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Abstract

An OpenFOAM based solver for dilute laminar gas-droplet flows with evapo-

ration is developed. The same module was implemented in a general purpose

CFD solver, IITK-DAE ANUPRAVAHA SOLVER by Mrunalini [4] and Shash-

wat Swami Jaiswal [38]. A proposal for turbulent module for the same also has

been made in this thesis.

The finite volume method with non-staggered grid arrangement has been used

along with a fully implicit and semi-coupled algorithm to numerically solve the set

of governing equations for laminar case. A two-way coupling has been assumed

between the two phases. This has been achieved by including source terms in the

governing equations, involving mass, momentum and energy transport between

the phases. A classical model for droplet evaporation has been implemented in

the OpenFOAM based solver. The solver has been successfully verified against

the results of gas-droplet channel flow with evaporation against the results of

Anupravaha and compared with that of the commercial software FLUENT.

A proposal for a two equation (k-ε) turbulent model for gas-droplet flows with

evaporation has been made in this thesis. Taking the density variation in gaseous

phase due to mixing into account, Favre-averaging is considered for this phase.
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Chapter 1

Introduction

Multiphase flow covers a vast field, a host of various technological events, a wide

range of engineering disciplines, a number of natural processes. It encompasses a

wide range of flow patterns and regimes. Virtually every processing technology

must deal with multiphase flow, from electrographic processes to papermaking to

cavitating pumps and turbines. Many diverse industries like aerospace, nuclear,

water and transport, chemical, etc. encounter with multiphase flows. Many

natural processes like formation and motion of rain drops, sand dunes formation

are also coming under it. All these flows involve interaction between matter

existing in different states. These interaction may be mass, momentum, energy

or any of its combination. Multiphase flows can be quite complex and may involve

various phases interacting simultaneously. It is useful to subdivide these vast field

into a small number of identifiable classes.

The simplest of all multiphase flows are two-phase flows. Two-phase flow

models can be explored either experimentally or numerically. But experimental

modelling can be quite expensive and difficult to set-up. Moreover in many in-

stances, it requires to have a different scale than the prototype and then a proper

numerical model is required for confident extrapolation to the scale of proto-

type. In this work, mathematical modeling of two-phase flows involving gas and

evaporating liquid droplets is attempted considering certain assumptions. The

development of accurate mathematical models of two-phase flows is important for

optimum design and control of various industrial systems. Mathematical mod-

eling of two-phase flows poses several challenges as the problem involves rapidly

changing and/or moving interfaces and continuous interaction between the phases

which affect the behavior of each of the interacting phases. In this work, we
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numerically solve dilute dispersed two-phase flows using the three fundamental

principles that govern any fluid flow: (i) mass conservation, (ii) momentum con-

servation and (iii) energy conservation. A brief introduction to two-phase flows

is given below.

Two phase flows, in general, can be characterized both by the combination of

interacting phases and also by the interface structures. Classification based on

the state of the constituents of the flow is as follows:

1. Gas-liquid (bubbly flows, slug flows, gas-droplet)

2. Liquid-solid (slurry flows, sediment transport)

3. Gas solid (particle laden flows, fluidized beds)

4. Liquid-liquid(flow of immiscible liquids)

On the basis of configuration two-phase flows are classified as follows:

1. Dispersed flows, in which the two phases are thoroughly mixed in each

other.

2. Free surface flows (separated flows), in which the two phases are separated

by a distinct interface.

Dispersed flows consist of finite particles, droplets, bubbles distributed in a

connected volume of continuous phase. It is further divided into three regimes

by considering the phase of dispersion as follows:

1. Bubbly flows

2. Droplet flows

3. Particle flows

This thesis involves numerical modeling of dilute dispersed gas-droplet flows

involving gas and evaporating liquid droplets. Droplets are called as the disperse

phase and the fluid in which the droplets move is called as continuous phase.

In this work, dilute droplet flows with evaporation in a gas phase is being

mathematically modelled as a part of OpenFOAM(Open Field Operation And
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Manipulation) solver. It is a is a free, open source CFD software package de-

veloped by OpenCFD Ltd at ESI Group and distributed by the OpenFOAM

Foundation. Usage of an open source software package is cost-effective compared

to some commercial packages as those charge money for their use. Tracking of

interface between the various phases is a major component of separated flow al-

gorithms, which usually is not attempted for disperse phase flows. For dispersed

flows, the mixture is characterized by volume-fraction, without making reference

to the shape of the actual interfaces between the phases. This procedure is de-

scribed elaborately in Section 1.4.3. A brief introduction about OpenFOAM is

given in the following Section 1.1 .

1.1 OpenFOAM

OpenFOAM is first and foremost a C++ library, used primarily to create executa-

bles, known as applications. The applications fall into two categories: solvers,

that are each designed to solve a specific problem in continuum mechanics; and

utilities, that are designed to perform tasks that involve data manipulation and

algebraic calculations.OpenFOAM is distributed with a large set of precompiled

applications but users also have the freedom to create their own or modify ex-

isting ones. It is divided into a set of precompiled libraries that are dynamically

linked during compilation of the solvers and utilities. Libraries such as those

for physical models are supplied as source code so that users may conveniently

add their own models to the libraries.Meshes can be generated in two ways in

OpenFOAM. Either it uses the blockMesh utility for generating simple meshes

of blocks of hexahedral cells or convertMesh utility to convert meshes generated

by some third party software into the format that it can read.

Post-processing in OpenFOAM can either be done using paraFoam utility,

which uses paraView, an open source visualisation application or using some

other third party post processing softwares like EnSight, Fieldview etc..

1.2 Gas Droplet Flows

Dispersed gas-liquid flows are encountered in many engineering applications.

Evaporating sprays are used in gas turbine systems, internal combustion engines
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and fire safety systems (Faeth [13]). Laminar and turbulent gas droplet flows are

used in emergency core cooling systems of nuclear reactors (Hwang [43]). Gas

droplet flows may be dilute as well as dense. In dense gas droplet flows the

interaction between the droplets is of prime importance. That means a three-

way coupling is to be considered. On the other hand a dilute gas-droplet flow

does not require the consideration of droplet-droplet interactions and the effect

of adjacent drops on drop transport rates. In this case depending on the droplet

concentration a one-way or a two-way coupling between the phases will suffice.

A one-way coupling indicates that the droplets are affected by the fluid flow,

but not vice-versa; in two-way coupling the two phases influence each other. It

follows therefore that for very low particle concentrations a one-way coupling is

sometimes enough to model the interactions whereas for somewhat denser flows

a two-way coupling must be considered. In this work, to take into account the

mass, momentum and energy transfer between the droplet and the surrounding

gas, two-way coupling is employed. Interaction between droplets i.e. droplet

collisions and break-ups are not considered in this study.

1.3 Literature Review

Research in the field of two-phase flows has been carried out for decades. The

fundamental concept of the two-fluid model is first discussed in detail in the book

by Ishii [1]. The classification of the multiphase flow is also discussed in his book.

The governing equations used for both the phases in two-continua formulation is

given in the book by Sirignano [2]. Previous research on two-fluid modeling is

reported by Crowe et al. [3], Darwish [5], Hallmann [6] and Guo et al. [7]. The

parameters used in the study as volume fraction, number density are described

in detail with various averaging procedures in Crowe et al. [3].

The simplest model for droplet evaporation was first suggested by Maxwell

back in 1877 [8]. According to this model, the rate of evaporation is controlled

exclusively by the diffusion process. His model ignores the effect of the convective

flow of the mixture of gas and fuel vapour away from the surface of the droplet.

The classical d2-law of evaporation is formulated by Godsave [9] and Spalding

[10] for single isolated droplet evaporating in a quiescent environment. To take

into account the effect of the convective flow of the surrounding gas, which en-
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hances the heat and mass transfer between the droplet and the gas phase, many

researchers have given correction factors for the basic models. In a comprehen-

sive theoretical and experimental study, Frossling [11] first showed that effects

of convection on heat and mass transfer rates could be accommodated by a cor-

rection factor that is a function of Reynolds number and Schmidts (or Prandtl)

number. The original correlation has been later modified by Ranz and Marshall

[12]. Later Faeth [13] analyzed the available data on convective effects and pro-

posed a synthesized correlation. The present study uses the correlation given by

Ranz and Marshall [12]. In this study separate evaporation model for laminar

and turbulent flows are proposed.

The evaporation model for laminar flow used in the present study is essentially

the classical model of Spalding [10]. The model used is described in the book

on ‘Atomization and Sprays’ by Lefebvre [14]. Kent [15] studied the diffusion

controlled droplet evaporation and condensation and discussed the effect of free-

stream fuel vapour mass fraction on drop evaporation. Sazhin [16] reviewed the

recent developments in modeling the heating and evaporation of fuel droplets.

In the present study ‘rapid mixing model’ for the liquid droplet described in

Faeth [13] and Chen [37] is used. This simplifies the analysis by assuming infinite

conductivity of the liquid. However, it may lead to small error in the solution. For

the liquid droplet phase analysis Abramzon et al.[17] used effective conductivity

model. Expressions for the variation of properties of gases and liquids used in this

study are taken from Perry [18] and Reid [19]. Hubbard et al. [20] studied the

effect of transient and variable properties on drop evaporation rate, and showed

that the ‘1/3’ rule worked well as a mixing rule. In the present evaporation model

for laminar flow this rule is used for the calculation of the properties at droplet

surface based on average temperature and composition.

Physics of Turbulent flow is explained in detail in Pope[22] and Wilcox[23].

Taking into consideration of the density variation effect, mass-averaging of tur-

bulent quantities are required. It is explained in Todd[24]. Various existing ana-

lytical descriptions for predicting turbulent flows-laden with solid particles/liquid

droplets are reviewed in Mashayek[25]. Study of two-dimensional turbulent gas

flows with particle deposition by Eulerian-Two Fluid approach is explained in

Slater[26]. Complex turbulent interactions between phases are explained in Patrick[27].

Effect of turbulence on mass transfer from a single fuel droplet is dealt with in
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Al-Sood[28].

In the literature, there are many experimental studies dealing with droplet

evaporation. However, there are only few studies that come to the basic and

ideal case of a single droplet evaporation in a quiescent or convective environ-

ment. A large number of studies consider multi-component droplets in turbulent

evaporating sprays, jets with different classes of droplets where each class refers

to a group of droplets of same diameters having their own volume fraction, mass

flow rates. Some of droplet flow experimental results are given in Downing [29],

Ranz and Marshall [12], Chin and Lefebvre [30], Kolaitis [31] and Miller et al.

[32]. For the study of laminar gas-droplet flows in one of the cases we have as-

sumed the initial droplet temperature is the saturation temperature, to simplify

the analysis as discussed in Mongia et al.[33] and Elghobashi et al.[34].

1.4 Solution Methods

Models for two-phase flows can be categorized into two different groups. In the

first group, there are models that track the interface between the two phases.

These are ideal models for separated flows. In the second group, there are models

where the exact position of the interface is not followed specifically. Dispersed

flows are usually modeled using models from this second group. The complexity

of the interfaces between the two phases in dispersed flow is too high for interface

tracking methods to be suitable, at least with today’s computing capacity. To

model this type of flows, another strategy is needed. There are two generic

approaches for modeling gas-disperse phase flows: Eulerian-Eulerian approach

and the Eulerian-Lagrangian approach.

1.4.1 The Eulerian-Lagrangian Approach

In this approach, the general idea is to follow each particle or droplet of the flow as

they advect in the continuous phase. This approach is referred to as the Eulerian-

Lagrangian method, where the continuous phase is treated as a continuum and

calculated in an Eulerian reference frame, while particles (or interfaces) of the

disperse phase are tracked using a Lagrangian approach. In this approach the

inter-phase transfer terms are calculated for the disperse phase while tracking

the droplets or particles and then they are used in the Eulerian form of the
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equations of the continuous phase. The Eulerian-Lagrangian approach works

well for few particles/interfaces. However, for a large number of particles the

Eulerian-Lagrangian approach becomes computationally expensive.

1.4.2 The Eulerian-Eulerian Approach

A different way of modeling dispersed flows is to treat both the phases as a

continuum. This is generally referred to as Eulerian-Eulerian approach or two-

fluid model, first discussed by Ishii [1]. In this case local instantaneous equation

of mass, momentum and energy balance for both phases are derived along with

source terms for interaction between the phases. A very important concept in the

Eulerian-Eulerian approach is that of the volume fraction or volume concentration

which is defined in the section 1.5.

Depending on the way the phases interact the following modeling approaches

are used within the perview of the Eulerian-Eulerian method:

1. The Homogeneous Equilibrium Model

2. The Drift Flux Model

3. Two Fluid Model

In the homogeneous equilibrium model the flow is analyzed by treating the

flow as a mixture, whose properties are determined based on the properties of its

constituents as well as the proportion of the constituents in the mixture.

Drift flux model is similar to the homogeneous equilibrium model but it takes

into account for the slip between the phases, and so additional terms appear in

the equations. The drift flux model and the homogeneous models are sometimes

referred to as mixture models.

In the two fluid model both the phases have their own velocity and tempera-

ture field and other properties. The interaction between the two phases is taken

care of by including exchange coefficients. This is the method adopted in this

work1. The details of the same can be found in section 1.5. One drawback of this

approach is implementation of exchange coefficients.

