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Abstract 

 
 
 
 
Weld deposition based Additive Manufacturing enables the capacity of fabricating fully 

dense components with low cost for rapid manufacturing. During the additive 

manufacturing of forming metal parts, the cross-sectional profile of a single weld bead 

is critical for improving the surface quality, dimensional accuracy. This work present 

the experimental study carried out to determine the best fit model to define the bead 

cross-section profile. The profile of the single bead was fitted by three curve functions, 

namely parabola, circular arc, and cosine function and the “accuracy” of the fit was 

determined based on regression coefficient. Both pulsed and CMT weld-deposition 

modes were analyzed to generate conditions for high and low penetration respectively. 
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Chapter 1 
 
 
 

Introduction 
 
 
 
1.1 Introduction 
 
Rapid Manufacturing (RM), also referred as Additive Manufacturing, Layered 

Manufacturing and 3D Printing is the process of automatic manufacture of objects 

directly from their CAD models. RM applications for realising metallic objects 

employ laser, electron beam or arc as the sources of thermal energy for 

sintering/melting, in the order of their present popularity. Components manufactured 

through laser and electron beam can give high accuracy and surface finish, but are 

expensive and slower due to lower material deposition rates. Components 

manufactured through arc-based deposition techniques on the other hand are 

economical and faster, but give low surface finish and accuracy. Thus, finish 

machining is invariably necessary for components manufactured through arc-based 

deposition techniques. Depending on considerations like laser source, build 

environment etc., the accuracy of components manufactured through laser based 

processes may vary from 0.07mm (ProMetal ExOne) to 0.25mm (LENS MR-7). 

Finish machining is optionally carried out in some laser based systems with low 

accuracy, where the focus is on higher deposition rates. Integrating the near-net 

shaping and finish machining operations into a single machine can make these 

processes faster and economical. Lumex 25C, developed by Matsuura Machinery 

Corporation in Japan, 3D Welding and Milling, developed at Korea Institute of 

Science and Technology (KIST) are some examples of RM technologies combining 

material addition and subtraction into a single machine. Yasa et al. took this 

integration further by using the laser for both material deposition and erosion in 

Selective Laser Melting. 
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1.2 Gas Metal Arc Welding (GMAW) 
 
Gas metal arc welding (GMAW), sometimes referred to by its subtypes metal inert 

gas (MIG) welding or metal active gas (MAG)welding, is a welding process in 

which an electric arc forms between a consumable  wire  electrode and the 

workpiece metal(s), which heats the workpiece metal(s), causing them to melt, and 

join. Along with the wire electrode, a  shielding gas feeds through the welding gun, 

which shields the process from contaminants in the air. The process can be semi-

automatic or automatic. A constant  voltage,  direct current power source is most 

commonly used with GMAW, but constant  current systems, as well as  alternating 

current, can be used. There are four primary methods of metal transfer in GMAW, 

called globular, short-circuiting, spray, and pulsed-spray, each of which has distinct 

properties and corresponding advantages and limitations. 
 
 
Originally developed for welding  aluminum and other non-ferrous materials in the 

1940s, GMAW was soon applied to  steels because it provided faster welding time 

compared to other welding processes. The cost of inert gas limited its use in steels 

until several years later, when the use of semi-inert gases such as  carbon  dioxide 

became common. Further developments during the 1950s and 1960s gave the 

process more versatility and as a result, it became a highly used industrial process. 

Today, GMAW is the most common industrial welding process, preferred for its 

versatility, speed and the relative ease of adapting the process to robotic automation. 

Unlike welding processes that do not employ a shielding gas, such as  shielded metal  

arc welding, it is rarely used outdoors or in other areas of air volatility. A related 

process,  flux cored arc welding, often does not use a shielding gas, but instead 

employs an electrode wire that is hollow and filled with  flux. 
 
