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ABSTRACT 

 

 

 

In this project titled “INVESTIGATIONS OF STRUCTURAL AND OPTICAL 

PROPERTIES ON Pr0.7Sr0.3MnO3/ Gd0.7Sr0.3MnO3/ Dy0.7Sr0.3MnO3 ” I have 

studied the structural and optical properties of the three compounds. The very basic 

theoretical knowledge has been described in the beginning that is required for the 

understanding of the structural and optical properties. The reason for the distortion 

and anomalous behavior of this class of compounds has been well dealt in the 

theoretical part. Then the step by step procedure of the preparation of the 

compounds by solid synthesis route has been explained along with a flow chart for 

a better understanding. The compounds have been prepared by solid state reaction 

procedure. All the samples have crystallized in Pnma space group. With the help of 

XRD pattern analysis Miller indices, particle size, strain and lattice parameters 

have been found out. SEM images have been used to explain the morphology and 

the grain size. Further FTIR and RAMAN spectroscopy has been used to study the 

optical properties, modes of vibrations and the MnO6 octahedral structure. 
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Chapter 1 
‘Nano... Big Events happen in small worlds...’ Richard Feynman 

INTRODUCTION 

Alkaline rare earth doped manganites are perovskite type oxides (ABO3), with rare earth element and 

Strontium in the A-site and Manganese as a transition metal in the B-site. They have been widely studied 

mainly due to their interesting catalytic oxygen cathode reduction and mixed electronic–ionic conduction 

properties[1-4]. Most of these applications are related to the LANTHANUM STRONTIUM 

MANGANITES (LSMO) ability to perform the adsorption and reduction of molecular oxygen, and the 

subsequent transport of the oxide ions formed[5-15]. The partial substitution of the lanthanum in LaMnO3 

by aliovalent cations, like Sr2+, promotes morphological, chemical and crystallographic changes. The Mn-

O bond length and Mn-O-Mn bond angle, the oxygen distribution, the number of cation vacancies and 

Mn3+/Mn4+ concentrations are strongly affected by the Sr content[16-19]. The electric transport and 

magnetic properties of these manganites are closely related to the Mn oxidation state, which is determined 

by the oxygen content of the sample. Many authors suggest that the Mn3+/Mn4+ ratio is a unique 

parameter for understanding the colossal magnetoresistance effect as well as the transition from the 

ferromagnetic metal to the paramagnetic. The metal insulator transition is very simply observable as a 

resistance peak in the ρ(T) dependence and TMI  corresponds to the temperature of the maximal resistance. 

 

The compounds that I have studied is R0.7Sr0.3MnO3 , where R is Dysprosium (Dy), Gadolinium (Gd) and 

Praseodymium (Pr).  

 

Objectives behind choosing this family of compounds 

 

Alkaline earth doped perovskite manganites have been a focus of research during the past several years on 

account of the following few interesting phenomena and their applications: 
Magnetocaloric effect (MCE) provides a unique way of realizing the refrigeration from ultra-low 

temperature to room temperature. With the increase of applied field, magnetic entropies decrease and heat 

is radiated from the magnetic system into the environment through an isothermal process, while with the 

decrease of applied field, magnetic entropies increase and heat is absorbed from the lattice system into the 

magnetic system through an adiabatic process. Both the large isothermal entropy change and the adiabatic 

temperature change characterize the prominent MCE. Magneto-resistance and its application in magnetic 

information storage technology and could be the key to the next generation of magnetic memory devices 

or magnetic-field sensors. Electrical conductivity increases with an increase in the amount of Sr content. 

Mn3+/Mn4+ is a unique parameter. On account of charge balancing by the doping of Sr2+, conversion of 

Mn3+ to Mn4+ takes place. Mn4+ occurs in the ratio of Sr2+. The substitution of group 2 i.e. Sr2+ in RMnO3 

produces acceptors. The substitution of R3+ ions for Sr2+ in SrMnO3 creates donors. The manganites with 

x<0.5 in R1-xSrxMnO3 are hole doped. I have made the study using x=0.3.The steep drop in resistivity 

with temperature accompanying an insulator-metal transition is the phenomenon relevant to the 

bolometric application. 