1Although, it must be noted that the detailed flow field within droplets are not obtained.
Rather, the average momentum of droplets are computed.
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1.5 The Two Fluid Model

In the present work an Eulerian-Eulerian two fluid model is used to simulate

the flows. Both the phases are treated as inter-penetrating continua and mass,

momentum and energy equations are solved to obtain the velocity and temper-

ature fields for the phases. The volume fraction is also solved for by solving a

convection equation. Details of the governing equations are given in Chapter 2.

Each dependent variable at any special point is an instantaneous average value

over a neighbourhood of that point that includes both liquids and gas. Therefore

both liquid properties and gas properties exist at a point, regardless of whether

that point is actually in a gas or in a liquid at that instant. This method is a

two-continua approach since both a continuum of gas properties and a continuum

of liquid properties are defined.

Now we define some properties of the droplet-phase flows. The volume fraction

of a phase is defined as the ratio of the volume occupied by that phase to the

total volume under consideration. Mathematically we can write

ϑd = lim
∆V→0

∆Vd
∆V

Here ϑd denotes the volume fraction of the disperse phase, and ∆Vd is the volume

occupied by that phase in the neighbourhood of the point of interest, whereas

∆V is the total volume occupied by the two phases in the neighborhood of the

point. Defined in this way, ϑ becomes a function with a value at each point. In

the Eulerian-Eulerian framework ϑ is assumed to be a continuous variable and

often transport equations are solved for it. Equivalently, the volume fraction of

the continuous phase or void fraction is given as

ϑg = lim
∆V→0

∆Vg
∆V

Here ϑg denotes the volume fraction of the continuous phase, and ∆Vg is the

volume occupied by the continuous phase in the neighbourhood of the point of

interest. So the summation of the volume fractions must be unity, ϑg + ϑd = 1.

Note that for dilute two-phase flows ϑg ≈ 1. Another important parameter,

number density is defined as the number of particles or droplets per unit volume,

we can write it as

n = lim
∆V→0

∆N

∆V
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also,

n =
6ϑd

πdd
3 (1.1)

where n denotes the number density of the disperse phase, and ∆N is the number

of elements in the volume and dd is diameter of the droplets (which are assumed

to be of the same size).

1.6 Objectives of the Present Work

1. To develop a module in OpenFOAM to solve dilute laminar gas-droplet

flows with evaporation using an Eulerian-Eulerian framework.

2. To validate the solver by comparing the results with those obtained using

another solver IITK-DAE Anupravaha, which was validated against com-

mercial package Fluent.

3. To propose a model for dilute turbulent gas-droplet flows with evaporation

along with the solution algorithm.

1.7 Thesis Organization

The thesis is organized in the following way. Chapter 2 deals with the assump-

tions, governing equations and boundary conditions. Chapter 3 includes the

discretization procedure and the solution algorithm. Chapter 4 deals with the

results obtained using the OpenFOAM solver, and comparisons with IITK-DAE

Anupravaha and Fluent, Chapter 5 presents the proposal for dilute turbulent

gas-droplet flows with evaporation, which is followed by discussions.



Chapter 2

Governing Equations and
Assumptions

An Eulerian two-fluid model is employed in the present study. It considers the gas

and the droplet phases as two interpenetrating continua. This chapter presents

the laminar flow model that was developed by Mrunalini in [4] and other previous

M.Tech students of Prof.Vinayak Eswaran. The derivations of the equations

prescribed in this chapter are given in Mrunalini [4]. A two-way coupling between

the two phases is achieved by including the mass, momentum and energy transfer

terms between the phases in the governing equations for both the phases. It is

derived based on the following assumptions:

2.1 Assumptions

1. The spray is assumed to be dilute (ϑd < 0.1%) . Under this assump-

tion droplet collisions are ignored and the effect of adjacent drops on drop

transport rates are neglected. Also viscous stresses, and temperature and

pressure variation within the dispersed phase are neglected.

2. At each location of the flow field, droplet-phase and gas -phase co-exist and

inter-penetrate with each other, each having its own velocity and tempera-

ture.

3. The flow around the droplet is assumed to be quasisteady, that means the

flow immediately adjusts to the local boundary conditions. This allows the

use of drag coefficient formulations to represent the interphase forces on the

droplets.
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4. The droplets are assumed to be spherical and mono-sized.

5. The radial velocity of the liquid surface due to the evaporation of the liquid

is neglected.

6. Effects of drag and forced convection are represented by empirical relations.

7. It is assumed that the only significant interphase force is due to drag. This

is true for large droplet-to-gas density ratios (ρd/ρg) > 600.

8. During the evaporation process, droplets do not break-up and chemical

reaction is also neglected.

9. The gas phase Lewis number is assumed to be unity.

2.2 The Governing Equations

2.2.1 The Gas-Phase

The governing equations for the gas phase are the Navier Stokes equations, energy

equation and mass fraction equation with extra source terms that reflects the

contribution of the droplet phase on the gas phase. In Cartesian coordinates the

equations are as below.

Continuity:

∂ ϑgρg
∂ t

+∇ · (ϑgρg ug) = n ṁv (2.1)

Momentum:

∂ (ϑgρg ug)

∂ t
+∇ · (ϑgρg ug ug) = ∇ · (µgϑg∇ug)− ϑg∇P + ϑgρg g + n ṁvud

−ϑd fd
(2.2)

Energy:

∂ (ϑgρg Cpg Tg)

∂ t
+∇ · (ϑgρgCpg Tg ug) = ∇ · (ϑgkg∇Tg) + n ṁv Cvd Td

−nQ
(2.3)

Species Mass Fraction: As evaporation from the droplets is also considered,

it is assumed that the evaporated vapour is of a different species (say, fuel) than

the ambient gas. Therefore, an equation for the species YF is also solved:

∂ (ϑgρg YF )

∂ t
+∇ · (ϑgρg YF ug) = ∇ · (ϑgρgD∇YF ) + n ṁv (2.4)
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where ϑg is gaseous phase volume fraction, ρg is the density of the gas phase, ug

and Tg are velocities and temperature of the gas phase respectively. YF is the

evaporated fuel mass fraction, µ is viscosity, Cpg is the specific heat at constant

pressure, kg is thermal conductivity of the gas phase, g is acceleration due to

gravity. ṁv is the evaporation rate for a single droplet, n is the number density,

Cvd is the specific heat of the vapour phase of the liquid in the droplet, Td is

droplet temperature, D is the diffusion coefficient of fuel vapour in gas and Q is

heat transfer from the gas to a single drop, fd the drag force acting on the droplet

per unit volume. This is described in next section, 2.2.2.

2.2.2 The Droplet Phase

The governing equations for the droplet phase are:

Continuity:

∂ (ρd ϑd)

∂ t
+∇ · (ρd ϑd ud) = −nṁv (2.5)

Momentum:

∂ ρd ϑd ud
∂ t

+∇ · (ρd ϑd ud ud) = −ϑd∇P + ϑd ρd g− n ṁv ud + ϑd fd (2.6)

where ϑd is the volume fraction, ρd is the material density of the droplet phase

and ud is local velocity of the droplets. The term (ϑd fd) in equations 2.2 and

2.6 is the drag force acting on the droplet phase per unit volume and is given by

(Kolev [45]):

fd = ρg
1(

4
3
π {dd

2
}3
) 1

2
Cd |ug − ud| (ug − ud)

(π
4
d2
d

)
= β (ug − ud)

where, dd is the diameter of the droplets and Cd is the drag coefficient which

is given by (Kolev [45]):

Cd =


24
Red

if Red ≤ 1
24
Red

(1 + 0.15Red
0.687) if 1 ≤ Red ≤ 1000

0.44 otherwise

Here Red is the droplet Reynolds number, defined as (Miller et al. [32])

Red =
ρg |ug − ud| dd

µg
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Energy:

∂ [ρd ϑdCld Td]

∂ t
+∇ · (ρd ϑdCld Td ud) = −n ṁv Cld Td − n ṁv L+ nQ (2.7)

where Td is droplet temperature and L is the latent heat of vaporization of

the liquid droplet at the droplet temperature.

2.3 Solution form of the governing equations

2.3.1 The Gas Phase

The continuity equation for the gas phase (equation 2.1) may be written as:

Since ϑg = 1− ϑd ' 1, we take it out of the derivatives.

∂ρg
∂t

+∇ · (ρgug) =
1

ϑg
n ṁv (2.8)

or

∂ρg
∂t

+ ug · ∇ρg + ρg∇ · ug =
1

ϑg
n ṁv (2.9)

or,

Dρg
Dt

+ ρg∇ · ug =
1

ϑg
n ṁv (2.10)

The right side terms of the above equations signifies the mass transfer between

the phases due to the evaporation of droplets. This emphasizes the fact that we

must enforce continuity at each timestep by solving this equation for density.

Using the above equations, the momentum, energy and species mass fraction

equations for the gas phase (equation 2.2 , 2.3 and 2.4) can be re-written as,

Momentum:

∂ ug
∂ t

+∇ · (ug ug) =
1

ρg
[∇ · (µg∇ug) ]− 1

ρg
∇P + g − 1

ϑgρg
[n ṁv ug ]

+
1

ϑgρg
[n ṁv ud ]− ϑd

ϑgρg
fd

+ug [∇ · ug ]

(2.11)
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Energy:

∂ (Cpg Tg)

∂ t
+∇ · (Cpg Tg ug) =

1

ρg
[∇ · (kg∇Tg) ] +

1

ϑgρg
[n ṁv Cvd (Td − Tg)]

− nQ

ϑgρg
+ Cpg Tg [∇ · ug ]

(2.12)

where, it may be noted, the gas density ρg has been taken out of the partial

differentials.

Species Mass Fraction:

∂ YF
∂ t

+∇ · (YF ug) =
1

ρg
[∇ · (ρgD∇YF ) ] +

n ṁv

ϑgρg
(1− YF ) + YF [∇ · ug ](2.13)

In the above equations gas phase specific heat Cpg and thermal conductivity

kg are computed by mixing laws as a mass fraction average of pure species specific

heat and thermal conductivity as follows,

Cpg = YF Cvd + (1− YF )Cpc and kg = YF kvd + (1− YF ) kc (2.14)

where Cpc and kc are the specific heat and thermal conductivity for pure

gas respectively, while subscript ‘vd’ stands for the vapour evaporated from the

droplets.

2.3.2 The Droplet Phase

The continuity equation for the droplet phase is written as,

∂ (ρdϑd)

∂ t
+∇ · (ρd ϑd ud) = −nṁv (2.15)

or

∂(ρdϑd)

∂t
+ ud · ∇(ρdϑd) + (ρdϑd)∇ · ud = −n ṁv (2.16)

or,

D (ρdϑd)

Dt
+ (ρdϑd)∇ · ud = −n ṁv (2.17)
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Dϑd
Dt

+ ϑd∇ · ud = −n ṁv

ρd
(2.18)

For dilute two-phase flows, ϑd < 0.1%. Hence, for computational ease, we

normalize the volume fraction equation by considering the initial volume fraction

as ϑ0 and define the normalized volume fraction of the dispersed phase as Θd .

Θd =
ϑd
ϑ0

(2.19)

DΘdϑ0

Dt
+ Θdϑ0∇ · ud = −n ṁv

ρd
(2.20)

Taking ϑ0 to RHS, we get

DΘd

Dt
+ Θd∇ · ud = −n ṁv

ρdϑ0

(2.21)

Momentum: The momentum equation can be simplified as,

∂ ud
∂ t

+∇ · (ud ud) = − 1

ρd
∇P + g +

1

ρd
fd + ud [∇ · ud ] (2.22)

Energy:

∂ Cld Td
∂ t

+∇ · (Cld Tdud) = −nṁvL

ρdϑd
+
nQ

ρdϑd
+ Cld Td [∇ · ud] (2.23)

2.4 The Boundary Conditions

2.4.1 At Solid Boundaries

At solid boundaries a no-slip condition is specified for the gas phase. Hence at

the solid boundaries,

ug = 0, vg = 0, wg = 0.

For the pressure it is usual to specify a homogeneous Neumann boundary condi-

tion, that is

∂P

∂n
= 0

where n is the coordinate normal to the wall.
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For the droplet phase a free-slip boundary condition is assumed at the wall.

Hence we have

ud,n = 0

∂ud,t
∂n

= 0

where n, t is the wall normal and tangential component of velocity, respectively.

For volume fraction, fuel mass fraction and droplet temperature a homogeneous

Neumann boundary condition is specified at the walls.

∂φ

∂n
= 0

where φ is ϑd, YF and Td.

2.4.2 Inlet

At the inlet, all variables other than pressure are specified.

φ = φin

where φ is any variable except pressure. The boundary condition for pressure is

once again assumed to be of homogeneous Neumann type,

∂P

∂n
= 0

2.4.3 Outlet

At the outlet a homogeneous Neumann condition is assumed for all flow variables

except pressure.

∂φ

∂n
= 0

where φ is any variable except pressure. For pressure any value may be specified,

because it is only the pressure gradient that is important, and not the abso-

lute pressure. It is convenient to specify a homogeneous Dirichlet condition for

pressure at the outlet.

