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We present a model of ant traffic considering individual ants as self-propelled particles undergoing
single file motion on a one-dimensional trail. Recent experiments on unidirectional ant traffic in well-
formed natural trails showed that the collective velocity of ants remains approximately unchanged,
leading to absence of jamming even at very high densities [John et. al., Phys. Rev. Lett. 102, 108001
(2009)]. Assuming a feedback control mechanism of self-propulsion force generated by each ant
using information about the distance from the ant in front, our model captures all the main features
observed in the experiment. The distance headway distribution shows a maximum corresponding to
separations within clusters. The position of this maximum remains independent of average number
density. We find a non-equilibrium first order transition, with the formation of an infinite cluster
at a threshold density where all the ants in the system suddenly become part of a single cluster.

PACS numbers: 05.40.Jc, 02.50.Ey, 87.23.Cc, 89.75.Fb

I. INTRODUCTION

The study of collective motion of self propelled parti-
cles – from sub-cellular machines like molecular motors
moving on polymeric tracks to unicellular life forms like
bacteria, from the co-ordinated motion of insects as small
as ants to large mammals like humans – shows emergence
of rich dynamical behavior and patterns starting with
simple rules for the motion of individual units [1–3]. The
study of ants, in particular, is fascinating from more than
one perspective [4]. From a traffic point of view, the col-
lective motion of ants shows self organization of flow to
maximize efficiency in transport [5, 6], and spontaneous
formation of lanes in bi-directional traffic [7, 8]. Another
interesting feature of ant motion is the spontaneous selec-
tion of shortest path between the nest and the food source
by using only local dynamical rules, without the aid of a
global perspective. This has inspired theoretical work on
new kinds of optimization algorithms [9, 10]. While walk-
ing, ants leave chemical trails in form of pheromone, that
later ants follow leading to ant trail formation [4, 11–16].
Formation of these trails have been described theoreti-
cally in terms of active-walker models. The mechanism
is ubiquitous in nature and similar to river basin for-
mation [17], formation of pedestrian trails [18, 19], and
formation of axon bundles in mammalian sensory neu-
rons [20, 21].

A recent experimental study on collective motion
of ants within preformed natural trails in the species
Leptogenys processionalis showed several intriguing fea-
tures [22]. It found absence of jamming of ant-traffic even
at very high densities – with only a minor decrease in ve-
locity at higher density, reduction in velocity-fluctuations
with increasing densities, as well as formation of clusters
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FIG. 1: (Color online) Average velocity with density. The
symbols ◦ with error bars denote our simulation results,
while the small 4 symbols denote data extracted from Fig.3
of Ref. [22]. The dashed line is the mean filed estimate
〈v〉 = f0(1−ρ/ρf ). Inset: The fundamental diagram showing
current as a function of density. The dashed line is a plot of
mean field estimate 〈j〉 = ρ〈v〉.

of ants within the trail. The flow behavior is in contrast
to vehicular traffic where a decrease of flux is observed at
high densities, indicating congestion and a tendency to
form jams, captured by flux-density plots known as fun-
damental diagrams of traffic flow [23]. In this paper, we
present a model of self-propelled particles performing sin-
gle file motion, which captures all the main observations
of Ref. [22]. In single file motion particles constrained
to move in one dimension can not overtake each other,
performing sub-diffusive dynamics [24–28].

Earlier theoretical work on ant traffic using asymmet-
ric hopping and particle-exclusion process on discrete lat-
tice showed various interesting features, including non-
monotonic dependence of velocity on density [29, 30].
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However, these models predict jamming at high densi-
ties associated with exclusion interaction in a discrete
lattice and random sequential movement of entities gov-
erning the dynamics. They fail to capture the absence
of jamming in ant traffic as observed in Ref. [22]. Our
model takes a different approach. The ants are viewed
as particles interacting via nearest-neighbor repulsion.
The particles perform continuum dynamics and move to-
gether, as opposed to random sequential hopping on dis-
crete lattice considered in Ref. [29, 30]. The biological
inputs in the model come through generation of active
self-propulsion force in the particles, that has a deter-
ministic part and a stochastic noise.