The present thesis is organized as follows: 

Chapter 2 describes the theoretical background, Chapter 3 explains the experimental details, Chapter 4 

presents the results and discussions and finally chapter 5 gives the conclusions and future work. 
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Chapter 2 

 

THEORETICAL BACKGROUND 

The study of this class of compounds needs a good theoretical knowledge on a few topics. Before we proceed 

towards experimental details and results we need to have a basic understanding on the structure of the compound 

and the mechanisms which give these compounds very peculiar and rare characteristics that have been used for 

many purposes in the modern society. 

2.1 BRIEF STUDY OF PEROVSKITE STRUCTURE 

 
The mineral perovskite (CaTiO3) is named after a Russian mineralogist, Count Lev Aleksevich von Perovski, and 

was discovered and named by Gustav Rose in 1839 from samples found in the Ural Mountains. Since then 

considerable attention has been paid to the perovskite family of compositions. The perovskite is a true engineering 

ceramic material with a plethora of applications spanning energy production (SOFC technology), environmental 

containment (radioactive waste encapsulation) and communications (dielectric resonator materials) 

 

Crystallography of The Perovskite Structure 

 

The perovskite structure has the general stoichiometry ABX3, where “A” and “B” are cations and “X” is an anion. 

The “A” and “B” cations can have a variety of charges and in the original Perovskite mineral (CaTiO3) the A cation 

is divalent and the B cation is tetravalent. However, for the purpose of this study, the case where A cations were 

restricted to being rare earth strontium R1-xSrx (where R is Dy, Gd, Pr), B is Manganese (Mn) and X is Oxygen (O). 

Due to the large number of perovskite compositions possible from combinations of cations on the lattice site, 96 

compositions were chosen.  The traditional view of the perovskite lattice is that it consists of small B cations 

within oxygen octahedra, and larger A cations which are XII fold coordinated by oxygen. This structural family is 

named after the mineral CaTiO3 which exhibits an orthorhombic structure with space group Pnma [100,101]. 

The structure of an ideal cubic perovskite is shown in Figure 2.1, where the A cations are shown at the corners of the 

cube, and the B cation in the centre with oxygen ions in the face-centred positions. The spacegroup for cubic 

perovskites is Pm3m (221) [102] .The equivalent positions of the atoms are detailed in Table 2.1. 

 

 

 
 

Fig 2.1 –Perovskite Structure 
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TABLE 2.1 THE POSITIONS OF THE IONS 

SITE CO-ORDINATES 

A cation (0,0,0) 

B cation ( ½, ½, ½ ) 

O anion ( ½, ½, 0), ( ½, 0, ½ ), (0, ½, ½) 

 

2.2 ELECTRONIC STRUCTURE AND DOPING: QUALITATIVE PICTURE 

R1-xSrxMnO3, shows interesting properties such as colossal magnetoresistance or charge-ordering [20] [21]. In this 

family, the replacement of R for divalent Sr2+ cations oxidizes Mn3+ to Mn4+, introducing holes in the Mn 3d band 

and giving rise to metallic and/ or ferromagnetic behavior The presence of Mn3+ and Mn4+,  mixed valences gives 

rise to a double-exchange mechanism similar to that observed in A-substituted perovskites, increasing drastically the 

electrical conductivity and inducing ferromagnetic-like behavior with reentrant spin-glass character [22] [23]. 

 

 

 

Fig 2.2 – Electronic Structure Of Mn3+ and Mn4+ 

 

2.3 DOUBLE EXCHANGE HOPPING MECHANISM 

The double-exchange mechanism is a type of a magnetic exchange that may arise between ions in different 

oxidation states. First proposed by Clarence Zener, this theory that predicts the relative ease with which an electron 

may be exchanged between two species, and has important implications for whether materials are ferromagnetic, 

antiferromagnetic, or neither. For example, consider the 180 degree interaction of Mn-O-Mn in which the Mn "eg" 

orbitals are directly interacting with the O "2p" orbitals, and one of the Mn ions has more electrons than the other. In 

the ground state, electrons on each Mn ion are aligned according to the Hund's rule. 

