγµ(1−γ5)d+sinθ2csγµ(1−γ5)s+cosθcsinθc(dγµ(1−γ5)s+sγµ(1−γ5)d)

The Lagrangian for the quarks given by,

Lquarks = LuiðLu + LciðLc +RuiðRu + · · ·+RciðRc

The charged weak couplings quarkgauge bosons is,

L±

quarks =
g

2
√
2
(uγµ(1− γ

5
)d

′

+ cγµ(1− γ
5
)s

′

)W+
µ + h.c.

The neutral current interaction of the quarks becomes,

L0
quarks = −

g

2cosθW
Σψqγ

µ(gqV − gqAγ5)ψqZµ

1.5.1 The Quark Masses

For generating the mass for both the up (Ui = u, c, t) and down (Di = d, s, b) quarks, we need a

Y = −1 Higgs doublet.The conjugate doublet Higgs can be defined as,

︷︸︸︷
φ = iσ2φ

∗ =

(
φ0∗

−φ−

)
(1.7)

The Yukawa Lagrangian for three generations of quarks can be written as,

8



Lq
quarks = −ΣGU

ijRUi
(
︷︸︸︷
φ† Lj) +GD

ijRDi
(φ † Lj)

The weak eigenstates (q
′

) are the linear superposition of the mass eigenstates (q) given by the

unitary transformations:



u

′

c
′

t
′


 = UL,R



u

c

t


 (1.8)



d

′

s
′

b
′


 = DL,R



d

s

b


 (1.9)

where UL,R and DL,R are unitary matrices.These matrices diagonalize the mass matrices.

The quark mixing, by convention, is restricted to the down quarks,with T q
3 = − 1

2
,



d

′

s
′

b
′


 = V



d

s

b


 (1.10)

V is the Cabibbo-Kobayashi-Maskawa matrix.It can be parametrized as,

V = R1(θ23)R2(θ13, δ13)R3(θ12)

where Ri(θij) are rotation matrices around the axis i, the angle θij describes the mixing of the

generations j and k and δ13 is the phase.

The Cabibbo-Kobayashi-Maskawa matrix can be written as,

V =




c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13


 (1.11)

where

Sij(cij) = sin(cos)θij

9



Taking into account the limit θ23 = θ13 → 0 we have θ12 → θc

and we obtain

V =




c12 s12 0

−s12 c12 0

o o 1


 (1.12)

1.6 The Standard Model Lagrangian

The standard (Weinberg-Salam) model lagrangian is given by ,

L = L1 + L2 + L3 + L4

where,

L1 = − 1

4
WµνW

µν − 1

4
BµνB

µν

L2 = Lγµ(i∂µ −
g

2
τWµ −

g
′

2
Y Bµ)L+Rγµ(i∂µ − g

′

2
Y Bµ)R

L3 = (i∂µ −
g

2
τWµ −

g
′

2
Y Bµ)

2 − V (φ)

L4 = −G1LφR+G2LφcR+ h.c.

L1 is the lagrangian for the W±, Z,γ kinetic energy and self interaction term .

L2 is for the leptons and quarks kinetic energy and their interaction with W± ,Z ,γ .

L3 is for higgs masses and coupling.

L4 is for lepton and quark masses and coupling to Higgs.

1.7 Beyond the Standard Model

Physics beyond the Standard Model refers to the theoretical evidence that needs to explain the defi-

ciencies of the Standard Model, like the origin of mass, the strongCP problem, neutrino oscillations,

matter-antimatter asymmetry etc.

1.7.1 Problem with the Standard Model

There are fundamental physical phenomena in nature that the Standard Model does not properly

explain:

1.Neutrino masses: According to the standard model, neutrinos are massless particles.

But, neutrino oscillation experiments have shown that neutrinos do have mass. Mass terms for the

neutrinos can be added to the standard model by hand, but these lead to new theoretical problems.

10



2.Matter-antimatter asymmetry: The Universe is made out of mostly matter. However, the

standard model predicts that matter and antimatter should have been created in equal amounts if

the initial conditions of the Universe did not involve disproportionate matter relative to antimatter.

Yet, no mechanism sufficient to explain this asymmetry exists in the Standard Model.