Most ants have extremely limited eyesight, but are still
able to efficiently manage traffic by co-operative trail
formation. These trails are made by ants depositing
pheromones on the ground which act as signals for the
trailing ants to follow the same path. Pheromones evap-
orate with a rate dependent on environmental factors.
Ants use differential sensing of pheromones to guide their
motion. The sensitivity to concentration gradient de-
creases at high concentrations. An earlier model of diffus-
ing agents interacting with external field of pheromone,
which itself undergoes addition, evaporation and diffu-
sion dynamics led to emergence of trails at reasonable
parameter regimes [16]. With time, continuous deposi-
tion of pheromones make the signal from a trail strong
enough such that all successive ants follow the same path
without straying. Our model considers ant motion on
preformed trails, thus considering ants as particles mov-
ing in one dimension (1D). The motion within this trail
could be guided by local sensing – limited vision or anten-
nal touch. We incorporate a feedback mechanism based
on inputs from these local interactions into the active
force generation. Our model captures all the main fea-
tures of experimental results, showing how this feedback
can crucially control ant motion. We present further pre-
dictions that are amenable to experimental verification.

II. MODEL AND SIMULATION

We model the motion of ants in a preformed trail, as
one dimensional (1D) system of self propelled particles
(SPP). The dynamics of i-th SPP can be described in
terms of the Langevin equations of motion

ẋi = vi

v̇i = −γvi + ηi(t) + Fi − ∂i
∑

j=i±1
U(xij), (1)

where Fi(xi, xi+1) is a self-propulsion force, U(xij) de-
notes a repulsive nearest neighbor interaction ensuring
that particles can not cross each other in 1D. The vis-
cous dissipation term −γvi, models dissipation in en-
ergy, whose origin may lie within the ant’s body - in
the movement of muscles that it utilizes to walk, or in
friction with local environment, like the walking surface.

The noise ηi(t) is interpreted as a stochastic part of self-
propulsion, and thus it has a non-equilibrium origin. We
assume that the time-scales associated with generation
of self-propelled force that comes from an internal en-
ergy depot is much faster with respect to the mechan-
ical motion of the ants [31]. Thus the stochastic force
is assumed to be Gaussian white noise with 〈ηi(t)〉 = 0,
〈ηi(t)ηj(t′)〉 = 2D0δ(t− t′)δij where D0(xi, xi+1) denotes
non-equilibrium fluctuations.

The interaction potential between nearest neighbors
U(xij) models impenetrability of the ants, with xij =
xj − xi with j = i ± 1. We choose the repulsive part
of Lennard- Jonnes potential U(xij) = 4ε[(σ/xij)

12 −
(σ/xij)

6 + 1/4], with a cutoff distance set to rc = 21/6σ
such that U(xij) = 0 if |xij | > rc. Here σ sets the unit
of length and is of the order of the average length of one
ant, and ε sets the unit of energy. We perform molecu-
lar dynamics (MD) simulations using the velocity- Ver-
let scheme, with integration time step δt = 0.01τ where
τ = σ

√
m/ε is the unit of time and correspond to 1s.

We fix the local temperatures at D0(xi, t)/γkB using
Langevin thermostat characterized by an isotropic fric-
tion γ = 1/τ .

If one uses a constant self-propulsion force Fi, the
Langevin model would generate average particle veloc-
ity completely independent of density. However, experi-
ments [22] showed a weak but steady decline in velocity
with increasing density. This means that the ants sense
the local crowding and use a feedback mechanism to con-
trol the amount of self-propulsion force generated. Thus
we model the self-propulsion force generated by i-th ant
as Fi = γf0(1−1/ρfδxi) where δxi = xi+1−xi, the sepa-
ration between i-th ant and the nearest neighbor in front,
and ρf is a constant. In using the distance headway δxi
to model self-propulsion feedback, we have assumed that
the ant senses the position of its leading neighbor using
its limited vision or antennal touch, but remains indiffer-
ent to the trailing neighbor with regard to self-propulsion
force generation. On an average, 〈δxi〉 is a measure of in-
verse local density 1/ρ. Using a fit to the experiments
on ant-trails [22] we choose f0 = 6.66 and ρf = 1.73 to
characterize the force Fi (Fig.1).

The stochastic force ηi(t) helps the ants to explore the
area around them, e.g., for food, in the absence of ex-
ternal cue like a well formed trail, or odorants from food
source. While this noise is a good strategy for explo-
ration, it can be a hindrance in traffic flow once a trail is
formed, since it can lead to enhanced collisions. In fact,
it is well known from the work by Nagel and Schrecken-
berg [32] that the introduction of noise in realistic models
of traffic leads to traffic jams. We thus model our ants to
have a feedback mechanism that reduces noise as the local
density increases, leading to reduced collisions and thus
reducing the probability of traffic jams. As for the self-
propulsion force above, the simplest such choice would
be a linear decrease with local density (∼ 1/δxi), i.e.