If O gives up its spin-up electron to Mn 4+, its vacant orbital can then be filled by an electron from Mn3+. At the end 

of the process, an electron has moved between the neighboring metal ions, retaining its spin. The double-exchange 

predicts that this electron movement from one species to another will be facilitated more easily if the electrons do 

not have to change spin direction in order to conform with Hund's rules when going to the accepting species. The 

ability to hop (to delocalize) reduces the kinetic energy. Hence the overall energy saving can lead to ferromagnetic 

http://en.wikipedia.org/wiki/Ferromagnetism#Exchange_interaction
http://en.wikipedia.org/wiki/Oxidation_states
http://en.wikipedia.org/wiki/Clarence_Zener
http://en.wikipedia.org/wiki/Electron
http://en.wikipedia.org/wiki/Ferromagnetic
http://en.wikipedia.org/wiki/Antiferromagnetic
http://en.wikipedia.org/wiki/Manganese
http://en.wikipedia.org/wiki/Oxygen
http://en.wikipedia.org/wiki/Ground_state
http://en.wikipedia.org/wiki/Hund%27s_rule
http://en.wikipedia.org/wiki/Spin_%28physics%29
http://en.wikipedia.org/wiki/Hund%27s_rules
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alignment of neighboring ions. One of the manganese atoms has one of its eg states occupied, the other has an empty 

eg shell. One electron tunnels from the oxygen atom to the manganese atom without eg electrons. The eg electron 

from the other manganese atom, then tunnels to the free 2p position of the oxygen atom. The net result is one 

electron moving from one manganese atom to the next. This is how double exchange interaction induces electrical 

conductivity. Since electrons retain their spin while tunneling, tunneling is only possible between states with parallel 

spins. This is why double exchange interaction only occurs between manganese atoms whose t2g electrons have their 

spins aligned. Because double exchange interaction increases the freedom of electrons, it lowers their energy. This 

makes it energetically favorable for electrons of neighboring manganese atoms to align their spins, inducing 

ferromagnetism. Since double exchange interaction requires filled eg states as well as empty ones (holes) it is highly 

doping dependent.  In double-exchange, the interaction occurs only when one atom has an extra electron compared 

to the other.[24] [25] 

 

 

Fig 2.3 – Double exchange Interaction 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Double-exchange_mechanism#cite_note-Zener1951-1
http://en.wikipedia.org/wiki/Double-exchange_mechanism#cite_note-deGennes60-2
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2.4 SUPER EXCHANGE INTERACTION 

Super exchange interaction occurs due to the slightly overlapping t2g and eg orbitals of two neighboring manganese 

atoms. Electrons in the these shells can tunnel to the neighboring manganese atom. When this neighboring shell is 

already half filled, tunneling is only possible to the antiparallel spin states. Due to the Hund's interaction energy, 

these antiparallel states have a higher energy level, making the electrons tunnel back directly to their original 

manganese atom. However this tunneling possibility increases the freedom of the electrons, decreasing their energy. 

Since electrons retain their spin while tunneling, super exchange interaction is only possible between manganese 

atoms whose electrons have antiparallel spins. This makes it energetically favorable for electrons of neighboring 

manganese atoms to assume antiparallel spins. This induces antiferromagnetism. 

 

 

2.5 JAHN- TELLER EFFECT 

 
The Jahn Teller effect is an interaction effect between the crystal lattice and the manganese 3d electrons. 

Deformation of the oxygen octahedron causes energy differences within the otherwise degenerate t2g and eg electron 

states. This is shown in Fig 2.4. Orbitals which are compressed by the deformation, gain energy while orbitals which 

are elongated by the deformation lose energy. When the eg shell is half  filled it is energetically favorable to create 

a deformation, because one of the orbitals will lose energy. The electrons in the eg shell will then occupy this lower 

energy state. Creating a deformation of the oxygen octahedrons without altering the overall crystal lattice leads to 

the typical Jahn Teller distortions shown in Fig 2.5. The Jahn Teller distortions are only favorable when a lot of 

manganese atoms have a half  filled eg shell. This makes this effect doping dependent. The degeneracy within the t2g 

and eg states can also be lifted by deformations due to externally imposed strain. 