P = 0
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2.5 Evaporation Model for Single Component

Droplets

2.5.1 Classical D2-Law

The classical D2-law was formulated in the 1950s by Godsave [9] and Spalding

[10]. It was derived for an isolated, pure-component droplet burning in a quies-

cent, oxidizing environment. It has since then been termed the D2-law, because

it predicts that the square of the droplet diameter decreases linearly with time.

The model can be used both for the combustion and for the evaporation of a

droplet.

A sketch of the droplet evaporation process is provided in Fig. 2.1, for the

hypothetical case where a pure fuel drop is suddenly introduced into a gas at

elevated temperature. At typical injection temperatures, the fuel concentration

at liquid surface is low, and there is little mass diffusion from the drop early

in the process. Under these conditions, the droplet heats up, much like a cold

body placed in a heated environment. In general, temperatures are not uniform

within the droplet but is lower at the center of the drop, with the maximum liquid

temperature at the surface.

Temperature

Later

Early

Early

Later

YF

T0

Y0

YA

Figure 2.1: Variation of temperature and gas concentration during droplet evap-
oration (Faeth) [13].

Initially, almost all of the heat supplied to the drop serves to raise its tem-
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perature. As the liquid temperature rises, the fuel vapour formed at the liquid

surface has two effects i.e., an increasing portion of the energy reaching the drop

surface must supply the heat of vaporization of the evaporating fuel, and the

outward flow of the fuel vapour reduces the heat transfer to the droplet. This

slows the rate of increase of the liquid surface temperature and therefore, later in

the process, the temperature becomes relatively uniform in the droplet. Eventu-

ally, a stage is reached where all the heat reaching the surface is utilized for the

heat of vaporization and the droplet stabilizes at a temperature called the “wet

bulb temperature”. The droplet attains its steady-state and the drop diameter

diminishes with time according to the relationship ([10],[9])

d2
0 − d2 = λstt (2.24)

Burning rate curves are shown in Fig. 2.2 for n-Heptane which for the studied

case has λst = 0.30 mm2/s.
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Figure 2.2: Burning rate curves for n-Heptane
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2.5.2 Mathematical Formulations

Evaporation process involves both heat and mass transfer. Rate of mass transfer

from droplets to gas and rate of heat transfer from gas to droplets are required

to analyse the evaporation rate of the droplets. Two parameters, mass transfer

number (BM) and heat transfer number (BT ) are used to measure mass and heat

transfer rates.

Mass transfer number

An expression for the rate of evaporation of a fuel drop is derived as follows.

Neglecting thermal diffusion and assuming that the driving force for species diffu-

sion is a concentration gradient in the direction of the diffusion path, the following

expression is obtained for an evaporating drop [14]:

dYF
dr

= − RT

Dc P
(mFYA) (2.25)

YF = fuel mass fraction

YA = air mass fraction

mF = mass rate of diffusion per unit area

Dc = diffusion coefficient

P = gas pressure

r = radius (r = 0 at center of drop and r = rs at drop surface)

The boundary conditions are

r = rs; T = Ts; YF = YFS

r =∞; T = T∞; YF = YF∞ = 0

Integrating Eqn. 2.25 between r = rs and r =∞ gives

ṁv = 2πddρDc ln(1− YFS
) (2.26)

Assuming the Lewis number (Le ≡ α
D

) is equal to unity, the quantity ρDc can be

replaced by (kgref/Cpgref ), where kgref and Cpgref are the mean thermal conduc-

tivity and specific heat,respectively.
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Defining

BM =
YFs − YF∞

(1− YFS
)

(2.27)

Now substituting BM in Eq. 2.26 gives [14]

ṁv = 2πdd

(
k

Cp

)
gref

ln(1 +BM) (2.28)

This is the basic equation for the evaporation rate of a fuel drop of diameter

dd. Its accuracy is very much dependent on the choice of the values of kgref and

Cpgref . The reference temperature and composition for the evaluation of the av-

erage properties will be discussed later in this chapter.

Heat transfer number

Similar to the above analysis but based on the convective and conductive heat

fluxes across a thin shell surrounding the evaporating drop, lead to the following

expression for heat transfer number [10]:

BT =
Cpgref (T∞ − Ts)

L
(2.29)

where L is the latent heat of vaporization of fuel at droplet surface temperature

Ts.

The number BT denotes the ratio of the available enthalpy in the surrounding

gas to the heat required to evaporate the fuel. In this case the rate of evaporation

for Lewis number of unity is obtained as

ṁv = 2πdd

(
k

Cp

)
gref

ln(1 +BT ) (2.30)

Under the steady-state condition BM = BT and either Eq. 2.28 or Eq. 2.30

may be used to calculate the rate of evaporation. The advantage of Eq. 2.28 is

that it applies under all conditions, including the transient state of droplet heat-

up, whereas Eq. 2.30 can only be used for steady-state evaporation. However,

Eq.2.30 is usually easier to evaluate, since the magnitudes of various terms are

either contained in the data of the problem or readily available in the literature.

This is particularly true when the ambient gas temperature is significantly higher

than the fuel surface temperature Ts, then Ts can be replaced by the boiling

temperature of the fuel with little loss in accuracy.
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2.5.3 Calculation of Rate of Evaporation

The fuel vapour mass fraction at the droplet surface is calculated by taking the

partial pressure weighted average of molecular weights,

YFS
=

[
1 +

(
P

PFS

− 1

)
MA

MF

]−1

(2.31)

In any given calculation, P , MA, MF , and T∞ are known. All other terms are

functions of TS. A modified form of Clausius-Clapeyron equation for saturation

pressure [14] gives us

PFS
= exp

(
a− b

Ts − 43

)
kPa (2.32)

Eqns. 2.31 and 2.32 form a set of equations for the two unknowns YFS
and

TS. Having obtained these values, mass evaporation rate for the drop can be

calculated from equation 2.28 or 2.30.

2.6 Unsteady-State Analysis

Fig. 2.2 shows a straight line relationship between droplet diameter squared and

time during most of the evaporation period. However, inspection reveals that in

the first stage of evaporation, slope of dd
2/t line is not constant; actually at the

start it is almost zero and then it gradually increases with time until the droplet

attains its wet-bulb temperature, after which slope remains constant throughout

its lifetime.

For the purpose of analysis the vaporization process is divided into the tran-

sient or unsteady state and the steady state. The magnitude of the unsteady

portion depends on many parameters such as properties of fuel, ambient pressure

and temperature and initial temperature of the drop.

2.6.1 Calculation of heat flow rate and latent heat

A quasi-steady gas phase is assumed in which the boundary layer around the drop

has the same characteristics as a steady boundary layer for the same conditions

of drop size, velocity, surface temperature and ambient temperature. The heat

transfer coefficient is given by [14]
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Nu =
h dd
kgref

= 2
ln(1 +BM)

BM

(2.33)

The heat transferred from the gas to the drop is

Q = π dd
2 h (T∞ − Ts) (2.34)

or

Q = 2π dd kgref (T∞ − Ts)
ln(1 +BM)

BM

(2.35)

Now the heat used in vaporization of the fuel is

Qe = ṁv L = 2π dd (k/Cp)gref L ln(1 +BM) (2.36)

So the heat available for the heating up the drop is obtained by the differencence

between Q and Qe. Then we have

Q−Qe = 2π dd kgref ln(1 +BT )

(
T∞ − Ts
BM

− L

Cpgref

)
(2.37)

or

Q−Qe = ṁv L

(
BT

BM

− 1

)
(2.38)

It should be noted in Eq. 2.38 that when BT = BM the value of Q−Qe becomes

zero, denoting the end of the heat-up period.

2.7 Liquid Phase Analysis

Transport processes within the drop are treated in different ways by different

models such as the thin skin model, uniform temperature model, uniform state

model. In this study we will use the uniform temperature model also known as

‘rapid mixing limit’ or ‘infinite conductivity model’ which postulates infinite ther-

mal diffusivity and assumes that the temperature within the droplet is spatially

uniform although time varying. We also assume that the species concentration is

uniform within the drop.
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2.8 Convective effects on evaporation

For drop evaporation under quiescent conditions, the principal mode of heat

transfer is conduction. But if relative motion exists between the droplet and the

surrounding gas or air, the rate of evaporation is enhanced. The gas-phase convec-

tive environment has a considerable impact on the droplet evaporation process,

as both the heat and the mass transfer process between the phases are enhanced

by relative motion between them. In order to consider these phenomena, mass

flux and energy transfer rates are corrected by implementing the semi-empirical

correlations for the calculation of both mass and heat transfer numbers in the case

of forced convection. One of the first reliable correlations was given by Frossling

[11]. He showed that the effect of convection on heat and mass transfer rates

could be accommodatedd by a correction factor that is a function of Reynolds

number and Schmidts or Prandtl number.

The original correction factor has been later modified by Ranz and Marshall

[12] to

1 + 0.3Re0.5
d Pr0.33

g (2.39)

Combining equations 2.28 and 2.39 yields the following equation for the rate

of fuel evaporation under convective environment:

ṁv = 2πdd

(
k

Cp

)
gref

ln(1 +BM) (1 + 0.3Re0.5
d Pr0.33

g ) (2.40)

This equation gives the instantaneous rate of evaporation for a drop of diameter

dd. As described earlier heat transfer rates between the phases are also enhanced

under convective environment. So the expression for rate of heat transferred from

the gas to the drop Q (Eqn. 2.35) and the heat used in vaporization of the fuel

Qe (Eqn. 2.36) can also be modified using the correction factor as follows,

Q = 2π dd kgref (T∞ − Ts)
ln(1 +BM)

BM

(1 + 0.3Re0.5
d Pr0.33

g ) (2.41)

and

Qe = ṁv L = 2π dd

(
k

Cp

)
gref

L ln(1 +BM) (1 + 0.3Re0.5
d Pr0.33

g ) (2.42)

In the above expressions Red is the droplet Reynolds number. The definition of

droplet Reynolds number is based on the relative velocity between the droplet and
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the surrounding gas, on the free stream density and the average gas film viscosity.

Eqns 2.40 through 2.42 are appropriate when heat transfer is the controlling

process in evaporation. If however, mass transfer is the controlling mechanism

we replace Prg by Schmidt number Scg in these equations.

2.9 Property Evaluation

In addition to the aforementioned assumptions, the classical D2-law also includes

the assumption that the Lewis number within the gas phase is unity. The def-

inition of the Lewis number, Le ≡ α/Dc, it can be seen that α = Dc for the

present case, where α = k/(ρCp) is the thermal diffusivity. This implies that

the rate of heat and mass transfer are of the same magnitude. This assumption

provide simplificationn and as a consequence, the number of properties which has

to be evaluated in order to solve the problem is reduced. This is true only for the

steady-state analysis. The properties such as density and thermal conductivity

of the evaporated liquid has to be evaluated at some mean film temperature and

composition. In the literature several schemes have been proposed but many au-

thors found that the scheme which they called the ‘1/3 rule’ worked best. The rule

used the following reference states for temperature and composition, designated

with the subscript r:

Tr = TS +
T∞ − TS

3
(2.43)

YFr = YFS
+
YF∞ − YFS

3
(2.44)

where YF is mass fraction of the fuel vapour. Subscripts s and ∞ refer to the

surface and ambient conditions. If the fuel concentration at an infinite distance

from the droplet is assumed to be zero, equation 2.44 becomes

YFr =
2

3
YFS

(2.45)

and

YAr = 1− YFr = 1− 2

3
YFS

(2.46)

where YAr is the reference mass fraction of air.
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The above equations are used in this study to calculate the reference values

of the physical properties of the vapour-gas mixture that constitutes the environ-

ment of the evaporating drop. This means that the reference state is closer to

the droplet surface than the mean film value. For example, the reference specific

heat and thermal conductivity isobtainedd as,

Cpgref = YAr (CpA at Tr) + YFr (Cpv at Tr) (2.47)

kgref = YAr (kA at Tr) + YFr (kv at Tr) (2.48)



Chapter 3

Discretization Procedure and
Solution Algorithm

3.1 Description of the Finite Volume Method

The Finite Volume method for solving the incompressible Navier Stokes equa-

tions has become very popular in recent years because of the following advantages

1. It is easy to implement on non-orthogonal curvilinear grids.

2. The solution can be obtained in the actual physical domain without trans-

forming the governing equations.

3. It is easy to implement the boundary conditions.

When the primitive variable (e.g.velocity and pressure) approach is used, spe-

cial treatment for pressure is required in the solution algorithm because the pres-

sure does not have its own governing equation for incompressible flow. The con-

tinuity equation, having no explicit link to the pressure, is just an additional con-

straint on the velocity field that must be satisfied together with the momentum

equations. The appropriate manipulation of this constraint leads to an equation

for the pressure.

In the present study, the Navier Stokes and Energy equations have been solved

using the finite volume method. We have used non-staggered (collocated) grid

arrangement, where the dependent variables are calculated at the centroid of the

finite volume cells. But this arrangement can produce non-physical oscillations
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in the pressure field, the so-called checker-board pressure distribution. When

central differencing is used to represent both the pressure gradient term in the

momentum equations and the cell-face velocity in the continuity equation, it

then happens that the velocities depend on pressure at alternate nodes and not

on adjacent ones and the pressure too depends on velocities at alternate nodes.

This behavior is called velocity-pressure decoupling, Patankar [50].