3.Hierarchy problem : The standard model introduces particle masses through a process

known as spontaneous symmetry breaking caused by the Higgs field. Within the standard model,

the mass of the Higgs gets some very large quantum corrections due to the presence of virtual

particles (mostly virtual top quarks). These corrections are much larger than the actual mass of

the Higgs. This means that the bare mass parameter of the Higgs in the standard model must

be fine tuned in such a way that almost completely cancels the quantum corrections. This level

of fine-tuning is deemed unnatural by many theorists.There are also issues of Quantum triviality,

which suggests that it may not be possible to create a consistent quantum field theory involving

elementary scalar particles.

4.Strong CP problem : Theoretically it can be argued that the standard model should con-

tain a term that breaks CP symmetry relating matter to antimatter in the strong interaction sector.

Experimentally, however, no such violation has been found, implying that the coefficient of this term

is very close to zero. This fine tuning is also considered unnatural.

1.7.2 Neutrinos

In the standard model, neutrinos have exactly zero mass. This is a consequence of the stan-

dard model containing only left-handed neutrinos. With no suitable right-handed partner,

it is impossible to add a renormalizable mass term to the standard model. Measurements however

indicated that neutrinos spontaneously change flavour, which implies that neutrinos have a mass.

These measurements only give the relative masses of the different flavours.

One approach to add masses to the neutrinos, the so-called seesaw mechanism, is to add right-

handed neutrinos and have these couple to left-handed neutrinos with a Dirac mass term. The

right-handed neutrinos have to be sterile, meaning that they do not participate in any of the

standard model interactions. Because they have no charges, the right-handed neutrinos can act as

their own anti-particles, and have a Majorana mass term. Like the other Dirac masses in the

standard model, the neutrino Dirac mass is expected to be generated through the Higgs mechanism,

and is therefore unpredictable. On the other hand, the Majorana mass for the right-handed neutri-

nos does not arise from the Higgs mechanism, and is therefore expected to be tied to some energy

scale of new physics beyond the standard model, for example the Planck scale. There-

fore, any process involving right-handed neutrinos will be suppressed at low energies. The correction

due to these suppressed processes effectively gives the left-handed neutrinos a mass that is inversely

proportional to the right-handed Majorana mass, a mechanism known as the see-saw. The presence

of heavy right-handed neutrinos thereby explains both the small mass of the left-handed neutrinos

and the absence of the right-handed neutrinos in observations.
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The mass terms mix neutrinos of different generations. This mixing is parameterized by the

PMNS matrix, which is the neutrino analogue of the CKM quark mixing matrix. Unlike the quark

mixing, which is almost minimal, the mixing of the neutrinos appears to be almost maximal.The

mixing matrix could also contain several complex phases that break CP invariance, although there

has been no experimental probe of these. These phases could potentially create a surplus of leptons

over anti-leptons in the early universe, a process known as leptogenesis.

Dirac Masses

The Dirac mass terms in the Standard Model are obtained from the Yukawa couplings when the

Higgs field gets a vev, i.e. after a spontaneous symmetry breaking.

The Dirac mass term is given by,

Mψψ = M(ψLψR + ψRψL)

It is invariant under U(1)em symmetry. The lepton no. is conserved here.The Dirac mass term de-

stroys a particle and creates a new one, or destroys/creates a particle-antiparticle pair, or destroys

an anti-particle and creates a new one. This conserves the charge.

Majorana Masses

The Majorana mass for the right-handed neutrinos does not arise from the Higgs mechanism, and

is therefore expected to be tied to some energy scale of new physics beyond the standard

model, for example the Planck scale.

The Majorana mass term is given by ,

M((ψL)cψL + (ψR)cψR)

It is not invariant under U(1) symmetry. The lepton no. is not conserved here.The charge con-

servation would be violated by this term.

1.8 Constraint from Planck Data

Since light massive neutrinos constitute hot dark matter, cosmological data give information on the

sum of neutrino masses. The analysis of cosmological data in the framework of the standard Cold

Dark Matter model with a cosmological constant disfavors neutrino masses larger than some frac-

tion of eV , because free streaming neutrinos suppress small-scale clustering. The value of the upper

bound on the sum of neutrino masses depends on model assumptions and on the considered data set.