 

 

 

Fig 2.4- Jahn Teller Effect: Deformation of the                                     

Oxygen Octahedra lifts the degeneracy of the eg 

and the t2g level 

 

 

 

 

 

Fig 2.5- Lattice distortion due to Jahn Teller 

Effect. The Manganese atoms retain their 

positions while the oxygen octahedrons are 

deformed. 

 



14 
 

 

2.6 CHARGE ORDERING 

Charge ordering is caused by Coulomb repulsion between eg electrons at different manganese atoms. The electrons 

order themselves in a pattern shown in Fig 2.6. This configuration is so stable that electrons retain their positions 

preventing electrical conduction. This stability has two causes. The first one is the aforementioned Coulomb 

repulsion. The second one is electron phonon coupling. The electrons locally deform the oxygen octahedrons. To 

break the electron configuration the lattice would have to be reformed as well. Electrical ordering is only favorable 

for certain electron hole ratios, making it doping dependent. 

 
Fig- 2.6.  Charge ordering for doping of x=0.5, eg electrons spread over the manganese atoms due to coulomb 

repulsion. Due to this electron distribution the lattice gets deformed. 

2.7 PHASE DIAGRAM 
 

The four described mechanisms all contribute to the electric and magnetic properties of Rare Earth Doped 

Strontium Manganites. The temperature, doping, strain and shape of the sample determine which 

mechanism is dominant. This is clearly visible in a phase diagram as shown in Fig 2.7. 

The abbreviations used in the phase diagram have their own distinctive meanings: 

FM= Ferromagnetic, AF= Antiferromagnetic, CAF= Canted AF, FI= FM Insulator, 

CO= Charge Ordered 

Maximum Magnet Resistance R at x=0.25-0.3 

 

 

 
 

Fig 2.7 - Phase diagram of LSMO 
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2.8 TOLERANCE FACTOR 

In an idealized cubic perovskite constructed of rigid spheres, each cation is the perfect size to be in 

contact with an oxygen anion, the radii of the ions can then be related: 

<RA> + <Ro> = 2 (<RB> + <RO>), where <RA>, <RB> and <RO> are the average ionic radii of the A site 

and B site cations and the oxygen ion respectively. However with decreasing A cation size, a point will be 

reached where the cations will be small to remain in contact with the anions in the cubic structure. 

Therefore, the B-O-B links bend slightly, tilting the BO6 octahedra to bring some anions into contact with 

A cations. To allow for this distortion, a constant ‘t’, is introduced into the above equation, thus : 

<RA> + <Ro> = 2 t(<RB> + <RO>), where ‘t’ is the tolerance factor and can be used as a measure of the 

degree of distortion of a perovskite from ideal cubic. Therefore, the closer to cubic, the closer the value of 

tolerance factor is to unity. As <RA> or ‘t’ decreases (0.96<t<1) the lattice structure can be transformed 

into rhombohedral and then into orthorhombic structure (t<0.96) where B-O-B bond angle is bent and 

deviated from 180 degrees. 

Table 2.2 Calculation of Tolerance Factor 

Compound 

Name 

 

 

 

<RA>=0.7*RRare+0.3*RSr 

Rare= Dy3+, Gd3+, Pr3+ 

<RB>= radius 

of     Mn3+ 

<RO>= 

radius of 

Oxygen 

t= 
<𝑅A> + <𝑅o>

2 (<𝑅B> + <𝑅O>)

 

Dy0.7Sr0.3MnO3 0.7*1.24+0.3*1.44 

 

0.645 1.4 0.934 

Gd0.7Sr0.3MnO3 0.7*1.27+0.3*1.44 

 

0.645 1.4 0.941 

Pr0.7Sr0.3MnO3 0.7*1.32+0.3*1.44 

 

0.645 1.4 0.953 

 

From this calculation it is quite evident that the tolerance factor t<0.96, so the structure of the 

compounds studied is orthorhombic. 
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CHAPTER 3 

EXPERIMENTAL DETAILS 

3.1 Method Of Preparation 

The polycrystalline samples of R0.7Sr0.3MnO3 (R= Dy, Gd, Pr) have been synthesized by the solid state 

reaction route using the ingredients R2O3, SrCO3 and Mn2O3. Each compound has been prepared 1 gram 

of mass. The ingredients had been mixed in proper stoichiometric ratio to obtain 1gram of the compound. 