 
For most of its applications gas metal arc welding is a fairly simple welding process to 

learn requiring no more than a week or two to master basic welding technique. Even 

when welding is performed by well-trained operators weld quality can fluctuate since it 

depends on a number of external factors. All GMAW is dangerous, though perhaps less 

so than some other welding methods, such as  shielded metal arc welding. 
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FIG 1.1GMAW weld area. (1) Direction of travel, (2) Contact tube, (3) Electrode, (4) 

Shielding gas, (5) Molten weld metal, (6) Solidified weld metal, (7) Workpiece [1] 
 
 
 
The basic technique for GMAW is quite simple, since the electrode is fed automatically 

through the torch (head of tip). By contrast, in  gas tungsten arc welding, the welder 

must handle a welding torch in one hand and a separate filler wire in the other, and in 

shielded metal arc welding, the operator must frequently chip off slag and change 

welding electrodes. GMAW requires only that the operator guide the welding gun with 

proper position and orientation along the area being welded. 
 
 
Keeping a consistent contact tip-to-work distance (the stick out distance) is 

important, because a long stickout distance can cause the electrode to overheat and 

also wastes shielding gas. Stickout distance varies for different GMAW weld 

processes and applications. The orientation of the gun is also important—it should 

be held so as to bisect the angle between the workpieces; that is, at 45 degrees for a 

fillet weld and 90 degrees for welding a flat surface. The travel angle, or lead angle, 

is the angle of the torch with respect to the direction of travel, and it should 

generally remain approximately vertical. However, the desirable angle changes 

somewhat depending on the type of shielding gas used—with pure inert gases, the 

bottom of the torch is often slightly in front of the upper section, while the opposite 

is true when the welding atmosphere is carbon dioxide. 
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1.3 Cold Metal Transfer 

 
There are material and application which cannot withstand the constant heat of welding 

process. In order to avoid poll drop through to be spatter free and to be amenable to 

metallurgical joining they need lower temperature. With CMT this is possible. CMT 

stands for Cold Metal Transfer. Of course, the term “cold” has to be understood in terms 

of a welding process. But when compared to the conventional MIG/MAG process CMT 

is indeed a cold process[1].Its characterstic features are hot, cold, hot, cold, hot, cold. 

This alternating hot cold treatment has been made possible by a new technological 

development from “Fronius” and above all, by incorporating the wire motions into the 

process control. “Fronius” is a company in Austria which has created this CMT welding 

process and further doing research and development in order to obtain not only a good 

weld but also enhancing the process capability beyond certain limits. CMT is used for 

thin sheets upto 3mm thick since metal deposition is less as compared to other process. 

CMT is an automated welding process based upon dip transfer welding characterized by 

controlled material deposition during short circuit of wire electrode to work piece 

[2].CMT exhibits high electrode melting coefficient in comparison to MIG PULSE or 

any other process[3]. 
 
 
CMT is a newly developed process which is still a going under lot of advancement 

and modification in order to obtain better control over the process. This process has 

brought a new revolution in the field of welding. It took near about 5 years of 

research by Fronius to achieve this milestone, a good thing about CMT is it can be 

combined with other processes like MIG, TIG, PULSE and other processes [3]. 
 
 
Fronius has also developed a new process under CMT i.e CMT Advanced in which 

alternating positive and negative process cycles can be set by the user as required. 

This modern joining method satisfies increasingly stringent demands,. some of the 

most important of which are process stability, reproducibility and cost-effectiveness 

[4]. 
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Figure 1.2 CMT Machine [2] 
 
 
 
The bundling together of specific material properties opens up a number of 

interesting possibilities. Material compounds impart to a component or product the 
desirable properties of the constituent. The main focus in this respect is on the 

joining of steel and aluminium, as this will be of particular interest to the automotive 

sector, where it could spawn a whole range of previously undreamt of innovations. 
 
 
This shows that how the combination of both welding and automation has not only 

increased the feasibility of the process but also enhanced the workability. CMT 

overall is a simple to understand and learn, it is a package of welding under different 

circumstances in which important parameters like peneteration, deposition can be 

controlled. 
 
 
The current work is totally based upon the welding process. Welding is a method used 

in our day today life in some way or the other. There are many applications of welding 

being used in our life every now and then. Welding has created a revolution not only in 

industries but also in the house hold applications so now it has become a primary tool of 

the manufacturing and the assembly unit. Welding is the joining of two similar or 

dissimilar metals by the use of heat and pressure. Welding assembly consist of a 
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power source could be either AC or DC, electrode, base or parent metal, welding 

torch. Here the power source generates an arc which heats the base metal which in 

turn melts the electrode that acts as a filler material thus forming a puddle on the 

base metal which helps in joining the metals. The process parameters used in 

welding are the torch speed, current, voltage, arc length and the electrode extension. 
 