Assuming a spatially flat universe, from the recent result of the Planck experiment the upper

bound is found to be Σmk = 0.23eV .
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Chapter 2

Mechanism for generating

Neutrino Masses

2.1 Introduction

According to the standard model, neutrinos are massless particles. However, neutrino oscillation

experiments have shown that neutrinos do have mass.For generating the neutrino masses we use

some mechanism called SEESAW mechanism.The seesaw mechanism is a generic model used to un-

derstand the relative sizes of observed neutrino masses, of the order of eV, compared to those of

quarks and charged leptons, which are millions of times heavier.This mechanism serves to explain

why the neutrino masses are so small.This model produces a light neutrino, for each of the three

known neutrino flavours, and a corresponding very heavy neutrino for each flavour, which has yet

to be observed.

Here we discuss about the basic principle of See-saw mechanism and the three type of See-saw

mechanism.

2.2 Dimension 5 Operator

In the SM, the lowest-dimension operator that violates lepton or baryon number is dimension 5

operator. So, we can write,

Leff = LSM +
Ld=5

Λ
+

Ld=6

Λ2
+ · · ·

The dimension 5 operator can be written as,

O5 =
LLHH

Λ
=

(LTCL)(HTCH)

Λ

Here lepton no is violated by 2 units.

13



2.3 Seesaw Mechanism

The principle of the seesaw mechanism can be understood by looking at the neutrino mass matrix.

One has to assume that besides the usual left handed (LH) neutrinos νL, there are right handed

(RH) neutrinos νR, which are not strictly forbidden by the SM.

Therefore one can construct a Dirac mass term for neutrinos ,

LD = MD(ψLψR + ψRψL)

and the Majorana mass term for neutrinos ,

LM =
1

2
ML(ψLψ

c
R + ψc

RψL) +
1

2
MR(ψRψ

c
L + ψc

LψR)

Now one can introduce a mass matrix M, so that

Lmass =
1

2
(νLνcL)M

(
νcR

νR

)
(2.1)

where,

M =

(
ML MD

MD MR

)
(2.2)

The positive mass eigenstates for this matrix are ,

M1,2 =
1

2
(ML +MR ±

√
(ML −MR)2 + 4M2

D)

In the seesaw case the RH neutrino fields νR = NR are assumed to be fields with a heavy mass,

whereas MD is of the electroweak scale. Therefore MD << MR. Since νL possesses non-zero isospin

and hypercharge, the LH Majorana term is forbidden by the SM gauge symmetries, hence ML = 0.

This means in a fundamental theory that respects the SM symmetries one obtains the mass eigen-

states,

M1 = −
M2

D

MR
M2 = MR

As a consequence, one has a neutrino at a mass scale Λ = MR of new physics and a very light

neutrino, the mass of which is suppressed by
MD

Λ
. To explain the low experimental upper limit for

the neutrino mass, the new mass scale has to be close to the GUT scale.
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2.3.1 Rise of the Masses

Dirac mass MD: around electroweak scale (100GeV )

Majorana mass MR: expected in the order of GUT scale (1015GeV )

M1 = 0.01eV = MνL
( extremely light neutrino)

M2 = 1015GeV = MνR
(very heavy neutrino)

With a fixed MD,we can obtain a heavy neutrino M1, a light neutrino M2 that is why this

mechanism is called Seesaw mechanism.

2.4 Scale of Seesaw Mechanism

For Seesaw mechanism we have mass of neutrino,

mν →
1

Λ

where Λ is called the scale of Seesaw mechanism and it has mass dimension 1 .

2.5 The Three Type of Seesaw Mechanism

Exchange of 3 different types of new particles can generate neutrino masses.

Right-handed neutrinos → type I see-saw

Scalar SU(2)L triplets → type II see-saw

Fermion triplets → type III see-saw

Figure 2.1: Three types of see-saw mechanism
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Type I : The first type of the seesaw mechanism couples the lepton and the Higgs fields via

the exchange of a heavy virtual fermion NR, which is a singlet under all SM gauge groups.

Type II : By replacing the fermion SU(2) singlet by a scalar SU(2) triplet ∆, one obtains the

second type of the seesaw mechanism.

Type III : The third type is nearly the same as the first one, except for the replacement of the

fermion SU(2) singlet by a fermion SU(2) triplet.

In the following we will discuss the structure of these three realizations of the seesaw mechanism.

2.5.1 Type I Seesaw Mechanism(Fermion Singlet) :

In type I the left-handed lepton fields couple to the right handed heavy fermion singlet fields. They

also have to couple to the Higgs field, which gives the neutrinos their mass after electroweak sym-

metry breaking.