D0(xi, t) = D̃0(1 − 1/ρDδxi) with D̃0 = γkBT charac-
terizing an equilibrium-like fluctuation strength, and ρD
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FIG. 2: (Color online) Distribution functions. (a) Probability distribution of velocity of each particle at densities ρ =
0.1, 0.3, 0.5, 0.7, 0.9. The points are obtained from simulation, and the lines show expected Gaussian distributions with varying
peaks and widths. (b)–(d) Simulation results for probability distributions of distance headways, at densities ρ = 0.2, 0.5, 0.7.

is a constant. However diffusivity D0 has to be positive
for all possible δxi, a condition that would be violated
at high densities if the above mentioned linear form were
chosen. Thus we choose D0(xi, t) = D̃0 exp(−1/ρDδxi)
which captures well the experimentally obtained fluctu-
ations in velocities with D̃0 = 7.66 and ρD = 0.47, and
remains positive at all densities (Fig.1).

III. RESULTS AND DISCUSSION

We have chosen our parameters defining the self-
propulsion force and fluctuations to fit the data from
experiments [22]. As can be seen from Fig. 1, our re-
sults for the mean velocity as well as the variance de-
scribe the data well. Replacing δxi by the mean-field
value 〈δxi〉 = 1/ρ, the steady state mean velocity ob-
tained from Eq. 1 is 〈v〉 = f0(1 − ρ/ρf ), leading to a
mean flux j = ρ(1− ρ/ρf ) which agrees with simulation
results. Note that our simple assumption for feedback
controlled self-propulsion gives an expression of flux j
that has the same behavior as the discrete totally asym-

metric simple exclusion process (TASEP) [2], however
with a ρf that lies at an inaccessibly large value. Thus
〈v〉 shows a slight decrease with density in the experimen-
tally accessed regime. Unlike the usual traffic model, the
current or flow in our system (Fig. 1: inset) does not
show a congested branch at high densities thus reflecting
the absence of jamming. In Fig. 2(a) we show the prob-
ability distribution of velocities of individual particles at
various values of mean density. The width of the velocity
distribution reduces with increasing density. This hap-
pens as the ants reduce the strength of the noise ηi(t)
in self propulsion using feedback from the local density.
Thus, our model captures the two main features of ant
traffic on well-formed trails [22]: absence of jamming even
at high densities, and a decrease in velocity fluctuations
with increase in density.

Comparison of our model for ants with Langevin mod-
els for traffic [33], shows that the central difference be-
tween cars and ants is in the choice of self propulsion
force. In traffic models, self propulsion is reduced to zero
as the distance between two cars vanishes, to avoid col-
lision between cars. Whereas in natural ant traffic, ants
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FIG. 3: (Color online) Cluster- size distributions P (n) at var-
ious densities ρ denoted in the legend. The largest possible
cluster size is n = N = 4096. The semi-log plots show expo-
nential tails of the distributions exp(−n/nc).

may come into touching distances. In our model for ants,
the active forces decrease but by a small amount as ants
approach each other within touching distances (Fi > 0 at
δxi = 1). The fact that ants collide with each other is not
surprising since they are practically blind and navigate
essentially through pheromone sensing.

The fluctuations reveal another important aspect of
ant traffic. The reduction of velocity fluctuation with
density led to our choice for the diffusion constant getting
exponentially suppressed with increase in local density.
This ensures that the ant fluid reduces the local effec-
tive temperature when density increases, to keep a control
over the local pressure. This means that while ants do not
completely avoid collisions among themselves, they do
make sure that the number of collisions per unit time are
kept largely unchanged. The reduction of noise strength
D0, ensures that at high densities, all ants will generate
almost exactly the same self-propulsion force, thus ev-
erybody may move together although being in touching
distances. Note that if the noise were independent of lo-
cal density, a faster ant would stop because of collision
with a slower ant – but if everyone moves with exactly
the same velocity, jamming is avoided.