 
The output result that we get after the setting of the parameters are the material 

deposition, weld width, penetration, dilution. These results depend upon the 

operating variable which in turn can be modified in order to get a good bead profile. 

So it is very important to analyse the bead geometry and structure since it could be 

helpful in getting the right parameter set of wire and torch speed. There are various 

types of welding which could be helpful in obtaining a good bead. Welding are 

classified under categories as solid state or liquid state. GMAW (MIG and MAG), 

SMAW (Submerged arc),TIG comes under Arc welding. Resistance welding, 

soldering, brazing comes under the category of the solid state welding. 
 
 
Mechanical properties of the joint produced between the metals depend upon the 
process, filler metal, power requirement, travel speed. So it is very important to keep 
a watch if one parameter changes then the other parameter needs to changed in order 
to get the desired output as per the customer need 
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Chapter 2 
 
 
 

Literature Survey 
 
 
 
2.1 Advances in Welding Processes 
 
This is the process in which is based upon droplet detachment in which the time of 

short circuit is controlled [10]. This process is further modified by varying the 

current which helps in maintaining the correct proportion of deposition rates and 

penetration [9].CMT(Cold Metal Transfer) welding results in welds with high levels 

of accuracy on thin-section materials usually reserved for TIG (tungsten inert gas) 

welding. And CMT welding may well be the way of the future [7].CMT welding 

technologies could overtake and dominate manual TIG welding in sheet-metal arc 

welding applications. The improved efficiencies available through CMT unlock a 

host of potential new applications for robots in markets that were previously 

dependent upon costly highly skilled labour. Until now sheet-metal product 

manufacturers have faced a choice between TIG or MIG(metal inert gas) welding 

for arc welding sheet metal [7].MIG welding has covered much of the market, while 

TIG welding is most commonly used for welding thin-section material. CMT is a 

good tool for overcoming the limitation of both MIG and TIG [11]. 
 
 
The wire movement is intergraded into the process. The wire moves alternately 

forward and backward. The droplet detachment and the arc resignation happens 

almost current less. The wire oscillation detaches the droplet mechanical once the 

wire moves backwards. The arc length and arc regulation is very precise due to the 

repeating short circulate and the defined backward movement of the wire. The arc 

length is adjusted mechanically. In conventional MIG welding the arc length 

regulation and the process measurement happens through the voltage, disadvantage 

is that the surfaces conditions and travel speed influence the voltage, whereas in 

CMT the arc length regulation and the process measurements happen mechanically. 
 
 
 
 
 
7 



 
 
Advantage is that the surface conditions and travel speed have no arc length 
influence [8]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2.1 CMT Process Arc Regulation [4] 
 
 
 
Figure 2.1 shows that how CMT process regulates arc at 81 amp and 11.2 volt and 

arc for pulse at 111 amp and 17.87 volts. Here in CMT we get precise arc length 

regulation, virtually spatter free, extremely high arc stability as compared to the 

conventional pulse welding. CMT requires lessamount of current and voltage in 

order to get a precise arc and takes less time too.CMT welding is carried out 

exclusively using digital inverter power sources. The welding system basically uses 

the same latest state-of-the-art hardware as a MIG/MAG system, while at the same 

time taking certain specific requirements into account. 
 
 
Particularly noteworthy is the highly-dynamic wirefeeder mounted directly on the 

welding torch. The moment the power source detects a short circuit, the welding 

current drops and the filler wire starts to retract. Exactly one droplet is detached, 

with no spatter whatsoever. The filler wire then moves forwards again and the cycle 

is repeated. High frequency and extreme precision are the basic requirements for 

carefully controlled material transfer. The wire drive on the welding torch is 

designed for speed, not high tractive forces. The wire is therefore fed by a more 

powerful but, due to the above, slower main wirefeeder. A wire buffer on the 

wirefeeding hose is used to convert the superimposed, high-frequency wire 

movement into a linear wirefeed. 
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Fig 2.2:Comparison of weld shape in various processes in 1.5 and 2 mm thick steel plate[4] 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.3 Ignition in other process[4] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.4 Ignition in CMT[4] 
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The limitation of the pure CMT process is the beginning of the globular arc. The 

minimum power range is limited on the seam cosmetic. The CMT + Pulse process 

can reach the area of the Pulsed arc. The ignition on conventional machines happens 

through a short circuit. Once the wire touches the work piece an arc gets ignited. For 

such an ignition a high current peak is required. This causes spatter due to the high 

arc pressure. 
 