The diagrammatic representation is given here,

Figure 2.2: Type I see-saw mechanism

The lagrangian is then given by,

∆L = ylLσ2φ
∗νR +

MR

2
νTRcνR + h.c.

From here we can get a mass matrix ,

M =

(
0 MD

MD MR

)
(2.3)

If MR << MD, neutrinos would be predominantly Dirac particles.

ForMR
∼= MD , we have a messy combination of Majorana and Dirac,
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whereas for MD << MR we would have a predominantly Majorana case.

In this case the approximate eigenstates are N with mass MN = MD and ν with a tiny mass ,

Mν = −MT
D

1

MN

MD

This is called type I seeesaw formula. With heavy νR, neutrino mass must be of this type.

2.5.2 Type II Seesaw Mechanism (Scalar Triplet) :

Instead of νR a Y = 2 triplet ∆ we add here.

where,

∆ =



∆

++

∆
+

∆
0


 (2.4)

The diagrammatic representation is given here,

Figure 2.3: Type II see-saw mechanism

The lagrangian is give by ,

L = LSM + V (∆, H)

where,

V (∆, H) =

M2
∆
∆ †∆+ λ∆(∆ †∆)2 + fLc∆L+ µHc∆H +M2

HH †H + λH(H †H)2 + λ(∆, H)(∆ †∆)(H †H)
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We have to minimize the potential V (∆, H) at < H >= v and < ∆ >= u

So we have now,

V = M2
∆
u2 + λ∆u

4 + µuv2 +M2
Hv2 + λHv4 + λ(∆, H)u2v2

Now by minimizing we get ,

u =< ∆ >≃ −
µv2

M2
∆

where one expects µ of order M∆. If M∆ >> v, neutrinos are naturally light. So,for large scales

of new physics, neutrino mass must come from d = 5 operator.

From this type of seesaw mechanism we can get the mass of the neutrino is,

Mν = λ∆Y∆

v2

M∆

Also we can obtain,

∆ =




∆
+

√
2

∆
++

∆
0 −

∆
+

√
2


 (2.5)

2.5.3 Type III Seesaw Mechanism (Fermion Triplet) :

The type III seesaw mechanism is obtained by replacing the fermion singlet of type I with a triplet

with Y = 0 Σ

where,

Σ =



Σ

+

Σ
0

Σ
−


 (2.6)

The diagrammatic representation is given here,

The lagrangian is given by ,

L = YΣLciτ2ΣH + h.c.
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Figure 2.4: Type III see-saw mechanism

where,

Σ =




Σ
0

√
2

Σ
+

Σ
− −

Σ
0

√
2


 (2.7)

where,

Σ
± =

Σ
1 − iΣ2

√
2

Σ
0 = Σ

3

In exactly the same manner as before in Type I, one gets a Type III seesaw for MΣ >> v

Mν = −Y T
Σ

1

MΣ

YΣv
2

2.6 Consequences

If neutrinos are Majorana particles and if the see-saw machanism is the correct theory then the

smallness of the neutrino mass has an explanation and the transition of neutrino into corresponding

anti-neutrino is possible and therefore the lepton number is violated by ∆L = 2.

For testing if neutrino is a Majorana particle and whether see-saw mechanism could be the right

theory we have to perform the double beta decay experiment and neutrinoless duble beta decay

experiment which is a probe of Physics beyond the Standard Model.
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Chapter 3

Neutrinoless Double Beta-Decay

3.1 Introduction

Neutrinoless double beta decay is a postulated very slow radioactive process in which two neutrons

inside a nucleus transform into two protons emitting two electrons.The discovery of this process

would demonstrate that neutrinos are majorana particles and that total lepton number is not vio-

lated in nature two findings with far-reaching implications in particle physics and cosmology.First,the

existence of Majorana neutrinos implies a new energy scale at a level inversely proportional to the

observed neutrino masses. Such a scale, besides providing a simple explanation for the striking

lightness of neutrino masses, is probably connected to several open questions in particle physics, like

the origin of mass or the flavour problem. Second, Majorana neutrinos violate the conservation of

lepton number, and this, together with CP violation, could be responsible, through the mechanism

known as leptogenesis, for the observed cosmological asymmetry between matter and antimatter.

Here we discuss about the normal and inverted hierarchy ,effective Majorana mass and the theory

of neutrinoless double beta decay.