The calculation for obtaining 1 gram of Pr0.7Sr0.3MnO3 has been shown below. We can proceed in the 

similar method for the other compounds too: 

Here we calculate the mass of individual compound required to prepare 3 grams of the required 

compound: 

0.7

2
(Pr2O3)+0.3(SrCO3)+

1

2
(Mn2O3) 

= 0.35 (329.81) + 0.3(147.63) + 0.5(157.87) 

= 115.4335 + 44.289 + 78.935 

= 238.6575 

Now we calculate the mass of each of the individual compounds require for the preparation of 1 gram of 

the required compound: 

Pr2O3= 115.4335/238.6575= 0.483678 

SrCO3= 44.289/238.6575= 0.185576 

Mn2O3= 78.935/238.6575= 0.330746 
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3.2 Steps Involved 

 The individual ingredients were taken in a mortar pestel in proper stoichiometric ratio 

and grinded for three hours. 

 

 Then the powder was calcined in air at 10000C, 11000C and 12000C for 12 hours each. 

 

 

 After being calcined at a certain temperature intermediate grindin was done for half an 

hour again. 

 

 Thereafter the calcined samples were pressed into pellets applying 2tons of pressure. 

 

 

 The pellets were then sintered at 13000C for 12hours. 

 

 The structure and phase purity of the samples were analyzed by powder X-Ray 

Diffraction (XRD) using CuKα radiation (0.15406 nm). Form the XRD measurements I 

have determined the Miller Indices by comparing it with the JCPDS database and thus 

calculated particle size, strain and lattice parameters. 

 

 

 Then I have obtained SEM images from where I could make a study of the Granular 

structure, porosity and grain boundaries of the samples. I have also calculated the grain 

size distribution using the images. 

 

 FTIR (Fourier Transform Infrared Spectroscopy) was taken to study the fingerprint 

region of the compounds that is within the wave number <1000 cm-1. A spectrum of 

characteristic bands is produced that can be used as a finger print to help identify and 

characterize the sample. FTIR analysis can be conducted in transmission or reflection 

modes. 

 

 RAMAN Spectroscopy was studied for all the three compounds. Raman spectroscopy 

provides information about molecular vibrations that can be used for sample 

identification and quantization. The technique involves shining a monochromatic light 

source (i.e. laser) on a sample and detecting the scattered light. The majority of the 

scattered light is of the same frequency as the excitation source; this is known as 

Rayleigh or elastic scattering. A very small amount of the scattered light is shifted in 

energy from the laser frequency due to interactions between the incident electromagnetic 

waves and the vibrational energy levels of the molecules in the sample. Plotting the 

intensity of this "shifted" light versus frequency results in a Raman spectrum of the 

sample. The band positions will lie at frequencies that correspond to the energy levels of 

different functional group vibrations. 
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3.3 Flowchart of the steps: 
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CHAPTER 4 

Results & Discussions 

4.1 X-Ray Diffraction Analysis: 

Phase analysis is done using the room temperature powder X-Ray Diffraction (XRD) performed on a 

diffractometer (PAN analytical X’Pert Pro) using CuKα  (λ=1.5406 Angstrom) radiation at 30 kV and 

40 mA. The scan rate used was 0.020/sec. 

Using the intensity~2θ plots for all the three compounds, I have marked the prominent peaks along with 

their corresponding Miller Indices using JCPDS database. Using the θ value I have calculated the particle 

size and the strain from Debye-Scherrer technique. 

Debye-Scherrer technique: 

The significance of the broadening of peaks evidences grain refinement along with the large strain 

associated with the powder. The instrumental broadening (βhkl) was corrected, corresponding to each 

diffraction peak of the material using the relation: 

 

βhkl = [(βhkl)2
measured-(βhkl)2

instrumental]1/2 

 

Average nanocrystalline size calculated using Debye-Scherrer’s formula: 

D = 
𝐾𝜆

βhkl 𝑐𝑜𝑠𝜃
 , where D=crystalline size, K=Shape factor, λ=CuKα wavelength. 

