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Abstract

This thesis seeks methods for minimal linear representation and subsequently low rate sampling of

electrocardiogram (ECG) signals. ECG, a non-invasive approach to record heart’s electrical activity,

has been an ubiquitous tool for preliminary as well as complicated diagnoses of heart related issues.

The modern lifestyle of ever increasing population has elevated the rate of heart diseases. Many a

times, periodic monitoring of ECG, such as holter monitors, becomes imperative for diagnosis and

curing of heart conditions. Some of the major issues in maintaining quality of healthcare services

are low doctor to patient ratio in urban as well as resource constrained rural localities, unavailability

of trained medical professionals in remote areas, infrastructural constraints etc. In this backdrop,

personalized and mobile healthcare, such as telecardiology has been proposed.

In order to realize a resource friendly telecardiology system, several engineering aspects need

attention. This thesis focuses on a few related signal processing issues. Specifically, compact repre-

sentation and low rate sampling of ECG signals, subject to certain representation/ reconstruction

accuracy are discussed. It is observed that ‘sym4’ and ‘db4’ wavelets pack the energy of various

ECG signals in least number of coefficients. Further, the proposed hybrid Fourier/ wavelet method

is shown to offer even sparser representation by using Fourier approximation for the low frequency

component and wavelet approximation for the remaining part of the signals. The former contains

most of the signal energy whereas the latter accounts for key clinical information at feature points.

Next, sparsity of ECG signals is exploited to demonstrate near universality of the proposed nonuni-

form sampling scheme. Recent advances in compressive sensing (CS) theory have facilitated recovery

from samples acquired in a nonuniform manner.

The evaluation of proposed methods is based on empirical studies on large ECG datasets available

publicly. This is justified as proposing a statistical model for ECG signals is difficult on account of

wide variety of such signals. Objective quality measures are used to judge the performance.
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Chapter 1

Introduction

Figure 1.1: Schematic of a Generic ECG equipment

Heart related diseases such as ar-

rhythmias are a leading cause of

deaths across the world. An indis-

pensable tool in diagnosing, monitor-

ing and managing such diseases is the

electrocardiogram (ECG), which is a

noninvasive record of heart’s electrical

activity. Not surprisingly, the impact of heart diseases is especially severe in developing countries,

where the high cost of ECG machines remains an impediment towards satisfactory disease man-

agement [1]. Compounding the challenge, grid electricity is generally erratic in the worst-affected

(remote) locations, which necessitates low-power operation that can be sustained even via sporadic

access to grid power. Further, on account of low doctor-to-patient ratio and unavailability of trained

medical professionals, telecardiology appears to be a promising solution. Telecardiology involves ac-

quisition and transmission of electrocardiogram (ECG) signals to a remote facility, where diagnosis

is performed towards possible intervention. Unfortunately, the far flung population, who are perhaps

in the biggest need of telecardiology, are often under-privileged and have limited access even to nom-

inal infrastructure such as bandwidth and power. In such circumstances, it becomes imperative to

design healthcare systems taking infrastructural constraints into account. Note that one can reduce

storage and transmission requirements by compressing ECG signals. In dire circumstances, where

inadequate power makes intensive compression algorithms infeasible, one may adopt the low-power

alternative of compressive sampling, albeit sacrificing some compression efficiency.

Central to this discussion lies the ECG equipment. A classical ECG machine, where cardiac

activity is picked up by an electrode (or multiple electrodes), and continuously recorded on a roll

of paper, does not fit in the scope of thesis, as it requires high operational power arising from

continuous operation, and motorized recording. In today’s digital era, ECG records are increasingly

being maintained in electronic form, and machines directly producing digitized ECG signals have

become commonplace. As depicted in figure 1.1, a digital ECG equipment picks up the underlying

analog signal using appropriate transducers, conditions it suitably, samples and converts it to the

digital form using an analog-to-digital converter [2]. The digital data can then be printed or displayed

for diagnosis of potential abnormalities by medical professionals. Those data can also be used for
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automated decision making. Very often, such signals are stored locally, or transmitted to a remote

location, respectively, for decision making at a later point, or at a distance. Accordingly, with a

view to minimize storage requirement and/or communication bandwidth, one desires to represent

ECG signals as compactly as possible without adversely affecting eventual clinical interpretation.