To avoid this decoupling, the momentum interpolation method, first proposed

by Rhie and Chow [52] has been used. In this approach, the cell-face velocity

in the continuity equations are evaluated by linearly interpolating the so-called

“mass” velocities computed without the pressure terms in the discretized equa-

tions while directly evaluating the pressure gradient using values at the adjacent

cell centers. This results in a strong velocity-pressure coupling. The pressure

gradient terms, appearing in the momentum equations, are still represented by

central difference approximation.

3.2 Integral Form of Governing Equations

The three-dimensional Navier-Stokes equations can be expressed in the following

general convection-diffusion-source integral form:

∂

∂t

∫
V

ρdV +

∫
S

ρu · dS = 0 (3.1)

∂

∂t

∫
V

ρφdV +

∫
S

[ρuφ− Γφ∇φ] · dS =

∫
V

SφdV (3.2)

where ρ represents the fluid density, u is the fluid velocity, Γφ is the diffusion

coefficient for the quantity φ (viscosity in case of momentum equations), φ stands

for any vector component or scalar quantity, Sφ is the volumetric source term.

If φ is other than velocity i.e temperature, scalar etc. then density (ρ) should be

replaced by (ρCp)φ.

In this formulation we work with Cartesian components of velocity. So φ

can be the three Cartesian component of velocity u, v, w as well as any scalar e.g.,

temperature, species concentration, which needs to be determined.
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3.3 FVM for 3-D Geometry

We will now discuss the finite volume method applied to a general 3-D geometry.

The entire solution domain is initially divided into zones and then zones are sub-

divided into a number of finite volumes defined by the coordinates of their eight

vertices.We have used the collocated grid arrangement where all the dependent

variables are defined at the centroid of the cell. The calculation of surface vec-

tors for each of the face of the finite volume and also its volume is explained in

detail by Narasimha [49] and [40]. These computations are done in the manner

suggested by Kordulla and Vinokur [46].

3.4 Discretization Procedure

The discretization of the transport equations is performed using the finite volume

approach. All the transport equation can be represented in the following general

form,

∂

∂t

∫
V

ρφdV +

∫
S

[ρuφ− Γφ∇φ] · dS =

∫
V

SφdV (3.3)

which consists of the rate of change of φ, convection diffusion fluxes and the

source term. The rate of change and source terms are integrated over the cell

volume, whereas the convection and diffusion terms is summed through the CV

faces.

3.4.1 Discretization of the General Convection-Diffusion
Equation

(a) Rate of change: In the discretization of the unsteady term it has been

assumed that the value of the dependent variable at the centroid is the average

over the entire control volume. Thus

∂

∂t

∫
V

ρφdV ≈ (ρφV )n+1
P − (ρφV )nP

∆t
≈ VP

(ρφ)n+1
P − (ρφ)nP

∆t
(3.4)

where VP is the volume of the cell.
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(b) Convection fluxes: The approximation of the surface integral over con-

vection flux of variable φ has been done in the following way,∫
S

ρuφ · dS ≈
∑
j

ρjφj(u · S)j =
∑

Fjφj (3.5)

where φj is the value of φ at the center of the face j.

The value of the φj can be evaluated using either upwind scheme or central

difference scheme.

The upwind scheme is based on the assumption that the convected cell face

value is equal to that at the upstream cell along the same coordinate direction.

Thus, the value φe at the east face is assigned the value φP if ue ≥ 0, i.e., the

flux Fe is positive, and the value φE if ue < 0, i.e., the flux Fe is negative. This

can be conveniently summarized as

Feφe = φP [|Fe, 0|]− φE[| − Fe, 0|] (3.6)

Here [|p, q|] denotes the maximum of p and q. Similar expression can be written

for the rest of the faces. While using central difference scheme, the value of φj is

determined as,

Feφe = Fe

(
eE

PE
φP + (1− eE

PE
)φE

)
(3.7)

where, eE is the distance between face and cell center E and PE is the distance

between cell centers.

(c) Diffusion fluxes: The surface integral over diffusion flux of variable φ can

be approximated as∫
S

Γφ∇φ · dS ≈
∑

j=e,w,n,s,t,b

(Γφ∇φ · S)j =
∑
j

−F d
j (3.8)

For east face we can write,

F d
e = −Γφ(α1

φE − φP
∆x1

+ α2
φse − φne

∆x2
+ α3

φte − φbe
∆x3

) (3.9)

Calculation of α1, α2, α3, the edge center values appearing in cross derivative

diffusion flux, special treatment of diffusion fluxes of corner cells and computa-

tion of spatial derivatives at cell-center of a non-orthogonal grid is elaborated in

Narasimha [49].
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(d) Source: The source term is integrated over the cell volume as follows:∫
V

SφdV ≈ (Sφ)pVP (3.10)

In the momentum equations, the pressure term is a source term, while in species

transport equations chemical reaction could be a source term.

(e) Pressure Term: Its discretization is same as that of the ordinary diffusion

flux and is given by

−
∫
VP

∇pnidV ≈ −(∇p · ni)PVP (3.11)

where ni is the unit vector in the direction of the velocity component, ui. However,

the Gauss divergence theorem can be used to convert the volume integral to a

surface integral which can be discretized as

−
∫
S

pnidS ≈ −
∑
j

pjSij (3.12)

pj is the pressure at the jth face center and Sij is the ith direction component of

the surface vector for face j.

3.5 The Discretized Equations

3.5.1 The Gas Phase

The discretized equations for the gas phase are

Continuity:

∆Vp
ρg
n+1 − ρng

∆ t
+
∑
f

ρn+1
gf F n+1

gf =
1

ϑg
∆VpA

n
(3.13)

Momentum:

∆Vp
un+1
g − ung

∆ t
+
∑
f

umgf F
m
gf +

1

ρng

∑
f

F n+1
duf =

−1

ρng

∑
f

P n+1
f Sfx −

∆Vp
ϑngρ

n
g

An un+1
g

+
∆Vp
ϑngρ

n
g

(An und − ϑndfndx) + ∆Vp gx + ung
∑
f

Fm
gf

(3.14)
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∆Vp
vn+1
g − vng

∆ t
+
∑
f

vmgf F
m
gf +

1

ρng

∑
f

F n+1
dvf =

−1

ρng

∑
f

P n+1
f Sfy −

∆Vp
ϑngρ

n
g

An vn+1
g

+
∆Vp
ϑngρ

n
g

(
An vnd − ϑndfndy

)
+ ∆Vp gy + vng

∑
f

Fm
gf

(3.15)

∆Vp
wn+1
g − wng

∆ t
+
∑
f

wmgf F
m
gf +

1

ρng

∑
f

F n+1
dwf =

−1

ρng

∑
f

P n+1
f Sfz −

∆Vp
ϑngρ

n
g

Anwn+1
g

+
∆Vp
ϑngρ

n
g

(Anwnd − ϑndfndz) + ∆Vp gz + wng
∑
f

Fm
gf

(3.16)

Energy:

∆VpCpg
T n+1
g − T ng

∆ t
+
∑
f

Cpgf T
n+1
gf F n+1

gf +
1

ρn+1
g

∑
f

F n+1
dTf = − ∆Vp

ϑn+1
g ρn+1

g

AnCvd T
n+1
g

+
∆Vp

ϑn+1
g ρn+1

g

AnCvd T
n+1
d − ∆Vp

ϑn+1
g ρn+1

g

nnQn + Cpg T
n
g

∑
f

F n+1
gf

(3.17)

Fuel Mass Fraction:

∆Vp
Y n+1
F − Y n

F

∆ t
+
∑
f

Y n+1
F F n+1

gf +
1

ρn+1
g

∑
f

F n+1
dY f = − ∆Vp

ϑn+1
g ρn+1

g

An Y n+1
F

+
∆Vp

ϑn+1
g ρn+1

g

An + Y n
F

∑
f

F n+1
gf

(3.18)

In the equations 3.14 through 3.16, m = n+ 1 for a fully implicit method and

m = n for a semi-implicit method. In the above equations, ∆Vp is the volume of

the Finite Volume cell, ug, vg, wg are the components of the gas phase velocity,

ud, vd, wd are the components of the droplet phase velocity, gx, gy, gz are the

components of acceleration due to gravity in X,Y, and Z directions respectively,

An = nnṁn
v and

Fgf = ugf · Sf

is the volume flux for the fluid phase, where

Fdφf = −µ∇φgf · Sf ; FdTf = −kgf∇Tgf · Sf
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and

FdY f = −(ρgD)∇YF · Sf

are the diffusion flux for the fluid (φ = u, v, w), diffsion flux for temperature and

mass fraction respectively. Note that in the energy equation the value of Cpg is

lagged by one time step.

3.5.2 The Droplet Phase

The discretized equations for the droplet phase are

Continuity:

∆Vp
Θn+1
d −Θn

d

∆ t
+
∑
f

Θn+1
df F n+1

df = −∆Vp
ρdϑ0

An (3.19)

Momentum:

∆Vp
un+1
d − und

∆ t
+
∑
f

umdf F
m
df =

−1

ρnd

∑
f

P n+1
f Sfx + ∆Vp gx

+
∆Vp
ρnd

fndx + und
∑
f

Fm
df

(3.20)

∆Vp
vn+1
d − vnd

∆ t
+
∑
f

vmdf F
m
df =

−1

ρnd

∑
f

P n+1
f Sfy + ∆Vp gy

+
∆Vp
ρnd

fndy + vnd
∑
f

Fm
df

(3.21)

∆Vp
wn+1
d − wnd

∆ t
+
∑
f

wmdf F
m
df =

−1

ρnd

∑
f

P n+1
f Sfz + ∆Vp gz

+
∆Vp
ρnd

fndz + wnd
∑
f

Fm
df

(3.22)

where m = n + 1 for a fully implicit method and m = n for a semi-implicit

method.

Fdf = udf · Sf
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Here, Fdf is the convective flux for the droplet phase.

Energy:

∆VpCld
T n+1
d − T nd

∆ t
+ Cld

∑
f

T n+1
df F n+1

df =
∆Vp

ρd ϑ
n+1
d

(nnQn − AnL)

+Cld T
n
d

∑
f

F n+1
df

(3.23)

3.6 The Solution Algorithm

We use a time-accurate time stepping method to solve the equations. The total

evaporation rate is represented by the parameter A and is given by

An = nnṁn
v (3.24)

Where ṁv is the rate of evaporation for a single droplet and has to be found

from the evaporation model as described earlier.The number density of droplets,

n is found for each cell by using the previous time step values of ϑd and dd as

nn =
6ϑd

n

πdd
3 (3.25)

The diameter of the droplets are updated by using the previous time step nor-

malized volume fraction values as follows,

dd = d0(Θn
d)1/3 (3.26)

We then calculate the source term due to drag by calculating Cd and β for each

cell and storing the final drag value fnd .

We use a fully implicit scheme for solving the momentum equations for the

gas phase. Hence the discretized momentum equations become

∆Vp
un+1
g − ung

∆ t
+
∑
f

un+1
gf F n+1

gf +
1

ρng

∑
f

F n+1
duf =

−1

ρng

∑
f

P n+1
f Sfx −

∆Vp
ϑngρ

n
g

An un+1
g

+Cv
∆Vp
ϑngρ

n
g

(An und − ϑndfndx) + ∆Vp gx + ung
∑
f

F n+1
gf

(3.27)
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∆Vp
vn+1
g − vng

∆ t
+
∑
f

vn+1
gf F n+1

gf +
1

ρng

∑
f

F n+1
dvf =

−1

ρng

∑
f

P n+1
f Sfy −

∆Vp
ϑngρ

n
g

An vn+1
g

+Cv
∆Vp
ϑngρ

n
g

(
An vnd − ϑndfndy

)
+ ∆Vp gy + vng

∑
f

F n+1
gf

(3.28)

∆Vp
wn+1
g − wng

∆ t
+
∑
f

wn+1
gf F n+1

gf +
1

ρng

∑
f

F n+1
dwf =

−1

ρng

∑
f

P n+1
f Sfz −

∆Vp
ϑngρ

n
g

Anwn+1
g

+Cv
∆Vp
ϑngρ

n
g

(Anwnd − ϑndfndz) + ∆Vp gz + wng
∑
f

F n+1
gf

(3.29)

We follow a two-step procedure to obtain the gas phase velocity components.

The first step has two major loops - an inner loop (*) and an outer loop (**). In

the inner loop, we first ignore the pressure completely and solve the Eqns.(3.27)

through (3.29) for the so-called mass velocities u∗g, v
∗
g and w∗g . The equations for

mass velocity are

∆Vp
u∗g − ung

∆ t
+
∑
f

u∗gfF
∗∗
gf +

1

ρng

∑
f

F ∗duf = −∆Vp
ϑngρ

n
g

An u∗g

+Cv
∆Vp
ϑngρ

n
g

(An und − ϑnd fndx) + ∆Vp gx + ung
∑
f

F ∗∗gf

(3.30)

∆Vp
v∗g − vng

∆ t
+
∑
f

v∗gfF
∗∗
gf +

1

ρng

∑
f

F ∗dvf = −∆Vp
ϑngρ

n
g

An v∗g

+Cv
∆Vp
ϑngρ

n
g

(
An vnd − ϑnd fndy

)
+ ∆Vp gx + ung

∑
f

F ∗∗gf

(3.31)

∆Vp
w∗g − wng

∆ t
+
∑
f

w∗gfF
∗∗
gf +

1

ρng

∑
f

F ∗dwf = −∆Vp
ϑngρ

n
g

Anw∗g

+Cv
∆Vp
ϑngρ

n
g

(Anwnd − ϑndfndz) + ∆Vp gx + ung
∑
f

F ∗∗gf

(3.32)

Eqns.(3.30) through (3.32) are iterated to convergence within the inner loop.