3.2 Normal and Inverted Hierarchy

In the framework of three neutrino mixing with the convention the solar squared mass difference

∆m2
s = ∆m2

12

and mixing angle

θs = θ12

and taking into account that

∆m2
s << ∆m2

A
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where ∆m2
A is the atmospheric squared mass difference

we have

∆m2
A =

1

2
|∆m2

13 +∆m2
23|

and mixing angle θA = θ23

The absolute value in the definition of ∆m2
A is necessary, because there are the two possible

spectra for the neutrino masses.

The normal mass spectrum ( NH ) :

m1 < m2 < m3 with ∆m2
12 << ∆m2

23

The inverted mass spectra ( IH ) :

m3 < m1 < m2 with ∆m2
12 << |∆m2

13|

The two spectra differ by the sign of ∆m2
13 and ∆m2

23 , which is positive in the normal spectrum

and negative in the inverted spectrum.

3.3 Absolute Scale of Neutrino Masses

The determination of the absolute scale of neutrino masses is an open problem which cannot be

resolved by neutrino oscillations, that depend only on the differences of the squares of the neutrino

masses. However, the measurement in neutrino oscillation experiments of the neutrino squared-mass

differences allows us to constraint the allowed patterns of neutrino masses. A convenient way to

see the allowed patterns of neutrino masses is to plot the values of the masses as functions of the

unknown lightest mass mmin, , where we used the squared-mass differences given by 3σ range with

The normal mass spectrum ( NH ) :

mmin = m1

m2 =
√
m2

min +∆m2
s

m3 =

√
m2

min +∆m2
A +

∆m2
s

2

The inverted mass spectra ( IH ) :
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mmin = m3

m1 =

√
m2

min +∆m2
A −

∆m2
s

2

m2 =

√
m2

min +∆m2
A +

∆m2
s

2

After plotting I got this graphs given below,

For normal hierarchy,

Figure 3.1: Normal Mass Spectrum

A normal hierarchy

In this case

m1 << m2 ≃
√
∆m2

s ≃ 9× 10−3eV

m3 ≃
√
∆m2

A ≃ 5× 10−2eV

For inverted hierarchy ,

A inverted hierarchy

In this case

m3 << m1 � m2 ≃
√
∆m2

A ≃ 5× 10−2eV
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Figure 3.2: Inverted Mass Spectrum

3.4 Beta Decay

In a nuclear beta decay , a neutrino inside a nucleus decays into a proton , an electron and a ν̂e ,

inflicting the following process at the nuclear level,

(A,Z) → (A,Z + 1) + e− + ν̂e

The electron and the anti-neutrino escape from the nucleus.Although the ν̂e is hard to detect ,

measurements on the escaping electron (called a beta particle) can provide information about the ν̂e .

3.5 Double Beta Decay

n+ n → p+ p+ e− + e− + ν̂e + ν̂e

On the nucleus with Z proton, this would inflict a transformation like ,

(A,Z) → (A,Z + 2) + e− + e− + ν̂e + ν̂e

This process is called double beta decay since two β rays (or electrons) emerge in the final states.

Usually this process is denoted by ββ2ν since it is accompanished by two anti-neutrinos. The am-

plitude of the process has a strength G2
F an therefore the process occurs very rarely.

For double beta decay to occur naturally, the arrangement of nuclei of different neighbouring Z

values must be such that single beta decay ,
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(A,Z) → (A,Z + 1) + e− + ν̂e

is energetically forbidden.

Thus double β decay is a very rare process indeed. Infact , only recently , nearly a hundred years

after Becquerel first observed β decay , was double beta decay process observed by Elliot , Hahn

and Moe for the Selenium nucleus ,

Se82 → Kr82 + 2e− + 2ν̂e

with half lifetime 1.1× 1020years .

The process conserves the lepton numbers.Therefore , they provide a confirmation of the stan-

dard model of weak interaction.

3.6 0νββ Decay

Neutrinoless double-beta decay is a decay mode of an atomic nucleus in which two neutrons convert

to two protons and two electrons. This process has not been observed, and it is not known whether

it exists. If this decay occurs, the neutrino is its own antiparticle, or a Majorana particle. The

observation of neutrinoless double-beta decay would determine whether the neutrino is a Majorana

particle and provide information on the absolute scale of neutrino mass. If the neutrino is a Ma-

jorana particle, neutrinos could provide a mechanism for the matter-anti-matter imbalance of our

universe. The search for 0νββ provides the physics community with the opportunity to build on our

successes in understanding the neutrino and further our understanding of the universe.