In the long run, a field-deployable system is envisioned that (i) records only the minimal amount

of data, which are adequate for faithful reconstruction of the original ECG signal, and (ii) operates

at an extremely low power. For example, one may introduce a resource friendly Holter monitor

which is generally a small, portable, battery-powered medical device. It is employed when a doctor

needs more information about the functioning of heart than a routine electrocardiogram. Holter

monitoring refers to a 24-hour, continuous test to record your heart rate and rhythm. A patient

wears the Holter monitor for 12 to 48 hours as they go about their normal daily routines. Its typical

use would be in a health drive for collection of ECG data from large rural populations living away

from the power grid. The ultra-low-power requirement would obviate the need to either carry a

weighty load of electrical cells, or to make frequent trips to a charging station which may be far

away. The reconstruction algorithm does not run on portable system, which only collects data

sufficient for later reconstruction. Such data are transferred to a resource-rich central facility, where

the reconstructed signal is obtained by a potentially complex algorithm.

1.1 Scope of the Thesis

Figure 1.2: Low cost ECG: Some of the engineering opportunities and scope of the thesis

Figure 1.2 depicts several ways to realize low cost telecardiology with the help of a generic ECG

equipment. Those include (i) reduction in number of leads in an ECG equipment making it portable,

(ii)classifying ECG signals into normal and abnormal classes prior to transmission, (iii) ECG com-

pression and (iv) low rate sampling. For example, Chandra et al. have presented a system level

study on how classification of ECG based on Hurst exponent is instrumental in saving resources [3].

Maheshwari et al. have presented a study on reduced lead system selection methodology for reliable

standard 12-lead reconstruction targeting personalized remote health monitoring applications [4].

The focus of this thesis is on minimal linear representation of electrocardiogram signals and

applications that are benefited with such minimal representation (highlighted clouds in figure 1.2).

Detailed problem description in mathematical terms is discussed in the next chapter. It is imperative
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to study the properties of ECG signals that help achieving aforementioned goals. Towards this,

various analyses of ECG signals in Fourier and wavelet domain are presented in chapter 2, followed by

some results on choice of wavelets for sparsest representation of ECG signals. Taking one step further,

hybrid Fourier/ wavelet approximation is shown to represent ECG signals even more succinctly, with

certain cost involved. Next, various transform based representations of ECG signals are compared.

Further, chapter 2 also shows a comparison among proposed hybrid scheme, representations using

overcomplete dictionaries, wavelet bases, discrete cosine transform and Karhunen-Loeve (KL) bases

derived from the signals. Next, chapter 3 presents the second area of focus, namely low rate sampling

of ECG signals. First, compressive sampling of ECG signals with random measurement matrices is

presented in brief. Next, near-universality of proposed nonuniform sampling of ECG signals, using

measurement matrices that are row-restrictions of identity matrices is presented. Finally, chapter 3

presents some closing remarks and future scope.

1.2 Literature Survey

As discussed in the previous section, this thesis studies minimal linear representations of ECG signals

and corresponding applications. The literature available in this context can roughly be divided into

a few categories such as (a) compression of ECG signals exploiting their properties in time domain,

(b) transform coding based compression that includes discrete wavelet transform (DWT), discrete

cosine transform (DCT), Karhunen-Loève transform (KLT) and dictionary based representations,

(c) adaptive sampling schemes for low-rate telecardiology, (d) compressive sensing (CS) of ECG for

compression and (e) finally compressive sampling for low-power telecardiology. In addition to these,

a few researchers also discuss impact of sampling rates on diagnostic quality and accordingly suggest

objective quality measures for evaluation of algorithms that operate on ECG signals. Although this

thesis does not propose any compression algorithm, the related literature is studied to some extent

as it gives useful insights for finding efficient representation methods.

To begin with, importance of minimal representation for various applications is discussed. Next,

utility of CS in the context of envisaged low-cost, low-power telecardiology is reviewed. A significant

amount of the literature employing CS for ECG focuses on telecardiology applications, especially

in ambulatory environments. Such approaches are reviewed in [5]. As explained in detail elsewhere

(appendix A) in this thesis, success of CS depends on three key factors, namely, the measurement

operator, signal sparsity and recovery scheme. It is necessary that the signal under consideration

assumes sparsity, either in signal (time/ spatial) domain or in some transformed domain. The

efficacy of the applications such as compression, denoising or compressive sampling, depends on

signal sparsity. In compression, the sparsest representation provides the least dimension in which

the signal space could be embedded. At the same time, such representation allows for the most

efficient denoising, as well as perfect reconstruction from the least number of compressive samples.