We use a superscript * for the diffusion term because the diffusion terms are

calculated in terms of the mass velocities as they are being iterated in the inner
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loop. The superscript ** used in the convective flux Fgf which is evaluated in

the outer loop of the first step, and is kept unchanged during the inner loop (*)

iterations.

We then follow the same procedure for the momentum equations of the droplet

phase. Hence, we have the fully-implicit discretized momentum equations as

∆Vp
un+1
d − und

∆ t
+
∑
f

un+1
df F n+1

df =
−1

ρnd

∑
f

P n+1
f Sfx + ∆Vp gx

+
∆Vp
ρnd

fndx + und
∑
f

F n+1
df

(3.33)

∆Vp
vn+1
d − vnd

∆ t
+
∑
f

vn+1
df F n+1

df =
−1

ρnd

∑
f

P n+1
f Sfy + ∆Vp gy

+
∆Vp
ρnd

fndy + vnd
∑
f

F n+1
df

(3.34)

∆Vp
wn+1
d − wnd

∆ t
+
∑
f

wn+1
df F n+1

df =
−1

ρnd

∑
f

P n+1
f Sfz + ∆Vp gz

+
∆Vp
ρnd

fndz + wnd
∑
f

F n+1
df

(3.35)

The discretized mass velocity equations are

∆Vp
u∗d − und

∆ t
+
∑
f

u∗df F
∗∗
df = ∆Vp gx

+
∆Vp
ρnd

fndx + und
∑
f

F ∗∗df

(3.36)

∆Vp
v∗d − vnd

∆ t
+
∑
f

v∗df F
∗∗
df = ∆Vp gy

+
∆Vp
ρnd

fndy + vnd
∑
f

F ∗∗df

(3.37)

∆Vp
w∗d − wnd

∆ t
+
∑
f

w∗df F
∗∗
df = ∆Vp gz

+
∆Vp
ρnd

fndz + wnd
∑
f

F ∗∗df

(3.38)
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Eqns.(3.36) through (3.38) too are iterated to convergence in three separate

subloops in the inner loop of the first step. During any pass through the droplet

mass velocity loop, we hold the convective fluxes F ∗∗df fixed and iterate for the

mass velocities. Once the gas and droplet mass velocities are obtained we update

the pressure and the fluxes in the outer loop and return to the inner loop and use

the updated fluxes for the next pass. This continues until the fluxes F ∗∗gf and F ∗∗df

converge in the outer loop, and henceforth, taken as the final values, F n+1
gf and

F n+1
df .

We now look into the outer loop calculations. Having obtained the tentative

mass velocities we turn to the pressure Poisson equation. This is derived from

total mass conservation principle. By adding Eqn.(2.1) and Eqn.(2.5), we get

∂ ϑgρg
∂ t

+∇ · (ϑgρg ug) +
∂ (ρd ϑd)

∂ t
+∇ · (ρd ϑd ud) = 0 (3.39)

For steady state problems, time derivative term can be neglected

∇ · (ϑgρg ug) +∇ · (ρd ϑd ud) = 0 (3.40)

This continuity equation should be appliad at the (n+ 1)th time level. Hence, we

get

∇ · (ϑgρg ug)
n+1 +∇ · (ρd ϑd ud)

n+1 = 0 (3.41)

By subtracting Eqn.(3.30) from Eqn.(3.27), Eqn.(3.31) from Eqn.(3.28) and Eqn.(3.32)

from Eqn.(3.29), we get

un+1
g − u∗g =

∆t

ρg
∇P (3.42)

Similarly, for droplet phase

un+1
d − u∗d =

∆t

ρd
∇P (3.43)

By multiplying Eqn.(3.42) and Eqn.(3.43) by ρgϑg and ρdϑd respectively and

substituting in Eqn.(3.41), we get

∆t∇2P = ∇ · (ϑgρg u∗g) +∇ · (ρd ϑd u∗d) (3.44)
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In the above equation, we have used the principle ϑg + ϑd = 1. Discretization

of Eqn.(3.44) leads to

∑
f

P ∗∗f · Sf =
1

∆t
(
∑
f

ϑngρ
n
g u∗gf · Sf +

∑
f

ϑndρ
n
d u∗df · Sf ) (3.45)

We can define the fluxes on the RHS of Eqn.(3.45) as

F ∗∗Mgf [= (ϑngfρ
n
gf u∗gf ) · Sf ] = (ϑngfρ

n
gf )F

∗∗
gf (3.46)

F ∗∗Mdf [= (ϑndfρ
n
df u∗df ) · Sf ] = (ϑndfρ

n
df )F

∗∗
df (3.47)

Here the values of u∗gi and u∗di at the cell faces is obtained by a linear interpo-

lation. The superscript is used for pressure because Eqn.(3.45) is now iterated

to convergence in the outer loop of step one.

Having obtained the pressure field P ∗∗ from Eqn.(3.45), we update the fluxes

Fgf and Fdf using momentum interpolation

F ∗∗gf = u∗gf · Sf −
∆t

ρng
∇P ∗∗f · Sf (3.48)

F ∗∗df = u∗df · Sf −
∆t

ρnd
∇P ∗∗f · Sf (3.49)

After updating the fluxes F ∗∗gf and F ∗∗df in the outer loop, we once again solve

the inner loop for the mass velocities, followed by the pressure and update the

fluxes. This cycle continues until the values of fluxes converge. At that point

we accept that F n+1
gf = F ∗∗gf , F n+1

df = F ∗∗df , P n+1 = P ∗∗. We now iterate the

full momentum Eqns.(3.27) through (3.29) and Eqns.(3.33) through (3.35) to

convergence. This last part comprises step two of the two-step algorithm. We

now have the un+1
g and un+1

d values.

Also in the second step, we next iterate the continuity equation of the droplet

phase to obtain the normalized volume fraction using F n+1
df obtained from the

converged un+1
df

∆Vp
Θn+1
d −Θn

d

∆ t
+
∑
f

Θn+1
df F n+1

df = −Cv
∆Vp
ρdϑ0

An (3.50)
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We next solve the continuity equation of gas phase for density using F ∗∗gf obtained

from the converged un+1
g . The discretized form is iterated to convergence.

∆Vp
ρg
n+1 − ρng

∆ t
+
∑
f

ρn+1
gf F n+1

gf = Cv
∆Vp
ϑn+1
g

An (3.51)

Next, we solve the droplet temperature equation by iterating to convergence.

∆VpCld
T n+1
d − T nd

∆ t
+ Cld

∑
f

T n+1
df F n+1

df = Cv
∆Vp

ρd ϑ
n+1
d

(nnQn − AnL)

+Cld T
n
d

∑
f

F n+1
df

(3.52)

We then solve the mass fraction equation and the energy equation of the

gaseous phase.

∆Vp
Y n+1
F − Y n

F

∆ t
+
∑
f

Y n+1
F F n+1

gf +
1

ρn+1
g

∑
f

F n+1
dY f = − ∆Vp

ϑn+1
g ρn+1

g

An Y n+1
F

+Cv
∆Vp

ϑn+1
g ρn+1

g

An + Y n
F

∑
f

F n+1
gf

(3.53)

∆VpCpg
T n+1
g − T ng

∆ t
+
∑
f

Cpgf T
n+1
gf F n+1

gf +
1

ρn+1
g

∑
f

F n+1
dTf =

− ∆Vp
ϑn+1
g ρn+1

g

AnCvd T
n+1
g + Cv

∆Vp
ϑn+1
g ρn+1

g

AnCvd T
n+1
d

−Cv
∆Vp

ϑn+1
g ρn+1

g

nnQn + Cpg T
n
g

∑
f

F n+1
gf

(3.54)

Note that the previous time step source term values are used in all the equa-

tions. The above steps are sequentially carried out at each time step. For all

the equations of the droplet phase the convective terms are discretized by the

first-order upwind scheme. This is specially helpful in avoiding negative or un-

physical values of the volume fraction, however the inherent dissipation effects of

the scheme reduces the sharp gradients in the solution.

3.7 Summary of the Algorithm

1. Initialize properties and fields for the carrier phase and the droplet phase,

grids and other parameters.
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2. Transfer (n + 1)th time level values to nth time level for all the solvable

variables like volume fraction, velocity, density, temperature for the gas

phase and droplet phase, fuel mass fraction and pressure.

3. Compute and store all the source terms with the previous time step values.

Compute dd by

dd = d0(Θd)
1/3 (3.55)

4. Solve for the mass velocity of the gas phase and droplet phase separately by

iterating Eqns.(3.30) through (3.32) and (3.36) through (3.38)respectively

with previous time step source term values.

5. Compute momentum fluxes, F ∗∗Mgf and F ∗∗Mdf using Eqn.(3.46) and Eqn.(3.47).

6. Solve for the pressure P by iterating Eqn.(3.45) to convergence.

7. Compute volume fluxes F ∗∗gf and F ∗∗df using Eqn.(3.48) and Eqn.(3.49).

8. Repeat steps 4 to 7 until F ∗∗gf and F ∗∗df converge.

9. Accept P n+1 = P , Fgf
n+1 = Fgf

∗∗ and Fdf
n+1 = Fdf

10. Iterate the full momentum equations for gas phase Eqns.(3.27) through

(3.29) and full momentum equations for droplet phase Eqns.(3.33) through

(3.35)to convergence separately to obtain un+1
g and un+1

d , respectively.

11. Solve the continuity equation of droplet phase Eqn(3.50) for normalized

volume fraction of droplet, Θn+1
d . The volume fraction of the droplet phase

is found using the relation ϑn+1
d = ϑ0 ∗Θn+1

d . Volume fraction of gas phase

is obtained by using the relation ϑn+1
g = 1− ϑn+1

d .

12. Solve the continuity equation of gas Eqn.(3.51) for obtaining gas phase

density, ρn+1
g .

13. Solve the energy equation for the droplet phase Eqn.(3.52) for droplet tem-

perature T n+1
d .

14. Solve the evaporated fuel vapour mass fraction Eqn.(3.53) to obtain Y n+1
F .
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15. Solve the gas-phase energy Eqn.(3.54) to obtain T n+1
g .

16. If the stopping criterion for the time stepping is not met return to step 2

and repeat steps 2 through 15 for the next time step and march forward in

time.

3.8 Limiter for Θd equation

If for a cell Θd < ε (∼ 1e4) we put An = 0 and Cv = 0. Otherwise, put

Cv = 1 and compute and store A using nth level variable values by aforementioned

relationship. The value of ε implies that we are not allowing the diameter of the

droplet to fall below a certain value which depends on the droplet initial diameter

and volume fraction. The value of Cv used in the equations becomes zero when

the diameter of the droplet reaches this particular value. When Cv = 0, all the

inter-phase mass, momentum and energy transfer terms go to zero resulting in

only the convection of the smallest droplets.



Chapter 4

Results and Discussion

For validating OpenFOAM based solver for “dilute laminar gas-droplet flow with

evaporation”, we considered to simulate some complete test cases, which are

already solved using Anupravaha and validated with the FLUENT. The domain,

shown in the Figure 4.1, where H = 0.1m and L = 1.0m is considered for all the

five cases. Expressions for the variation of properties for liquid and vapour phase

of n-heptane fuel are given in Appendix.A. Inlet conditions and the property

values which are common for all the cases are shown in Table 4.1.

outletH

L wall boundary

wall boundary

inlet

Figure 4.1: The Computational Domain for 2D-Channel Flow Problems
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Table 4.1: Property values of fluids used

Property values
Viscosity of gas 0.0000225 N s/m2

Liquid droplet density, ρd 684.0 kg/m3

Specific heat of air, Cpa 1006.43 J/kg K
Specific heat of fuel vapour, Cvd 2471.0 J/kg K
Specific heat of liquid droplet, Cld 2219.0 J/kg K
Thermal conductivity of air, ka 0.0242 W/mK
Thermal conductivity of fuel vapour, kv 0.0128 W/mK
Latent heat of fuel, L 320096.0 J/kg
Mass diffusivity of vapour in gas, D 0.0000225 m2/s

4.1 CASE 1: Gas-Droplet flow with Tdi = Ts and

ugi = udi

In this case, both the gas phase and droplet phase enter the channel with a velocity

of 1 m/s, when the inlet droplet temperature is equal to saturation temperature

of n-heptane. The inlet properties are given in Table. 4.2.

Table 4.2: Case 1: Inlet Conditions

Inlet conditions
Gas-phase inlet velocity 1.0 m/s
Droplet-phase inlet velocity 1.0 m/s
Inlet gas temperature 773.0 K
Inlet gas temperature 347.8 K
Inlet fuel mass fraction 0.0
Gas-phase inlet density 1.225 kg/m3

Inlet volume fraction 0.0005
Droplet inlet diameter 50 µm

At the wall, homogegeous Neumann boundary condition is applied for the droplet-

phase velocity and gas temperature for friction-less and insulated walls. Since,

the droplet inlet temperature is equal to its saturation temperature, no transient

heating will take place. Droplet remains at its inlet saturation temperature while

evaporation happens due to heating from the gaseous phase. The gas temperature

drops along the length of the channel giving heat to the droplets, which in turn
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gets used for the evaporation and reaches a constant. But the evaporated fuel

mass fraction and gaseous phase density increases due to the addition of vapour

from droplets to gas because of evaporation.