 

Strain induced in powders due to crystal imperfection and distortion was calculated using the formula: 

ε = 
βhkl

4 𝑡𝑎𝑛𝜃
 , where ε= strain induced. 

 

Assuming that the particle size and strain contributions to line broadening are independent to each other 

and both have Cauchy like profile, the observed line breadth is 

βhkl = 
𝐾𝜆

D 𝑐𝑜𝑠𝜃
 + 4ε tanθ 

implies,     βhkl cos θ =  
𝐾𝜆

D 
 + 4ε sinThis equation is known as W-H equation (from Williamson Hall 

technique) 
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 Fig 4.1   XRD pattern of Gd0.7Sr0.3MnO3

 

Fig-4.2   XRD pattern of Pr0.7Sr0.3MnO3 
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Fig-4.3   XRD pattern of Dy0.7Sr0.3MnO3 

 

TABLE – 4.1 LATTICE PARAMETERS OF THE COMPOUND AND CALCULATION 

OF VOLUME FROM THE INTENSITY~2θ PLOTS 

Compound 

name 

a b c V=abc 

Dy0.7Sr0.3MnO3 

 
5.4777 7.7641 5.4664 232.483 

Gd0.7Sr0.3MnO3 

 
5.4566 7.6409 5.4232 226.108 

Pr0.7Sr0.3MnO3 

 
5.4563 7.6241 5.4056 224.868 

 

[NOTE - a, b and c are lattice parameters in Å and V is Volume of the orthorhombic cell in Å3] 

The lattice parameters have been verified with JCPDS database and they are in well agreement 

with the JCPDS data value. [33] 

 



22 
 

TABLE – 4.2 CALCULATION OF PARTICLE SIZE AND STRAIN VALUES OF THE 

COMPOUNDS 

Gd0.7Sr0.3MnO3 

2θ sin θ (hkl) FWHM(rad) β β cos θ tan θ Particle size strain 

32.97 

45.62 

59.06 

69.24 

79.06 
 

0.2838 

0.3876 

0.4928 

0.5681 

0.6364 
 

(200) 

(221) 

(042) 

(400) 

(323) 
 

0.0029 

0.0657 

0.0069 

0.0037 

0.0075 
 

0.0028 

0.0657 

0.0069 

0.0036 

0.0075 
 

0.0028 

0.0605 

0.0060 

0.0029 

0.0057 
 

0.2960 

0.4206 

0.5665 

0.6905 

0.8254 

 

Average   

501.73 

22.90 

230.18 

470.39 

241.25 

 

293.29 
 

0.0024 

0.0391 

0.0031 

0.0013 

0.0022 

 

0.0096 
 

 

Pr0.7Sr0.3MnO3 

2θ sin θ (hkl) FWHM(rad) β β cos θ tan θ Particle size strain 

25.83 

33.11 

47.33 

59.30 

69.53 
 

0.2235 

0.2849 

0.4014 

0.4947 

0.5702 
 

(111) 

(020) 

(220) 

(132) 

(040) 
 

0.0066 

0.0049 

0.0183 

0.0152 

0.0105 
 

 

 

 

 
 

0.0065 

0.0047 

0.0183 

0.0151 

0.0104 
 

0.0064 

0.0045 

0.0167 

0.0132 

0.0086 
 

0.2293 

0.2973 

0.4383 

0.5693 

0.6943 

 

Average  

217.72 

305.03 

82.92 

105.31 

161.64 

174.52 
 

0.0071 

0.0039 

0.0104 

0.0067 

0.0038 

0.0064 

 

 

 

Dy0.7Sr0.3MnO3 

2θ sin θ (hkl) FWHM(rad) β β cos θ tan θ Particle size Strain 

22.94 

32.72 

40.34 

46.93 

50.41 
 

0.1989 

0.2817 

0.3448 

0.3982 

0.4258 
 

(101) 

(121) 

(220) 

(202) 

(230) 
 