The 0νββ process is the process where two electrons are emitted in a nuclear transmution with-

out being accompanished by two neutrinos. Such process violates lepton numbers by two units .

Figure 3.3: ββ and 0νββ processes

The neutrinos in the above diagram are virtual particles. With only two electrons in the final
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state, the electrons total kinetic energy would be approximately the binding energy difference of the

initial and final nuclei. To a very good approximation, the electrons are emitted back-to-back.

3.7 Effective Majorana Mass

The existing atmospheric , solar and long-baseline reactor and accelerator neutrino oscillation data

are perfectly described by the three neutrino mixing paradigm with

νlL = ΣUliνil(l = e, µ, τ)

Standard parameterization of the CKM matrix uses three Euler angle (θ12, θ23, θ13) and one CP

violation phase (δ13). θ12 is the Cabbibo angle.

And the UPMNS is given by,

UPMNS =




c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13


 diag(eiλ1 , eiλ2 , 1)

(3.1)

where Sij(cij) = sin(cos)θij

Now using the standard parameterization equation (1) of the three neutrino mixing matrix, the

effective majorana mass can be written as ,

|mββ | = ΣU2
eimi

|mββ | = |c213c
2
12e

2iα1m1 + c213s
2
12e

2iα2m2 + s213m3|

where αi = (λi + δ)

Since the values of mixing angle and squared mass differences are known from oscillation data,the

value of |mββ | can be plotted as a function of the lightest neutrino mass mmin = m1 in the normal

spectrum and mmin = m3 in the inverted spectrum.

The plot for normal spectrum is given below ,

In this graph we set the lightest mass m1 in the x-axis and set the range of the axis 10−4 to 1

and the effective Majorana mass |mββ | in the y-axis and also set the y range from 10−4 to 1 and we

plot the graph.

The plot for inverted spectrum is given below ,

In this graph we set the lightest mass m3 in the x-axis and set the range of the axis 10−4 to 1

and the effective Majorana mass |mββ | in the y-axis and also set the y range from 10−4 to 1 and we
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Figure 3.4: Normal Hierarchy Mass spectrum

plot the graph.

The lower bound of |mββ | for normal hierarchy is approx (2− 7)× 10−3eV

The lower bound of |mββ | for inverted hierarchy is approx 2× 10−2eV

The lower bound in case of inverted hierarchy provides a strong encouragement for the exper-

imental searches of ββ0ν decay in the near future, with the aim of measuring ββ0ν decay if the

neutrino masses have an inverted spectrum or excluding the inverted spectrum if no signal is found.

However if ββ0ν decay is discovered in these experiment , the problem of the determination of

the type of neutrino mass spectrum will remain unsolved.

Also from figures we have that the case of an inverted hierarchy can be established only if it is

known independently that mmin � 10−2eV . otherwise , the neutrino mass spectrum can be either

normal or inverted , with nearly quasi-degenerate states.

The allowed regions of normal and inverted hierarchy has a large overlaps. therefore if |mββ | is

found to be larger than about 2×10−2eV , it may be difficult to distinguish the normal and inverted

spectra with absolute neutrino mass experiment .
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Figure 3.5: Inverted Hierarchy Mass spectrum

3.7.1 Normal hierarchy of Neutrino Masses

In this case the contribution to the |mββ | of the first term in the equation ,

|mββ | = |c213c
2
12e

2iα1m1 + c213s
2
12e

2iα2m2 + s213m3|

where

αi = (λi + δ)

can be neglected.

so, we have ,

|mββ | ≃ |cos2θ13sin
2
θ12

e2iα2

√
∆m2

s + sin2
θ13

√
∆m2

A

The first term in the righthand side is small becase of the smallness of the solar squared mass dif-

ference ∆m2
s and in the second term the contribution of the large atmospheric mass difference ∆m2

s

is suppressed by the small factor sin2
θ13

.

using the best fit values of the parameters we have ,
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cos2θ13sin
2
θ12

√
∆m2

s ≃ 3× 10−3eV

sin2
θ13

√
∆m2

A ≃ 1× 10−3eV

Thus the absolute values of the two terms are of the same order of amplitude.