The other quantity that we compare with experi-
mental data is the distribution of headway distances
δxi. Similar to the experiments in Ref. [22], we
find log-normal behavior at short distances P (δxi) =

(1/
√

2πσ2
logδx

2
i ) exp[−{ln(δxi)−µ}2/2σ2

log] and exponen-

tial behavior at long distances P (δxi) = A exp(−δxi/λ)
as seen in Figs. 2(b-d). To understand the origin of ex-
ponential tail in P (δxi) we consider the single-file mo-
tion. In a system of 1D hard rods of length a, the
nearest neighbor distribution at equilibrium is given by
gnn(x, x′) = [ρ2/(1 − ρa)] exp[−(|x − x′| − a)/λ] with
λ = (1−ρa)/ρ [34]. Although in our case the particles are
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FIG. 4: (Color online) Typical cluster size nc as a function
of overall density ρ, shows sharp increase in nc at ρ > 0.9,
indicating a non-equilibrium first order transition.

self-propelled, we obtain the same predominantly expo-
nential decay in the distribution of separation between
consecutive particles P (δxi) = A exp(−δxi/λ) with de-
cay length λ = (1 − ρa)/ρ that fits well to all the sim-
ulation data with a = 0.96 [Figs. 2(b-d)]. The origin
of the log-normal behavior at small δxi is in the non-
equilibrium self-propulsion. We find that the peak in the
headway distribution at δxi = 1.4 is independent of the
mean system density. This suggests formation of clusters
with this typical inter-particle separation within a clus-
ter, irrespective of overall density. Similar behavior was
observed in the experiment of Ref. [22].

In order to probe this point further, we perform a clus-
tering analysis. A randomly chosen particle is assumed
to be part of the first cluster. If its nearest neighbors are
separated from this particle by a distance less than 1.4,
which is the average headway separation within a cluster,
they are also assigned to the same cluster. This proce-
dure is continued until no more particles can be assigned
to the first cluster. Then a new random particle which re-
mained unclustered so far is assigned to the next cluster,
and the clustering procedure continued in the same way
as before until all particles are assigned to a cluster [35].
The size of clusters n may vary from 1 to N , the total
number of particles in the system. The resulting cluster
size distributions P (n) calculated from the steady state
dynamics of our MD simulation are shown in Fig. 3. In
order to obtain better statistics for larger clusters, we
performed these simulations using N = 4096 particles.
The distribution of clusters of ants P (n) ∼ exp(−n/nc)
at all densities ρ < 1, with the tail going up to higher
fractions n/N signifying increase in typical cluster size.
At further higher densities ρ ≥ 0.95 clusters containing
all the ants in the system starts to emerge. In the limit of
ρ = 1, all the ants belong to the same cluster, as fluctu-
ations of headway distances get completely suppressed.

We obtain the typical cluster sizes nc at various densi-
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ties by fitting P (n) to the exponential form exp(−n/nc).
nc shows a sharp increase for densities ρ > ρc where
ρc = 0.9 (see Fig.4). This shows a non-equilibrium first
order phase transition towards formation of an infinite
cluster, containing all the ants available in the system.
Note that this infinite cluster formation is unlike the ag-
gregation models of Ref. [36] where the transition was
associated with a change in the cluster-size distribution
from exponential to power law.

IV. SUMMARY & OUTLOOK

We have presented a model for repulsively interact-
ing self-propelled particles undergoing single file motion
that shows properties in good agreement with the ex-
perimental observations on ants presented in Ref. [22].
To describe ant-traffic on pre-formed trails, we assumed
a generic local crowding dependent feedback control for
the deterministic and stochastic parts of self-propulsion
force. In agreement with experiments, we find an absence
of jamming at all densities. Our model captures the de-
crease in velocity fluctuations observed in real ants, and
shows a peak in the headway distribution which is ap-
proximately independent of ant density. We performed

a clustering analysis to find an exponential cluster size
distribution, independent of mean density. The typical
cluster size shows a discontinuous increase at a threshold
density indicating a first order transition. These predic-
tions may be verified from further experiments.

Our model provides a detailed understanding of the
dynamics of ants in preformed trails and has implica-
tions for technology, e.g., in mechanisms for self driving
cars whose traffic would not jam and robotic swarms that
would carry out tasks efficiently and safely like ants. It
remains to be seen what patterns emerge from an active
walker model with a feedback controlled self-propulsion
mechanism proposed in this paper, and whether and to
what extent they describe formation of ant trails – in
particular, how far they can describe milling or lane-
formation in ants [8].
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