 
CMT uses the SFI (Spatter Fee Ignition) technology. The SFI technology doesn´t 
require a high current since no short circuit happens due to the wire movement. The 
result is a smooth, fast and spatter free ignition. 
 
 
2.2 CMT Process 
 
The process of CMT is a simple and based upon the droplet detachment process. It 
takes place in four steps: 
 
1. During the arcing period, the filler metal is moved towards the weld pool.  
 
2. When the filler metal dips into the weld-pool, the arc is extinguished. The 

welding current is lowered.  
 
3. The rearward movement of the wire assists droplet detachment during the short 

circuit. The short-circuit current is kept small.  
 
4. The wire motion is reversed and the process begins all over again.  
 
 
 
CMT utilizes an innovative wire feed system integerated to high speed digital control in 

order to control not only the arc length during welding but also the method of material 

transfer and the amount of thermal input transfer to workpiece[2].CMT process control 

both the material transfer and both the initiation and duration of short circuit 

mechanically by feeding the wire electrode forward into the weld pool then retracting 

after a defined duration. By incorporating this mechanical process into electrical process 

control, the point of short circuit can be detected. 
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2.2.1 Principle of Operation 
 
The basic operation mode of CMT is characterised by an arcing phase during which 

a molten droplet is formed on the end of the wire electrode and a weld pool created. 

After a set duration the wire electrode is fed forward to make contact with the weld 

pool / base material creating a short circuit. During this phase material transfer is 

initiated and the arcing current substantially reduced. After a defined period the 

electrode is mechanically retracted, this rearward motion aiding in pinching the 

molten globule into the weld pool [6]. 
 
 
The arc is then reignited and the cycle repeats. The process is unique in that not only 

is deposition controlled by the forward and rearward motion of the electrode, the 

electrical characteristics are also controlled with the result that material transfer 

takes place at both low current and low voltage. The joining of dissimilar materials 

requires precise knowledge of the properties of each material. Aluminium is highly 

regarded due to its low specific weight and its excellent usability and processing 

characteristics. On the other hand, its strength and low cost make steel indispensable 

in many areas of industry. [2]Other requirements primarily address anti-corrosion 

features, thermal expansion coefficient, and atomic properties. When joining steel 

and aluminium under the influence of heat, what is known as an intermetallic phase 

is created at the interface between the two materials. The more heat that is applied, 

the more extensive the intermetallic phase and the poorer the mechanical properties 

of the join will be. However, the chemical and physical properties also require 

appropriate measures to be taken. The different thermal expansion coefficients of the 

two materials create a stress field around the join.[4]There is also a marked tendency 

for corrosion to form as a result of the large electrochemical potential difference of 

steel compared with aluminium. All the technologies that have been used to join 

steel and aluminium in the past have only been able to deal with certain geometries 

or have required extensive control inputs. Although the perceived wisdom among 

many metallurgists was that steel and aluminium could not be welded together, 

extensive research in the field of MIG/MAG welding indicated that arc welding was 

indeed a potential way of joining the two materials [4]. 
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The CMT process evolved from the continuous adaptation of the MIG/MAG process 

to resolve the problems posed by the joining of steel and aluminium. CMT is a 

controlled process and allows the material transfer to take place with barely any 

flow of current. The aluminium base material melts together with the aluminium 

filler material, with the melt wetting the galvanised steel. The filler wire is 

constantly retracted at very short intervals. The precisely defined retraction of the 

wire facilitates controlled droplet detachment to give a clean, spatter-free material 

transfer. The wire movement takes place at a very high frequency and requires a 

quick-response, gearless wire drive directly on the torch. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.8 CMT Cycle Instantaneous Current And Voltage Values Based On Electrical  
Transients 

 
 
 
Obviously the main wirefeeder will not be able to keep up with these movements. 