Taking into account the 3σ range of the mixing parameters we obtain the upper bound ,

|mββ | � 4× 10−3eV

Since the value of the upper bound is significantly smaller than the sensitivity of future planned

experiment on the search of ββ0ν decay , it will very difficult to explore the NH with future ββ0ν

decay experiment.

On the other hand if there are light sterile neutrinos at the eV scale , their additional contribution

to |mββ | cannot be canceled by that of the standard three light neutrinos with a normal hierarchy.

in this case the future planned ββ0ν decay experiment can find a signal.

3.7.2 Inverted Hierarchy for Neutrino Masses

In this case , the contribution of the small m3 , which is suppressed by the small sinθ213 coeffecient

, can be neglected leading to ,

√
∆m2

A ≃
√
∆m2

A

√
1− sinθ212sinα

2

where the Majorana phase difference α = α1 − α2 is the only unknown parameter.

Hence , in this case |mββ | is bounded in the interval ,

√
∆m2

Acosθ
2
12 �

√
∆m2

A �
√

∆m2
A

Taking into account the 3σranges we obtain the interval,

2× 10−2eV � |mββ | � 5× 10−2eV

Now if we considered the phase factor α1 and α2 then from the equation of |mββ | we can see

that the allowed region is for ,

When α1 = 0 , then α2 =
π

2
When α2 = 0 , then α1 =

π

2
and so on · · ·
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Figure 3.6: α1 − α2 graph

Then I plot α1 − α2 graph and I obtain ,

From the graph we can see that the graph is matching with the equation.The Majorana phase

α1 set in the x-axis and the range is 0 to 2π . And another majorana phase α2 set in the y-axis and

the range is 0 to 2π and we plot the graph.

3.8 Theory of ββ0ν Decay

In this section we present the basic elements of the phenomenological theory of neutrinoless double

beta decay of even-even nuclei.

In the following section we assume that,

The interaction lagrangian is the charged current lagrangian of the Standard Model,

LI(x) = −
g

2
√
2
jccα (x)Wα(x) + h.c.

Here,

jccα (x) = 2ΣνlL(x)γαlL(x) + jα(x)

where, jα(x) is the hadronic charged current.

The massive neutrino fields

νi(x) = νiL(x) + cνiL(x)
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satisfy the majorana condition ,

νi(x) = CνTi (x)

The effective Hamiltonian of beta decay is given by ,

HI(x) =
GF cosθc√

2
2eL(x)γανeL(x)j

α(x) + h.c.

where GF is the Fermi constant with

GF√
2
=

g2

8M2
W

θc is the cabbibo angle.

Figure 3.7: ββ0ν decay

The matrix element is given by ,

< f |S2|i >= 4
(−i)2

2!

GF cosθc√
2

2

Np1
Np2

∫
d4x1d

4x2uL(p1)e
ip1x1γα < 0|T (νeL(x1)ν

T
eL(x2))|0 >

γT
β u

T
L(p2)e

ip2x2 < Nf |T (J
α(x1)J

β(x1))|Ni > −(p1 ⇆ p2)

Here p1 and p2 are the electron momentua , Jα(x) is the weak charged current in Heisenberg

representation , Ni and Nf are the initial and final nuclei with respective four momenta pi and pf

and Np is the standard normalization factor.

Here the neutrino propagator is proportional to mi .

In this case only the left handed neutrino fields enter into the hamiltonian of weak interaction

. In case of massless neutrinos in accordance with the theorem on the equivalance of the theories

with massless Majorana and Dirac neutrinos , the matrix element of neutrinoless double beta decay

is equal to zero.
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Also we have to consider some approximations ,

1.Smallness neutrino masses can be safely neglected in the expression for the neutrino energy q0i .

Thus

|−→q 2| >> m2
i

so,

q0i = |−→q |

2. Long-Wave approximation : Two electrons are predominantly in the S-state.

3.Closer approximation : We can replace the energies of the intermediate states En with the

average energy E .

4.The impulse approximation .

Now we have the matrix element ,

< f |S2|i >= −imββ

GF cosθc√
2

2 1

(2Π)3
√
p01p

0
2

1

R
[u(p1)(1 + γ5cu

T (p2)M
0νδ(p01 + p02 +Mf −Mi)

where R is the radius of the nucleus and M0ν is the nuclear matrix element.