The variation of different parameters along the length of the channel is plotted

and compared with solver, Anupravaha and FLUENT. Results are having a slight

difference from that of the FLUENT mainly because of the value of diameter used

for drag calculations. In our solver, droplet diameter value (which changes owing

to evaporation) is updated for the drag force calculation at each time step while in

FLUENT, droplet diameter value remains same equal to its inlet value. Method

for the calculation of values of properties is different in our solver from that of the

FLUENT which causes some variation in results, especially in gas temperature,

fuel mass fraction and gas density values. In addition to this, OpenFOAM and

Anupravaha stops computing beyond a lesser value of droplet volume fraction due

to the numerical difficulty caused by smaller diameter wherein FLUENT, there

is no limit for it.

The variation of different flow variables and its comparison along the length

of the channel are shown in Fig.4.5 to Fig.4.7. Contours for variables are plotted

in figures from 4.2 to 4.4.
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Figure 4.2: Case 1: Contour plot for droplet volume fraction
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Figure 4.3: Case 1: Contour plot for gas density (in kg/m3)
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Figure 4.4: Case 1: Contour plot for gas temperature (in K)
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Figure 4.5: Case 1: Variation along the length of the channel
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4.2 CASE 2: Gas-Droplet flow with Tdi = Ts and

ugi > udi

For this case, gas phase moves with more velocity than that of droplet phase, when

the inlet droplet temperature is equal to saturation temperature of n-heptane.

The inlet properties are given in Table. 4.3. All other boundary conditions are

same as that of Case 1. The droplets acquire gas velocity very quickly. Gaseous

phase temperature variation differs from Case 1 as mass flow rate of gas-phase is

double as that of Case 1. The property variation graphs and contour plots are

shown in Fig.4.11 to Fig.4.12 and Fig.4.8 to Fig.4.10 respectively.

Table 4.3: Case 2: Inlet Conditions

Inlet conditions
Gas-phase inlet velocity 2.0 m/s
Droplet-phase inlet velocity 1.0 m/s
Inlet gas temperature 773.0 K
Inlet gas temperature 347.8 K
Inlet fuel mass fraction 0.0
Gas-phase inlet density 1.225 kg/m3

Inlet volume fraction 0.0005
Droplet inlet diameter 50 µm
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Figure 4.9: Case 2: Contour plot for evaporated fuel mass fraction
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Figure 4.11: Case 2: Variation along the length of the channel
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4.3 CASE 3: Gas-Droplet flow with Tdi = Ts and

ugi < udi

In this case, gas phase moves with less velocity than that of droplet phase, when

the inlet droplet temperature is equal to saturation temperature of n-heptane.

The inlet properties are given in Table.4.4. In this case, droplets decelerate

quickly and attain the gaseous phase velocity. Fraction of fuel evaporated in-

creases compared to both previous cases as droplets residence time increases be-

cause of its lesser velocity. All plots (contour and comparison curves) of this case

is shown in figures from Fig.4.13 to Fig.4.17.

Table 4.4: Case 3: Inlet Conditions

Inlet conditions
Gas-phase inlet velocity 0.5 m/s
Droplet-phase inlet velocity 1.0 m/s
Inlet gas temperature 773.0 K
Inlet gas temperature 347.8 K
Inlet fuel mass fraction 0.0
Gas-phase inlet density 1.225 kg/m3

Inlet volume fraction 0.0005
Droplet inlet diameter 50 µm
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Figure 4.13: Case 3: Contour plot for droplet volume fraction
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Figure 4.14: Case 3: Contour plot for evaporated fuel mass fraction
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Figure 4.15: Case 3: Contour plot for gas density (in kg/m3)
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Figure 4.16: Case 3: Contour plot for gas temperature (in K)
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Figure 4.17: Case 3: Variation along the length of the channel
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4.4 CASE 4: Gas-Droplet flow with Tdi < Ts and

ugi = udi

In this case, both the gas phase and droplet phase enter the channel with a

velocity of 1 m/s, when the inlet droplet temperature is less than the saturation

temperature of n-heptane. The inlet properties are given in Table. 4.5. In this

case droplet temperature varies till it reaches its saturation value. Contour plots

and comparison graphs which are having slight difference from the previous cases

are shown in Fig.4.18 to Fig.4.23.

Table 4.5: Case 4: Inlet Conditions

Inlet conditions
Gas-phase inlet velocity 1.0 m/s
Droplet-phase inlet velocity 1.0 m/s
Inlet gas temperature 773.0 K
Inlet gas temperature 300.0 K
Inlet fuel mass fraction 0.0
Gas-phase inlet density 1.225 kg/m3

Inlet volume fraction 0.0005
Droplet inlet diameter 50 µm
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Figure 4.18: Case 4: Contour plot for droplet volume fraction
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Figure 4.19: Case 4: Contour plot for evaporated fuel mass fraction
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Figure 4.20: Case 4: Contour plot for gas density (in kg/m3)
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Figure 4.21: Case 4: Contour plot for gas temperature (in K)
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Figure 4.22: Case 4: Variation along the length of the channel
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4.5 CASE 5: Gas-Droplet flow with isothermal

walls

In this case, both the gas phase and droplet phase enter the channel with a

velocity of 1 m/s, when the inlet droplet temperature is equal to the saturation

temperature of n-heptane. The inlet properties are given in Table. 4.6. This

case differs from the Case 1 by the boundary conditions applied at the walls

for gaseous phase temperature. Instead of insulated boundary condition, as in

previous cases Dirichlett boundary condition of 1000 K is applied at the both

walls. Contour plots are shown in Fig.4.24 to Fig.4.27. From the contour plots,

it is observed that evaporation length is shorter compared to Case 1 because of

the isothermal boundary condition. Comparison of some parameters along the

length of the channel are given in Fig.4.28 and Fig.4.29.

Table 4.6: Case 5: Inlet Conditions

Inlet conditions
Gas-phase inlet velocity 1.0 m/s
Droplet-phase inlet velocity 1.0 m/s
Inlet gas temperature 773.0 K
Inlet gas temperature 347.8 K
Inlet fuel mass fraction 0.0
Gas-phase inlet density 1.225 kg/m3

Inlet volume fraction 0.0005
Droplet inlet diameter 50 µm
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Figure 4.24: Case 5: Contour plot for droplet volume fraction
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Figure 4.25: Case 5: Contour plot for evaporated fuel mass fraction
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Figure 4.26: Case 5: Contour plot for gas density (in kg/m3)
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Figure 4.27: Case 5: Contour plot for gas temperature (in K)
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Figure 4.28: Case 5: Variation along the length of the channel
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Figure 4.29: Case 5: Variation of Gas Temperature (in K) along the length of
the channel
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4.6 Closure

The OpenFOAM based solver for ‘dilute laminar gas-droplet flow with evapora-

tion’ has been validated against the Anupravaha solver and FLUENT, with the

help of five test problems. It is found to give satisfactory results. This work

has allowed for extending the present OpenFOAM multiphase solvers for droplet

with evaporation. The initial plan of extending the solver capability for turbulent

gas-droplet flow couldn’t get completed. But a proposal for the same has been

made in this work along with an evaporation model. This model can be used

for further development of the solver. Adding the turbulence model and further

validations in it will make this solver more complete.



Chapter 5

Proposal for Dilute Turbulent
Gas-Droplet Flows with
Evaporation Model

This section deals with the proposal for a mathematical model for dilute turbulent

gas-droplet flow with evaporation based on a two-fluid model, which was discussed

in Section 1.5. In this model turbulent quantities are modelled with a two-

equation (k − ε) model.

5.1 Properties of Turbulence

Fluid flows, either single phase flows or two-phase flows, encountered in engi-

neering applications are generally turbulent. Turbulent flows are characterized

by

1. Fluid velocity, pressure, other scalar quantities are random and chaotic in

nature.

2. Transport: mixing of fluid occurs much more than in laminar due to velocity

fluctuations.

3. Generally occurs at high Reynolds numbers.

4. Turbulent flow is characterized by fluctuations over a wide range of length

scales and time scales.

5. The fluctuations are always three dimensional even if mean flow field is two

dimensional.
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6. Energy dissipation due to viscosity is more compared to laminar flow.

5.2 Reynolds Averaging

One important feature of turbulent flow is that velocity, pressure and other scalars

at each spatial point vary continuously with time. In most engineering applica-

tions, however fluctuating quantities are not of much practical interest. Only

the effect of the fluctuating quantities on the mean turbulent motion is needed.

So the instantaneous equations needed to be averaged and here we have used

Reynolds averaging for droplet phase and Favre averaging, which is explained in

section. 5.3 for gaseous phase.

Reynolds averaged equation are obtained by decomposing flow variables into

mean or ensemble-averaged and fluctuating component i.e,

ui = Ui + u′i

where, Ui is the mean component and u′i is fluctuating part of the velocity.

RANS equations are transport equations of mean flow variables. Density fluc-

tuations of droplet phase is assumed to be zero. Substituting the above mentioned

relation in all instantaneous (laminar) governing equations given in section.2 and

applying the properties of turbulent fluctuating variables i.e.,

u′i = 0, (5.1)

we will get the averaged equations.

So an ensemble averaged , also called Reynolds averaged governing equations

are solved, which introduces new apparent stresses known as Reynolds stresses

(ρu′iu
′
j) which comes from the Reynolds averaging of the instantaneous governing

equations. These stresses have to be modelled.

5.2.1 Eddy Viscosity Models

Currently, EVMs are most widely used to model the Reynolds stresses because of

their relative simplicity and lower computational requirements. In these models,

one assumes that the turbulent stress is proportional to the mean rate of strain,

this is called the Boussinesq approximation of turbulence. It results in the use

a proportionality constant (called turbulent viscosity or eddy viscosity), which
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replaces the molecular viscosity in the strain terms. However, unlike molecular

viscosity, eddy viscosity is not a property of fluid but it is a property of the

motion.

The eddy viscosity is estimated from turbulent transport quantities like turbu-

lent kinetic energy(k) , turbulent kinetic energy dissipation(ε), specific dissipationrate(ω).

These quantities themselves are obtained by solving partial differential transport

equations.

The EVMs are often referred to by the number of transport equations, that

requires to be solved to estimate the eddy viscosity. For example, the mixing

length model is a zero equation model because no transport equations are solved,

the Spalart-Almaras is a one equation model as one equation is solved directly

for the turbulent viscosity, and the (k − ε) and (k − ω) models are two equation

models because two transport equations are solved, respectively for k and ε and

for k and ω.

Most EVMs are based on a transport equation for turbulent kinetic energy k

which forms the velocity scale, and an additional transport equation for a second

turbulent quantity for length/time scale , e.g. dissipation rate of turbulent kinetic

energy in the (k − ε) , specific dissipation rate of turbulent kinetic energy in the

(k − ω) models, etc.

5.3 Favre Averaging

Taking the density variation of gaseous phase due to mixing of vapour from

droplets, density fluctuations should also be considered. Convensional Reynolds

averaging(or time-averaging) ignores density fluctuation, and hence is suitable

only for incompressible constant-density flows. For variable density flows another

averaging method named, Favre Averaging, is used. It’s the density-weighted

averaging procedure suggested by Favre (1965)[48]. Mass-averaged velocity, ui is

defined by

ũi =
1

ρ
lim

T→+∞

∫ t+T

t

ρ(X, τ)ui(X, τ)dτ (5.2)

where, ρ is the conventional Reynolds averaged density. Thus, we can say that

ρũi = ρUi + ρ′u′i (5.3)
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where an overbar denotes conventional Reynolds average. When we use Favre

averaging, as a first step, decompose the instantaneous variable(velocity, temper-

ature) into the mass averaged part (ũi) and a fluctuating part (ui
′′),

ui = ũi + ui
′′ (5.4)

Now, to form the favre average, we simply multiply through by ρ and do a time

average. Hence Eqn.(5.4) becomes

ρui = ρũi + ρui′′ (5.5)

But, from Eqn.(5.2),we see, Favre average of fluctuating velocity, ui
′′, vanishes,

i.e.,

ρui′′ = 0 (5.6)

But, it is important to note that conventional Reynolds average of ui
′′ is not zero.

i.e.,

ui′′ 6= 0 (5.7)

Favre averaging has simplified the averaging procedure, by eliminating density

fluctuations from the averaged equations, but it does not remove the effect of

density fluctuations on turbulence. Hence, we can simply say it as a mathematical

simplification, not a physical one.