The wirefeeding hose is therefore provided with a wire buffer that compensates for 

the additional forward and backward movement of the wire. Figure 1.4 given below 

shows how the current and voltage varies with the change of phase. In the beginning 

of the arcing phase current increases to a maximum and when it touches the weld 

pool there is a rapid decrease or the current gets lower and this low current shows 

the initiation of the short circuit phase after which further retraction 
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Figure 2.10 Bead Profile Parameters[20] 
 
 
 
 
2.3 Geometric Modelling of Weld-Bead 
 
Bead geometry includes bead height, width and penetration. These are important 

physical properties of a weldment. The bead cross-sectional area together with its 

height and width affects the total shrinkage, which determines largely the residual 

stresses and thus the distortion [27]. A number of welding process models exist that 

cover various aspects including the relationship between the welding process 

parameters and the bead geometry. Many research groups have used Artificial 

Neural Networks (ANN) models to predict the geometric parameters of the bead 

from the process parameters [27-29]. As their primary focus is on the joining 

applications, good fusion and fast joining are their major concerns. The penetration 

characteristics influence the former. In addition to the bead height and width, the 

area of the cross-section of the bead has been adequate for the latter. 
 
 
Many researchers have explored the use of arc weld-deposition for the near-net 

manufacture of the objects till early 2000. The research groups of Dickens, Kovacevic, 

Printz and Song are some of the early contributors to this area [30-33]. Some of them 

have also considered the bead profile as it is important for the RM application. Aiyiti et. 

al., in their analysis using plasma arc welding have assumed the beads as overlapping 

circular arcs and arrived at the most desirable scan spacing (Figure 2.12 & 13) [34]. 

However, they have not accounted for the additional material in the overlapping zone. 

Some researchers including Chan et. al. have used the parabolic 
 
 
 

13 



 
 
approximation for the cross-sectional profile [35]. These guided the assumption of 
parabolic bead profile in this thesis too. Furthermore, how the overlapping material 
is distributed is also explained in the present thesis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.12 Bead overlapping model for MPAW [34] 
 
 
 
 
 
 
 

(a) Large scan spacing (b) Desirable scan spacing (c) Small scan spacing 
 

Figure 2.13 Overlapping for different scan spacing [34] 
 
 
2.4. Motivation for the Current Work 
 
Although many researchers have explored the geometry of the bead profile, a 
comprehsesive comparison of various alternative models was founf lacking. The 
current work discussed the work done to evaluate the best fit curve model for the 
weld-bead. 
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Chapter 3 
 
 
 

Experimental Methodology 
 
 
 
3.1 Experimental Setup 
 
A CMT power source mounted on a bagometric table was used for the weld-
deposition. The following are some of the control aspects of the CMT machine: 
 
 
1. TPS 3200 / 4000 / 5000 CMT power source: Fully digitised, microprocessor-

controlled and digitally regulated GMA inverter power source (320 /400 / 500 
A) with an integral functional package for the CMT process.  

 
 
2. RCU 5000i remote-control unit: Remote-control unit with full-text display, 

weld-data monitoring with Q-Master function, easy-to-follow user guidance, 
systematic menu structure, user administration features.  

 
 
3. FK 4000 R cooling unit: Sturdy and dependable, ensures optimum cooling of 

water-cooled robot welding torches.  
 
 
4. Robot interface: Suitable for all customary robots, irrespective of whether these 

are addressed digitally, in analogue or via field-bus  
 
 
5. VR 7000 CMT wirefeeder: Digitally controlled wirefeeder for all common types 

of wirepack.  
 
 
6. Robacta Drive CMT: Compact robot welding torch with digitally controlled, 

gearless, highly dynamic AC servo motor. For precision wirefeed and constant 
contact pressure.  
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7. Wire buffer: Decouples the two wire-drives from one another and provides 

additional storage capacity for the wire. Formounting on the balancer 
(preferably), or on the third axis of the robot.  