0.0021 

0.0017 

0.0046 

0.0039 

0.0067 
 

0.0019 

0.0015 

0.0045 

0.0039 

0.0066 
 

0.0018 

0.0014 

0.0042 

0.0035 

0.0059 
 

0.2029 

0.2936 

0.3674 

0.4341 

0.4706 

 

Average  

760.99 

962.07 

329.65 

394.24 

231.75 

535.76 
 

0.0023 

0.0013 

0.0031 

0.0023 

0.0035 

0.0025 
 

 

NOTE --- 

PARTICLE SIZE IS IN ANGSTROM (1 ANGSTROM = 10-10m) 

STRAIN IS DIMENSIONLESS 

The particle size and the strain values have been verified with other published resources of LSMO that 

belongs to the class of the compounds that I have studied, and has well agreed [32].  
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4.2 SEM Image Analysis: 

The SEM images reveal that the grain boundaries are not clear and there is poor homogeneity and much 

porosity in all the samples. 

The SEM images have been shown below for all the three compounds along with the grain size 

distribution curve for Dy0.7Sr0.3MnO3 and Gd0.7Sr0.3MnO3. 

 

Fig-4.4 SEM Image for Gd0.7Sr0.3MnO3                    Fig-4.5 SEM Image for Dy0.7Sr0.3MnO3 

 

Fig-4.6 SEM Image for Pr0.7Sr0.3MnO3 

 

The SEM images were taken using SEM-Zeiss EVO 18 Special Edition. 

The mean grain size for the Dy0.7Sr0.3MnO3 compound comes out to be 4.785 μm and for Gd0.7Sr0.3MnO3 

it comes out to be 1.817 μm. [33] 

The Pr0.7Sr0.3MnO3 sample is too uneven to measure the grain size and draw the grain distribution curve. 

Thus the mean grain size for this sample has not been found out. 

 

 



24 
 

 

Fig-4.7 Grain size distribution of Dy0.7Sr0.3MnO3 

 

Fig-4.8 Grain size distribution of Gd0.7Sr0.3MnO3 
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4.3 FTIR Analysis (Fourier Transform Infrared Spectroscopy): 

IR spectroscopy deals with the interaction between a molecule and radiation from the IR region of the 

electromagnetic spectrum (4000cm-1 to 400cm-1). The cm-1 unit is the wave number scale and is given by 

1/wavelength. 

IR radiation causes the excitation of the vibrations of covalent bonds within that molecule. These 

vibrations include the stretching and bending modes. An IR spectrum show the energy absorptions as one 

‘scans’ the IR region of the EM spectrum. In general terms it is convenient to split an IR spectrum into 

two approximate regions: 

4000-1000 cm-1 (known as the functional group region) 

<1000 cm-1 (known as the fingerprint region) 

Since from physics point of view we are only interested in the modes of vibration, it is enough for us to 

analyze the spectrum in the fingerprint region. 

The FTIR analysis has been done using Bruker ALPHA FT-IR. 

Analysis of the FTIR spectrums show sharp peaks at 

555.2 and 588.4 cm-1 for the compound Pr0.7Sr0.3MnO3 

548.2 and 584.9 cm-1 for the compound Gd0.7Sr0.3MnO3 

556.8 and 578.8 cm-1 for the compound Dy0.7Sr0.3MnO3 

The FTIR spectra for this family of compounds show two absorption peaks in and around 530 cm-1 to 590 

cm-1 .[ 26]  These bands that are located nearer to 600 cm-1 are attributed to the combination of stretching 

mode of Mn-O-Mn and bending mode of Mn-O bonds. These two bands are related to the environment 

surrounding the MnO6 octahedra and the local modes of the MnO6  octahedra. The peaks are sensitive to 

the octahedral distortion and the lowering of symmetry arising due to Jahn Teller effect.[27 ] [31] 

 



26 
 

 

Fig-4.9 FTIR spectrum for Dy0.7Sr0.3MnO3 

 

Fig-4.10 FTIR spectrum for Gd0.7Sr0.3MnO3 
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Fig-4.11 FTIR spectrum for Pr0.7Sr0.3MnO3 

 

 

4.4 RAMAN Spectra Analysis: 

Raman spectroscopy is complementary to IR spectroscopy and in this case a net change in bond 

polarizability must be observed for a transition to be Raman active. 