The probability of 0νββ decay ,

Σ|ur1(p1)(1 + γ5)cur2(p2)
2|2 = 8p1.p2

Now the decay rate of the ββ0ν decay is given by,

dτ0ν = |mββ |
2|M0ν |2

4(GF cosθc)
4

(2Π)5R2
(E1E2 − p1p2cosθ)F (E1, Z + 2)F (E2, Z + 2)|−→p1||−→p2|sinθdθdE1

The function F(E, Z) describes final state electromagnetic interaction of the electron and the nu-

cleus. For a point-like nucleus it is given by the Fermi function ,

F (E,Z) ≃
2Πη

1− e−2Πη

where,

η = Zα
me

p

The inverse half life-time for the ββ0ν decay is,
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|T 0ν
1

2

|−1 =
τ0ν

ln2
= |mββ |

2|M0ν |2G0ν(Q,Z)

where G0ν(Q,Z) is the phase space factor that depends on the transition Q value and on the

nuclear charge Z and M0ν is the nuclear matrix element for this process.

If the light majorana neutrino exchange is the dominant mechanism for ββ0ν decay then the

decay is directly connected to neutrino oscillation phenomenology and it also provides direct in-

formation about the absolute neutrino mass scale, as cosmology and β decay experiment do. The

relation between mββ and the actual neutrino masses mi is affected by the uncertainities in the

measured oscillation parameters , the unknown neutrino mass ordering ( normal or inverted ) and

the unknown phases in the neutrino mixing matrix ( both Dirac and Majorana ) .

Then I took the value of the parameters in the half life-time expression of very recent experiment

GERDA experiment i.e.

Ge7682 = Se7634

and I plot the graph between inverse half life-time and the lighest mass for normal and inverted

hierarchy. From the graph we make some conclusion.

Both the graphs are given in the next page. In case of NH the width of the lifetime is smaller

than the width of the lifetime in case of IH. For both cases we set the lightest neutrino mass in the

x-axis and set the range 10−4 to 1 . In the y-axis we set the inverse of the half lifetime in y−1 and

set the range from 10−25 to 10−30and we plot the graph.

In case of NH the width of the lifetime is smaller than the width of the lifetime in case of IH. For

both cases we set the lightest neutrino mass in the x-axis and set the range 10−4 to 1 . In the y-axis we

set the inverse of the half lifetime in y−1 and set the range from 10−25 to 10−30and we plot the graph.
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Figure 3.8: Inverse Half Life-time vs m1 graph for NH

Figure 3.9: Inverse Half Life-time vs m3 graph for IH
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Chapter 4

CONCLUSION

Neutrinoless double beta decay is the most promising process which could allow near future experi-

ment to reveal the Majorana nature of massive neutrino which is expected from the Physics beyond

the Standard model .

The experiment on the study of neutrino oscillation enter now a new stage of high-precision mea-

surement of the neutrino oscillation parameters . The last unknown parameter of the three neutrino

mixing matrix in case of Dirac neutrinos was the CP violating phase δ . If the massive neutrinos are

Majorana particles , there are two additional Majorana phases that are observable in process which

violate the total lepton no. as neutrinoless double beta decay. The effective Majorana mass mββ in

ββ0ν decay depends on the Majorana phases. We take account the 3σ range and we obtained the

graph given in chapter 3 .

Upto now no ββ0ν dacay has been observed , which is currently strongly disfavoured by the

direct lower limit on lifetime ( Ge7632 ) of the GERDA expt.The next generation of ββoν experiment

is aimed at the exploration of values of mββ below 0.1 eV , with the purpose of reaching the inverted

hierarchy interval between about 0.02 and 0.05 eV .For mββ � 0.2eV then inverted hierarchy is

excluded ,only the possible hierarchy is normal.For the standard seesaw mechanism the total lepton

number is violated at the GeV scale .So, Majorana neutrino exchange is the only mechanism of the

neutrinoless double beta decay. We also plot the graph between half life-time and the lightest mass

of the neutrino in case of normal and inverted hierarchy as given in chapter 3. From the graph we

can see that the width of the inverse NH half life-time is much wider than the width of the inverse

IH half life-time . If we put a cosmological bound to 0.2ev then we can get both the normal and

inverted hierarchy region.If the neutrino is a Majorana particle then there is a explanation for the

smallness of neutrino masses.
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