 
 
8. Wire supply  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIG 3.1 CMT Machine Setup [2] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.2 CMT and Pulse Beads 
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Table 3.1 Sets of Parameters  

Wire speed in m/min Torch Speed in mm/min 
  

7 500 
  

7 700 
  

7 900 
  

9 500 
  

9 700 
  

9 900 
  

11 500 
  

11 700 
  

11 900 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.3 Cross section profiles of CMT and Pulse beads 
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3.2 Experimental Methodology 
 
A combination of three wire and torch speeds, as shown in Table 3.1 was used for 

the analysis. Each combination was repeated 3 times. The beads were then cut into 

thin section with the help of an EDM, as shown in Figure 3.3. The bead cross 

section was subsequently digitized with the help of a scanner and the various points 

on the surface noted and curve fitted (as explained in the subsequent section). 
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Chapter 4 
 
 
 

Experimental Results 
 
 
 
4.1 Results 
 
The bead cross section was fitten to the following three forms of curves: 
1. Parabolic   =  (  −  )2 +  
2. Circular Arc   =  − √  2 − (  −  )2   3. Cosine Function   =  cos  

 
 
 
The following tables 4.1 to 4.3 summarizes the results for the bead geometry and 
curve fit accuracy (presented in the form of correlation coefficient). 
Table 4.1 Parabolic   =  (  −  ) +  

Wire speed
Torch 

Mode a b c Corr coeff Error  

Speed  

       
 

        
 

7 500 CMT 4.57E-01 1.29E+01 -2.287 9.95E-01 8.51E-02 
 

        
 

7 700 CMT 3.70E-01 6.87214 -1.6604 9.93E-01 7.82E-02 
 

        
 

7 900 CMT 4.59E-01 7.05565 -1.36532 9.92E-01 7.14E-01 
 

        
 

9 500 CMT 2.81E-01 9.9164 -2.1996 9.97E-01 5.99E-02 
 

        
 

9 700 CMT 2.99E-01 8.62009 -1.8013 9.94E-01 7.29E-02 
 

        
 

9 900 CMT 3.28E-01 8.4311 -1.60465 9.97E-01 5.13E-02 
 

        
 

11 500 CMT 2.30E-01 9.6797 -2.2248 9.93E-01 9.99E-02 
 

        
 

11 700 CMT 3.33E-01 9.9599 -1.33611 9.87E-01 8.61E-02 
 

        
 

11 900 CMT 2.22E-01 8.800138 -1.9797 9.88E-01 1.15E-02 
 

        
 

 
 
 
 
 
 
 
 
 
 
 
19 



Table 4.2 Circular Arc   =  − √   − (  −  ) 
 

Wirespeed
Torch 

Mode a b c Corr coeff Error  

Speed  

       
 

        
 

7 500 CMT 1.28E+01 -7.50E-02 2.05E+00 0.921124 8.51E-02 
 

        
 

7 700 CMT 6.8571 0.48 2.071 0.916383 7.82E-02 
 

        
 

7 900 CMT 7.0587 0.3764 1.6934 0.956071 7.14E-01 
 

        
 

9 500 CMT 9.9352 0.651 2.7499 0.963034 5.99E-02 
 

        
 

9 700 CMT 9.9352 0.651 2.7499 0.97896 7.29E-02 
 

        
 

9 900 CMT 8.6168 0.7398 2.4651 0.99876 5.13E-02 
 

        
 

11 500 CMT 9.6898 1.0277 3.1627 0.904308 9.99E-02 
 

        
 

11 700 CMT 9.96E+00 0.7707 2.0757 0.920719 8.61E-02 
 

        
 

11 900 CMT 8.8047 1.171 3.0981 0.918283 1.15E-02 
 

        
 

Table 4.3 Cosine Function   =  

Wirespeed
Torch 

Mode a b c Corr coeff Error  

Speed  

       
 

        
 

7 500 CMT -1.90072 0.9742 0 1.0386 -1.90072 
 

        
 

7 700 CMT -1.7035 0.90071 0.66706 0.461709 -1.7035 
 

        
 

7 900 CMT -1.39607 0.889845 0.99388 0.059917 -1.39607 
 

        
 

9 500 CMT 0.980847 0.93866 0 1.350158 0.980847 
 

        
 

9 700 CMT 0.76054 1.08304 0 1.124705 0.76054 
 

        
 

9 900 CMT 1.02779 1.1073 0 0.8852 1.02779 
 

        
 

11 500 CMT 0.54892 0.9217 0 1.47104 0.54892 
 

        
 

11 700 CMT 1.41211 0.941345 0.78995 0.3214 1.41211 
 

        
 

11 900 CMT 0.327389 1.00347 0 1.29634 0.327389 
 

        
 