5.4 Assumptions

Apart from the assumptions, which we considered for the laminar flow given in

section. 2.1,

1. Third order turbulent fluctuations are neglected.

2. Modification of ε-equation due to evaporation is neglected.

5.5 Favre averaged governing equations for the

gas phase

In the subsections below, we derive the Favre-averaged turbulent two-phase flow

for the two fluid model.
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5.5.1 Favre averaged continuity equation

The laminar flow equation is

∂ϑgρg
∂t

+
∂ϑgρgugj
∂xj

= nṁv

ϑg ∼= 1

Convective term of continuity equation is averaged as

∂ϑgρgugj
∂xj

=
∂ϑgρg(ũgj + u

′′
gj)

∂xj
=
∂ϑgρgũgj
∂xj

+
∂ϑgρgu

′′
gj

∂xj
=
∂ϑgρgũgj
∂xj

Hence averaged continuity equation becomes

∂ϑgρg
∂t

+
∂ϑgρgũgj
∂xj

= nṁv (5.8)

5.5.2 Favre averaged momentum equation

The laminar equation is

∂ϑgρgugi
∂t

+
∂ϑgρgugiugj

∂xj
= ϑg

∂p

∂xi
+

∂

∂xj

[
ϑgµg

(
∂ugi
∂xj

+
∂ugj
∂xi
− 2

3

∂ugk
∂xk

δij

)]
+ϑgρggi − ϑdfdi + nṁvudi

(5.9)

substituting ug = ũg + u
′′
g and p = P + p

′
averaging and applying statistical

properties of turbulent fluctuating properties, we get averaged equation.

Transient term

∂ϑgρgugj
∂t

=
∂ϑgρg(ũgj + u

′′
gj)

∂t
=
∂ϑgρgũgj

∂t
+
∂ϑgρgugj

∂t
=
∂ϑgρgũgi

∂t
(5.10)

Convective term

∂ϑgρgugiugj
∂xj

=
∂ϑgρg(ũgi + u

′′
gi)(ũgj + u

′′
gj)

∂xj
=
∂ϑgρgũgiũgj

∂xj
+
∂ϑgρgũgiu

′′
gj

∂xj

+
∂ϑgρgũgju

′′
gi

∂xj
+
∂ϑgρgu

′′
giu

′′
gj

∂xj

(5.11)

since

(
∂ϑgρgũgiu

′′
gj

∂xj
= 0 =

∂ϑgρgũgju
′′
gi

∂xj

)
∂ϑgρgugiugj

∂xj
=
∂ϑgρgũgiũgj

∂xj
+
∂ϑgρgu

′′
giu

′′
gj

∂xj
(5.12)
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Pressure term

−ϑg
∂p

∂xi
= −ϑg

∂(P + p′)

∂xi
= −ϑg

∂P

∂xi
+−ϑg

∂p′

∂xi
= −ϑg

∂P

∂xi
(5.13)

Diffusion term

∂

∂xj

[
ϑgµg

(
∂ugi
∂xj

+
∂ugj
∂xi
− 2

3

∂ugk
∂xk

δij

)]
=

∂

∂xj

[
ϑgµg

(
∂(ũgi + u

′′
gi)

∂xj
+
∂(ũgj + u

′′
gj)

∂xi
− 2

3

∂(ũgk + u
′′
gk)

∂xk
δij

)]

=
∂

∂xj

[
ϑgµg

(
∂ũgi
∂xj

+
∂ũgj
∂xi
− 2

3

∂ũgk
∂xk

δij

)]
+

∂

∂xj

[
ϑgµg

∂u
′′
gi

∂xj

]

+
∂

∂xj

[
ϑgµg

∂u
′′
gj

∂xi

]
− 2

3

∂

∂xj

[
ϑgµg

∂u
′′
gk

∂xk
δij

]

=
∂

∂xj

[
ϑgµg

(
∂ũgi
∂xj

+
∂ũgj
∂xi
− 2

3

∂ũgk
∂xk

δij

)]
(5.14)

Body force term

ϑgρggi = ϑgρggi (5.15)

Interphase force term (Drag force)

I.Fdi = ϑdfdi (5.16)

Evaporation term

nṁvudi = nṁv(ũdi + u
′′
di) = nṁvũdi + nṁvu

′′
di = nṁvũdi (5.17)

Combining all term together, we will get the whole equation as

∂ϑgρgũgi
∂t

+
∂ϑgρgũgiũgj

∂xj
= −ϑg

∂P

∂xi
+

∂

∂xj

[
ϑgµg

(
∂ũgi
∂xj

+
∂ũgj
∂xi
− 2

3

∂ũgk
∂xk

δij

)]
−ϑgρgu

′′
giu

′′
gj + ϑgρggi + ϑdfdi + nṁvũdi

(5.18)

where ρgu
′′
giu

′′
gj(Rij) is the Reynolds stress tensor, having three normal compo-

nents and six shear stress components. For the closure of problem, modeling of

these stresses are required. As Rij is symmetric, number of unknowns are reduced



5.5 Favre averaged governing equations for the gas phase 68

to six. We can model this suing Boussinesq eddy viscosity hypothesis similar to

the single phase flows which is given as

−ρgu
′′
giu

′′
gj = µtg

[
∂ũgi
∂xj

+
∂ũgj
∂xi
− 2

3

∂ũgk
∂xk

δij −
2

3

∂

∂xj

(
2

3
ρgk̃gδij

)]
(5.19)

substituting this in the above equation, we get modified FANS equation. It is

given as

∂ϑgρgũgi

∂t
+
∂ϑgρgũgiũgj

∂xj
= −ϑg

∂P

∂xi
+

∂

∂xj

[
ϑg(µg + µtg)

(
∂ũgi
∂xj

+
∂ũgj
∂xi
− 2

3

∂Ugk
∂xk

δij

)]
µtg

∂

∂xj

(
2

3
ρgk̃gδij

)
+ ϑgρggi − ϑdfdi + nṁvũdi

(5.20)

and can be written as,

∂ϑgρgũgi

∂t
+
∂ϑgρgũgiũgj

∂xj
= −ϑg

∂P

∂xi
+

∂

∂xj

[
ϑg(µeffg)

(
∂ũgi
∂xj

+
∂ũgj
∂xi
− 2

3

∂ũgk
∂xk

δij

)]
µtg

∂

∂xj

(
2

3
ρgk̃gδij

)
+ ϑgρggi − ϑdfdi + nṁvũdi

(5.21)

where µeffg = µg+µtg, µtg is turbulent viscosity and µeffg is the eefective viscosity

of gaseous phase.

5.5.3 Favre averaged temperature equation

The laminar equation is given as

∂ϑgρgCpgTg
∂t

+
∂ϑgρgCpgTgugj

∂xj
=

∂

∂xi

(
ϑgkg

∂Tg
∂xj

)
+ nṁvCvdTd − Q̇ (5.22)

Applying Tg = T̃g + T
′′
g along with velocity relation, we get

Transient term

∂ϑgρgCpgTg
∂t

=
∂ϑgρgCpg(T̃g + T ′′

g )

∂t
=
∂ϑgρgCpgT̃g

∂t
+
∂ϑgρgCpgT

′′
g

∂t
=
∂ϑgρgCpgT̃g

∂t
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Convective term

∂ϑgρgCpgTgugj
∂xj

=
∂ϑgρgCpg(T̃g + T ′′

g )(ũgj + u
′′
gj)

∂xj
=
∂ϑgρgCpgT̃gugj

∂xj
+
∂ϑgρgCpgT̃gu

′′
gj

∂xj

+
∂ϑgρgCpgT

′′
g ũgj

∂xj
+
∂ϑgρgCpgT

′′
g u

′′
gj

∂xj

=
∂ϑgρgCpgT̃gũgj

∂xj
+
∂ϑgρgCpgT

′′
g u

′′
gj

∂xj

Diffusion term

∂

∂xi

(
ϑgkg

∂Tg
∂xj

)
=

∂

∂xi
(ϑgkg

∂T̃g
∂xj

) +
∂

∂xi
(ϑgkg

∂T ′′
g

∂xj
) =

∂

∂xi
(ϑgkg

∂T̃g
∂xj

)

Source terms

nṁvCvdTd = nṁvCvd(T̃d + T
′′
d ) = nṁvCvdT̃d + nṁvCvdT

′′
d = nṁvCvdT̃d

Hence averaged temperature equation becomes,

∂ϑgρgCpgT̃g
∂t

+
∂ϑgρgCpgT̃gũgj

∂xj
+
∂ϑgρgCpgT

′′
g u

′′
gj

∂xj
=

∂

∂xi

(
ϑgkg

∂T̃g
∂xj

)
+nṁvCvdT̃d−nQ

(5.23)

For closure, we have to model the fluctuating term of the temperature equation.

∂ϑgρgCpgT
′′
g u

′′
gj

∂xj
=
∂ϑgρgCpgT

′′
g u

′′
gj

∂xj
As we assume derivatives do not fluctuate,

T ′′
g u

′′
gj = −αtg

∂T̃g
∂xj

where αtg is the turbulent diffusivity, s.t. αtg ≡ ktg
ρCp

. Usually αt is equal to
νtg
Prtg

, where νtg is turbulent kinematic viscosity of gaseous phase and Prtg is

turbulent Prandtl number of gaseous phase. Usually value of Prtg is taken as 0.9.

Substituting this in the temperature equation we get the closed equation. It is

given as

∂ϑgρgCpgT̃g
∂t

+
∂ϑgρgCpgT̃gũgj

∂xj
=

∂

∂xi

(
ϑg(kg + ktg)

∂T̃g
∂xj

)
+ nṁvCvdTd − nQ̇

(5.24)
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5.5.4 Favre Averaged Species Mass Fraction Equation

The laminar equation is given as

∂(ϑgρgYF )

∂t
+
∂(ϑgρgYFugj)

∂xj
=

∂

∂xi
(ϑgρgD

∂YF
∂xj

) + nṁv (5.25)

Similar, to the temperature equation, we can deduce averaged equation. Only

difference is that instead of temperature another scalar, fuel vapour mass fraction

is the variable. The averaging yields the equation in the following form,

∂(ϑgρgỸF )

∂t
+
∂(ϑgρgỸF ũgj)

∂xj
+
∂(ϑgρgY

′′
F u

′′
gj)

∂xj
=

∂

∂xi
(ϑgρgD

∂ỸF
∂xj

) + nṁv (5.26)

such that,

ρgY
′′
F u

′′
g,j = −Dτ

∂ỸF
∂xj

, where Dτ =
µtg
Sctg

where, Sctg is the turbulent Schmidt number of gaseous phase. Its value is taken

as 0.9. Hence the final form of the averaged equation is

∂(ϑgρgỸF )

∂t
+
∂(ϑgρgỸF ũgj)

∂xj
=

∂

∂xi
(ϑgρg(D +Dτ )

∂ỸF
∂xj

) + nṁv (5.27)

5.6 Reynolds Averaged Equations for the Droplet

Phase

The Reynolds averaging method is developed here in the droplet phase. Flow

variables are divided into mean and fluctuating part as we discussed in section.5.2

and closure procedure is conducted.

By Substituting the following expressions:

ud = Ud + u
′

d

ϑd = Vd + ϑ
′

d

Td = Td + T
′

d

and performing averaging, we get the Reynolds averaged equations for droplet

phase as the following.
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5.6.1 Reynolds Averaged Continuity Equation

The laminar equation is

∂ρdϑd
∂t

+
∂ρdϑdud,j
∂xj

= −nṁv (5.28)

Transient term

∂ρdϑd
∂t

=
∂ρd(Vd + ϑ

′
d)

∂t
=
∂Vdρd
∂t

+
∂ϑ

′
dρd
∂t

=
∂Vdρd
∂t

Convective Term

∂ρdϑdUd,j
∂xj

=
∂(Vd + ϑ

′
d)ρd(Ud,j + u

′
d,j)

∂xj
=
∂VdρdUd,j

∂xj
+
∂ϑ

′
dρdUd,j
∂xj

+
∂Vdρdu

′
d,j

∂xj
+
∂ϑ

′
dρdu

′
d,j

∂xj

=
∂VdρdUd,j

∂xj
+
∂ρdϑ

′
du

′
d,j

∂xj

Substituting these in continuity equation, we get

∂ρdVd
∂t

+
∂ρdVdUd,j

∂xj
+
∂ϑ

′
dρdu

′
d,j

∂xj
= −nṁv (5.29)

As, ϑ
′
du

′
d,j = −Dd

∂Vd
∂xj

and Dtd = νtd
Prtd

where, Dtd is the turbulent mass dispersity

of the droplets. We get the final equation as,

∂ρdVd
∂t

+
∂ρdVdUd,j

∂xj
=
∂ρd(Dd

∂Vd
∂xj

)

∂xj
− nṁv (5.30)

where, νtd is the turbulent kinematic viscosity of droplet phase and Prtd is the

turbulent dispersion Prandtl number.