Model described in terms of a minimum set of fundamental vibrations, based on a threefold set of co 

ordinate axes (known as normal mode of vibration) 

Number of normal modes = 3N-6 (Nonlinear) 

= 3N-5 (Linear), where N is number of component atoms in the molecule. 

Raman analysis has been done for all the three compounds and the peaks have been marked. The peaks 

have been identified and correlated with specific vibrational modes. 

The Raman Spectroscopy was performed using a source wavelength of 785 nm, 10mW power source 

and 20 seconds of detecting time. The spot was a 50 μm circular spot.  

From the figures given below we can find prominent peaks for all the 3 compounds. They are as follows: 
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Dy0.7Sr0.3MnO3  217.1, 310.7, 480.7 and 627.3 cm-1 

Gd0.7Sr0.3MnO3  229.6, 337.8, 468.2 and 608.9 cm-1 

The peaks of Pr0.7Sr0.3MnO3 sample could not be analyzed properly since the peaks are not prominent and 

sharp as we can see from the plot given below. This could be due to noise formation while taking the data. 

 Now as we can see the peaks at four specific ranges. The lines of a certain range have their own modes of 

vibration. 

200-250 cm-1 correspond to the out of phase rotation of the oxygen cage i.e. apical oxygen bending or 

rotation of the octahedral. 

310-340 cm-1 mode correspond to the Mn-O bond stretching. 

460-480 cm-1 correspond to the bending mode of the MnO6 octahedra. 

600-630 cm-1 correspond to the in phase stretching and Jahn Teller distortion. [29] [30] 

Fig-4.12 Raman spectrum for Dy0.7Sr0.3MnO3 
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Fig-4.13 Raman spectrum for Gd0.7Sr0.3MnO3 

 

Fig-4.14 Raman spectrum for Pr0.7Sr0.3MnO3 
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Chapter 5 

Conclusion & Future directions: 

The samples of Pr0.7Sr0.3MnO3, Gd0.7Sr0.3MnO3 and Dy0.7Sr0.3MnO3 have been prepared successfully by 

solid state synthesis route. The x-ray diffraction shows sharp and well defined peaks for the compounds. 

On comparing the x-ray diffraction results to JCPDS database the structure of the compounds is found to 

be orthorhombic and their lattice parameters have well matched too with the JCPDS database. Further 

from the XRD readings the particle size and strain value has also been calculated using Debye Scherrer 

technique. The average particle size has come out to be 29.3nm, 17.4nm and 53.5nm for Gd0.7Sr0.3MnO3, 

Pr0.7Sr0.3MnO3 and Dy0.7Sr0.3MnO3 respectively. 

 

Next the SEM images have also been taken which show that the grain boundaries are not clear and there 

is poor homogeneity and much porosity in all the samples. The grain size distribution curve has been 

plotted and the nature of the curve has come out to be Gaussian. The mean grain size for the 

Dy0.7Sr0.3MnO3 compound comes out to be 4.785 μm and for Gd0.7Sr0.3MnO3 it comes out to be 1.817 μm. 

The FTIR curve has also been plotted in the range 400-1000 cm-1 and the peak values have been noted in 

the absorbance versus wave number plot. The peaks denote the values at which the octahedral distortion 

takes place and the lowering of symmetry due to the Jahn Teller effect. The peak values have been 

obtained in the wave number region of 500-600 cm-1. 

Raman spectroscopy has also been performed to complement the FTIR analysis. The peak values for the 

Raman spectra again confirm the orthorhombic symmetry of the compounds as observed from XRD 

analysis. We also found out the vibrational modes from the Raman Spectra and the regions of distortion 

of MnO6 octahedra and Jahn Teller distortion. 

The work can be further extended to analyze the transport properties of the compounds and to find out the 

Temperature ~ Resistivity curves. This curve can give us an idea of the temperature at which the metal 

insulator transition takes place. The temperature coefficient of resistance can be further found out and 

drop in resistivity can be utilized for bolometric applications. Ferromagnetic to paramagnetic transition 

temperature can also be found out as well thus determining the Curie temperature. 
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