Table 4.4 Parabolic   =  (  −  ) +  

Wire speed
Torch 

Mode a b c Corr coeff Error  

Speed  

       
 

        
 

7 500 PULSE 3.12E-01 9.0756 -1.89234 9.92E-01 9.21E-02 
 

        
 

7 700 PULSE 3.42E-01 7.08829 -1.69153 9.77E-01 1.47E-01 
 

        
 

7 900 PULSE 3.50E-01 6.2099 -1.13938 9.73E-01 1.04E-01 
 

        
 

9 500 PULSE 2.13E-01 7.7836 -2.15489 9.95E-01 8.35E-02 
 

        
 

9 700 PULSE 1.73E-01 7.5934 -1.4743 9.62E-01 1.72E-01 
 

        
 

9 900 PULSE 2.03E-01 8.3126 -1.4084 9.50E-01 1.80E-01 
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11 500 PULSE 2.08E-01 8.01045 -2.38864 1.08E-01 9.93E-01 

        

11 700 PULSE 1.82E-01 7.71579 -1.86694 1.56E-01 9.77E-01 
        

11 900 PULSE 1.92E-01 8.53071 -1.539 1.34E-01 9.79E-01 
        

Table 4.5 Circular Arc   =  − √   − (  −  ) 
 

Wirespeed
Torch 

Mode a b c Corr coeff Error  

Speed  

       
 

        
 

7 500 Pulse 9.069 0.5378 2.5724 0.961734 8.51E-02 
 

        
 

7 700 Pulse 7.0744 0.4631 2.13 0.904084 7.82E-02 
 

        
 

7 900 Pulse 6.2035 0.7084 1.8411 0.901066 7.14E-01 
 

        
 

9 500 Pulse 7.7748 1.1968 3.2786 0.924743 5.99E-02 
 

        
 

9 700 Pulse 7.5943 1.1968 3.2786 0.869775 7.29E-02 
 

        
 

9 900 Pulse 8.3024 1.422 2.8613 0.899478 5.13E-02 
 

        
 

11 500 Pulse 8.0176 1.1039 3.4256 0.941781 9.99E-02 
 

        
 

11 700 Pulse 7.7221 1.614 3.4704 0.917557 8.61E-02 
 

        
 

11 900 Pulse 8.5271 1.6581 3.1973 0.981334 1.15E-02 
 

        
 

Table 4.6 Cosine Function   =  

Wirespeed
Torch 

Mode a b c Corr coeff Error  

Speed  

       
 

        
 

7 500 PULSE 1.18684 1.02836 0 1.1052 -1.90072 
 

        
 

7 700 PULSE 0.62476 1.28876 0 0.11428 -1.7035 
 

        
 

7 900 PULSE -1.25277 1.00453 0.87699 0.205805 -1.39607 
 

        
 

9 500 PULSE 2.9432 1.007377 0 1.5287 0.980847 
 

        
 

9 700 PULSE 2.93747 1.15275 0 1.03792 0.76054 
 

        
 

9 900 PULSE 0.64801 1.08634 0 1.730449 1.02779 
 

        
 

11 500 PULSE 0.447587 1.08565 0 1.100791 0.54892 
 

        
 

11 700 PULSE -1.06345 7.86344 0 1.100791 1.41211 
 

        
 

11 900 PULSE 0.498241 1.08084 0 1.032941 0.327389 
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Chapter 5 
 
 
 

Conclusion & Future Scope 
 
 
 
 
5.1 Conclusions 
 
A study of weld-bead geometry based on experiments was carried out. Two modes 
of welding were examined viz., pulse and CMT (with low penetration than 
conventional GMAW welds). The curve was analyzed for three different 
possibilities viz., parabola, circular arc and cosine curve. 
 
 
It is observed that the curve is closer to a parabola at smaller torch speeds. But as the 
torch speed increases, it moves closer to cosine and arc. This may be due to the fact 

that when the torch moves at higher speed, the deposition is closer to cladding with 
lesser penetration. 
 
 
 
5.2 Future Scope 
 
The current study was limited to only torch speed and wire speed, considering both as 

independent variables. The interaction between the parameters was not considered. 

Also, the curve fitting at the corners was not accounted properly. A improved curve 

fitting model may be explored which accounts the corner fillets also. 
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