5.6.2 Reynolds Averaged momentum equation

The laminar equation is given as

∂(ϑdρdud,i)

∂t
+
∂(ϑdρdud,iud,j)

∂xj
= −ϑd

∂P

∂xi
+ ϑdρdgi − nṁvud,i + ϑdfd,i (5.31)

Transient term

∂(ϑdρdud,i)

∂t
=
∂(Vd + ϑ

′
d)ρd(Ud,i + u

′
d,i)

∂t
=
∂VdρdUd,i

∂t
+
∂ϑ

′
dρdUd,i
∂t

+
∂Vdρdu

′
d,i

∂t
+
∂ϑ

′
dρdu

′
d,i

∂t

=
∂VdρdUd,i

∂t
+
∂ρdϑ

′
du

′
d,i

∂t
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Convective term

∂(ϑdρdud,iud,j)

∂xj
=
∂(Vd + ϑ

′
d)ρd(Ud,i + u

′
d,i)(Ud,j + u

′
d,j)

∂xj
=
∂VdρdUd,iUd,j

∂xj
+
∂Vdρdu

′
d,iu

′
d,j

∂xj

+
∂ρdUd,iϑ

′
du

′
d,j

∂xj
+
∂ρdUd,jϑ

′
du

′
d,i

∂xj
+
∂ρdϑ

′
du

′
d,i

∂xj

=
∂VdρdUd,iUd,j

∂xj
+
∂Vdρdu

′
d,iu

′
d,j

∂xj
+
∂ρdUd,iϑ

′
du

′
d,j

∂xj
+
∂ρdUd,jϑ

′
du

′
d,i

∂xj

Pressure term

ϑd
∂P

∂xi
= (Vd + ϑ

′
d)
∂(P + p′)

∂xi
= Vd

∂P

∂xi
+ ϑ

′
d

∂p′

∂xi
= Vd

∂P

∂xi

Body force term

ϑdρdgi = (V d+ ϑ
′
d)ρdgi = Vdρdgi + ϑ

′
dρdgi = Vdρdgi

Substituting all these in momentum equation and neglecting terms involving

ϑ
′

du
′

d,j, we weill get averaged equation as

∂(VdρdUd,i)

∂t
+
∂(VdρdUd,iUd,j)

∂xj
+
∂Vdρdu

′
d,iu

′
d,j

∂xj
+
∂ρdUd,iϑ

′
du

′
d,j

∂xj
(5.32)

= −Vd
∂P

∂xi
+ Vdρdgi + ϑdfd,i − nṁvUd,i (5.33)

ρdu
′
d,iu

′
d,j is modelled as mentioned below

ρdu
′
d,iu

′
d,j = µd

(∂Ud,i
∂xj

+
∂Ud,j
∂xi

− 2

3

∂Ud,k
∂xk

δij

)
− 2

3
ρdkdδij

µtd is the turbulent viscoisty of droplet phase.

νtd =
µtd
ρd

= Kdνtg

where, Kd is the weight factor accounting for the particle inertia which is given

by

Kd = max
(
KD,

1

1 + Stt

)
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Details can be found in Tu. et al,[44].

where, KD is the numerical dissipation and Stt is the turbulent stokes number

and is given by

Stt =
td
te

where, td is the droplet response time which is given as

td =
ρdϑddd ∗ dd

18µg

te is the eddy characteristic time which is given as

te = 0.125
k̃g
ε̃g

5.6.3 Reynolds Averaged Temperature Equation

The laminar equation is given as

∂ [ρd ϑdCld Td]

∂ t
+∇ · (ρd ϑdCld Td ud) = −n ṁv Cld Td − n ṁv L+ nQ (5.34)

Following the same procedure, which has done for the scalar droplet volume

fraction equation(i.e., droplet phase continuity equation), we will get the final

averaged equation as

∂ϑdρdCldT d
∂t

+
∂ϑdρdCldT dUdj

∂xj
=

∂

∂xi

(
ϑdktd

∂T d
∂xj

)
− nṁvCvdTd − nṁvL+ nQ̇

(5.35)

5.7 k-ε Equation of Gaseous Phase

The familiar single phase k-ε equations will get modified due to the presence of

droplets. Single phase equations can be found in Wilcox [23]. Mathematically,

apart from the additional terms due to evaporation and interphacial force(drag),

there will not be any difference between these single phase and two-phase flows.

The equations are,
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k- Equation

∂ρgk̃g

∂t
+
∂ρgk̃gũgj

∂xj
= µtg

[∂ũgi
∂xj

+
∂ũgj
∂xi
− 2

3

∂ũgk
∂xk

δij

]∂ũgi
∂xj

+
∂

∂xj

[
νg

(
µg
∂k̃g
∂xj

+
µtg
ρgσk

∂ρgk̃g

∂xj

)]
− ρg ε̃g + Ik

(5.36)

and

ε- Equation

∂ρg ε̃g

∂t
+
∂ρg ε̃gũgj

∂xj
= Cε1

ε̃g

k̃g
µtg

[∂ũgi
∂xj

+
∂ũgj
∂xi
− 2

3

∂ũgk
∂xk

δij

]∂ũgi
∂xj

+
∂

∂xj

[
νg

(
µg
∂ε̃g
∂xj

+
µtg
ρgσk

∂ρg ε̃g

∂xj

)]
− Cε2ρg

ε̃2g

k̃g
+ Iε

(5.37)

where, Ik and Iε are the additional terms due to the presence of droplets in k and

ε equations respectively, which can be written as,

Ik = Idk + Iek (5.38)

Iε = Idε + Ieε (5.39)

where, suffix ‘d ’ stands for drag force term and suffix ‘e ’ stands for evaporation

term.

The drag term in k and ε equations are deduced as explained in Chen and

Wood[42]. Term due to evaporation is also derived in the same way.

Idk = 2 ∗ ρg ∗ ρd ∗ Vd ∗
k̃g
td
∗ (1− e−0.0825∗ td

te )

Iek = 2 ∗ ρg ∗ n ∗ ṁv ∗ k̃g ∗ (e−0.0825∗ td
te )

Iε is considered to have effects only due to drag. Effects due to evaporation is

neglected. It is given as

Iε = Idε = −2 ∗ ρg ∗ ρd ∗ Vd ∗
ε̃g
td

Then the turbulent kinematic viscosity of gaseous phase is computed using

νtg =
Cµk̃g ∗ k̃g

ε̃g
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Model constants are given as Cε1 = 1.44, Cε2 = 1.92, Cµ = 0.09, σε = 1.0,

σk = 1.3, following the practice of single phase flows.

µtd is obtained using value of νtg as mentioned earlier.

5.8 Solution Algorithm

1. Initialize values of properties and flow variables for both phases, grids and

other parameters.

2. Transfer (n+ 1)th time level values to nth time level including all solvable

variables like volume fraction, velocity, density, temperature for the gas

phase and droplet phase, fuel mass fraction and pressure.

3. Compute ṁv using equation

Sh =
ṁv

πDρgBMdd

where Sh is Sherwood number, BM is mass transfer number, D is the dif-

fusion coefficient.

Shf (1 +BM,f )
0.7 = 2 + 0.914Re

1/2
M Sc

1/3
f (1 + 1.235I0.372

∞ )

ReM =
ρ∞ddU∞
µf

Scf =
µf
ρfD

the suffix f stands for flim, ∞ stands for the free stream.

Equation can be found in the work done by Al-Sood[28].

I∞ =
u

′

U
=

√
2kg/3

U
where, U =

√
u2 + v2 + w2

4. Solve for all other source terms with previous time step values. Compute

and store diameter using the following relation

dd = do

(ϑd
ϑo

) 1
3

where, dd and ϑo are the initial diameter and volume fraction.
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5. Solve Reynolds Averaged Momentum Equation for gaseous phase with the

help of previous time step values of kg and εg. It’s a two-step procedure

(predictor-corrector). Along with update the values of kg and εg by solving

both turbulent transport equations. Here both RANS and turbulent trans-

port equations are coupled. Using the updated values of kg and εg, each

time update the value of evaporation rate as well.

6. Undertake the same procedure for Averaged Momentum Equation of droplet

phase. Here difference from that of gaseous phase is using an empirical

relation for finding out the value of kinematic viscosity which depends on

kg and εg instead of solving droplet phase turbulent transport equation.

Each time take values of kg and εg and solve for droplet velocity.

7. Repeat the step 5 and 6 together until the global convergence is reached.

We now have Un+1
g and Un+1

d .

8. Solve continuity equation of droplet phase to get the mean value of droplet

phase to get the mean value of droplet volume fraction. Using it we will

get the volume fraction of gaseous phase.

ϑg = 1− ϑd

9. Solve then the continuity equation of gaseous phase which help us to get

the value of ρn+1
g .

10. Solve the energy equation for the droplet phase equation for droplet tem-

perature T n+1
d .

11. Solve the evaporated fuel vapour mass fraction equation to obtain Y n+1
F .

12. Solve the gas-phase energy equation to obtain T n+1
g .

13. If the stopping criterion for the time stepping is not met return to step 2

and repeat steps 2 through 12 for the next time step and march forward in

time.



Chapter 6

Conclusion and Scope of the
Future work

Conclusion

An Eulerian-Eulerian Two-Fluid model for simulating laminar gas-droplet flows

has been successfully implemented in an open source CFD solver, OpenFOAM.

The classical model for droplet evaporation as developed by Splading [10] has been

implemented in the module and it was found to give satisfactory results for low

and moderate evaporation rates with simplifying assumptions. The evaporation

model was tested by solving different test problems and the results obtained

were compared with that of obtained by Anupravaha, which was validated by

Mrunalini[4]. Results showed a good match between the model predictions and

Anupravaha results when compared to the commercial software FLUENT.

Some discrepancies were found in the values of gas-phase density. This is due

to the fact that Fluent uses a mixing rule to compute mixture density, while a

transport equation for density is solved in the present solver. Fluent keeps the

initial diameter value for the calculation of drag force whereas we update the

diameter value (using updated droplet volume fraction value), which also cause

some discrepancies.

Scope of the Future work

The module is implemented in a general purpose CFD solver for both 2-D and 3-

D problems but has been tested only for 2-D problems. The implementation has

to be further verified against 3-D test cases. Most of the engineering or practical
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applications, as we see are of turbulent in nature. Hence modeling turbulent gas-

droplet flow is required, for which a model is proposed in this thesis. It needs to be

implemented in the solver. It can be implemented in Anupravaha. The turbulent

model would open a way for the solver to simulate problems involving droplet

combustion, if combustion modelling is also incorporated in the equations.

The present evaporation model assumes uniform temperature within the droplet

which may prove inaccurate for high evaporation rate conditions. Sophisticated

evaporation models which take into account the non-equilibrium effects and are

suitable for high evaporation rate conditions can also be implemented. These

models are able to simulate complex problems like turbulent evaporating sprays

involving high droplet Reynolds number and evaporation rate. Detailed analysis

and comparison of such models are found in Faeth [13], Miller [32] and Sirignano

[2]. Non-uniformity of the droplet temperature can be modeled by adding extra

heat transfer terms in the droplet phase energy equation, as done by Miller [32].

Convergence difficulties were observed for gas-droplet flows with very small values

of volume fraction (≤ 5 × 10−6) in the domain. Further investigation is needed

in this regard.

The solver considers mono-sized, single component droplets. For problems of

practical importance continuous size distribution can be represented by droplets

with different sizes which correspond to classes of droplets, which each class hav-

ing its separate set of equations as done by Guo [7]. Many practical applications

involving blended fuels require simulation of multi-component droplets. Further

development is required in these fields. We have developed a model by neglecting

some complex phenomena like droplet break-up, droplet coalescence, internal cir-

culation inside droplet, which can provide inaccuracy especially in dense turbulent

flow. The solver can be further developed in this direction.



Appendix A

Properties of fluids used

Our laminar evaporation model is validated using air as continuous phase and

n-heptane as liquid droplet phase. Properties of these fluids are:

A.1 Properties of n-heptane

• Normal boiling Temperature Tbn = 371.6K, Molecular weightMF = 100.204,

Critical temperature Tcri = 540.17K, Critical pressure Pcri = 2631.633 kPa

• Vapour pressure is obtained by the Clausius-Clapeyron equation as

PFS
= exp

(
14.2146− 3151.68

Td − 43

)
forTd > Tbn (kPa) (A.1)

PFS
= exp

(
14.3896− 3209.45

Td − 43

)
forTd <= Tbn (kPa) (A.2)

where Td is the droplet temperature in K and Tbn is the saturation temper-

ature at atmospheric pressure.

• Latent heat of vaporization as a function of droplet temperature is

L = 317.8× 1000.0

(
540.17− Td

540.17− 371.4

)−0.38

(J/kg) (A.3)

• Specific heat at constant pressure for fuel vapour

Cvd = (363 + 0.467Tr)× (5− 0.001× 883.05) (J/kg K) (A.4)
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• Thermal conductivity of vapour in (W/mK)

kv = 10−7 × (14.52Tref − 5.14)2/3 × (CvdMF/λ) (A.5)

where

λ = T
1/6
cri ×M0.5

F

(
Patm
Pcri

)2/3

(A.6)

where Tref = Tr/Tcri

• Density of liquid fuel, ρd in (kg/m3)

For Td <= 538.0

ρd = −941.03 + 19.96181Td − 0.08612051T 2
d + 1.579494× 10−4 T 3

d

−1.089345× 10−7 T 4
d

(A.7)

Otherwise

ρd = 4.19528×107−2.360524×105 Td + 442.7316T 2
d −0.2767921Td (A.8)

where Tr is the reference temperature obtained by the ‘1/3’ rule.

A.2 Properties of Air

• Specific heat at constant pressure for air

Cpa = c1 + c2

(
c3/Tr

sinh(c3/Tr)

)2

+ c4

(
c5/Tr

cosh(c5/Tr)

)2

(A.9)

where c1 = 0.2896 × 105, c2 = 0.09390 × 105, c3 = 3.0120 × 103, c4 =

0.0758× 105, c5 = 1484

In the above expression Cpa is in J/kmolK

• Thermal conductivity for air in (W/mK)

ka = 1.5207×10−11 T 3
r −4.8574×10−8 T 2

r +1.0184×10−4 Tr−3.9333×10−4

(A.10)
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