Further, the CS measurement or sampling operator performs non-adaptive (signal independent)

linear measurements. It should be incoherent with the sparsifying transform. The CS recovery

algorithm should be able to solve a large underdetermined system of linear equations under sparsity

constraint. Having assured these key factors, further difficulty arises in the actual deployment where

one acquires the signal in a random non-uniform manner rather than conventional uniform sampling.

ECG signal compression has been studied over several decades [6, 7]. Two main streams are
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observed in the literature. The first one focuses on modeling and prediction in time domain. The

other one studies transform based methods, using both fixed and adaptive bases. Both of these areas

are reviewed to some extent.

Direct data compression techniques utilize prediction or interpolation algorithms. These tech-

niques attempt to reduce redundancy in the data by examining a successive number of neighboring

samples. A prediction algorithm utilizes a priori knowledge of some previous samples, while an

interpolation algorithm employs a priori knowledge of both previous and future samples. One of

the early methods for compression of the ECG by prediction or interpolation and entropy encoding

appears in [8]. Baali et al. propose an approach that involves the projection of the excitation signal

on the right eigenvectors of the impulse response matrix of the LPC filter. Each projected value is

then weighted by the corresponding singular value, leading to an approximated sum of exponentially

damped sinusoids [9]. An evaluation of various algorithms for real-time ECG data compression such

as AZTEC( amplitude zone time epoch coding), TRIM (turning point/ recursive improvement),

SAPA-2 (Scan-Along Polygonal Approximation ) etc. is presented in [10, 11, 12, 13, 14].

A variety of compression algorithms represent ECG signals in suitable orthogonal basis and

exploit signal redundancy in the transformed domain. Indeed, success of a compression algorithm

depends on how compactly the signal is represented upon transformation. An ECG data compression

method using Fourier descriptors is presented in [15]. The method is simple, requiring implemen-

tation of forward and inverse FFT. Ahmed et al. have studied ECG data compression with two

specific orthogonal transforms, namely DCT and Haar transform [16]. These two representation

are also compared with KLT. A more detailed study of KLT based representation for ECG appears

in [17, 18]. Kiryu et al. present an early study on ECG data compression by biothogonal basis

and show that the performance is very similar to KLT [19]. Bendifallah et al. present an ECG

compression method using DCT. A uniform scalar dead zone quantizer and arithmetic coding are

the main components of the compression method proposed there.

Various researchers have reported ECG signals to be sparse in wavelet bases. In other words,

only a few wavelet coefficients pack most of the signal energy. Benzid et al. have presented a study

on fixed number of wavelet coefficients to be zeroed for ECG compression [20]. Review of wavelets

in biomedical applications appears in [21]. Abo-Zahhad et al. present ECG compression algorithm

based on coding and energy compaction of wavelet coefficients [22]. It generates a binary stream

that encodes the structure of wavelet coefficients. This stream is compressed using a modified run

length encoding. In an earlier study, they attempt ECG compression based on the compression of

the linearly predicted residuals of the wavelet coefficients [23]. Various researchers have observed

signal sparsity in wavelet and related domains, and have demonstrated the respective efficacy of

wavelet packets [24], SPIHT (set partitioning in hierarchical trees) algorithm [25], and in particular

“Daubechies 4” (db4) wavelet basis [26]. Adaptive/data-dependent basis selection for ECG signals

based on machine learning has also been suggested. Tuzman et al. discuss design of wavelet basis for

ECG data compression [27, 28]. However, the simplicity of a fixed basis is attractive in various appli-

cations. Indeed, empirical studies on wavelet basis selection have been carried out for compression as

well as denoising [29, 30]. Such studies either narrowly target one wavelet family, or consider limited

number of ECG signals, or only one lead, thereby limiting their utility. An exhaustive empirical

study on the choice of wavelets is presented in this thesis [31].

Signal sparsity also plays a crucial role in recent compressive sensing (CS) based telecardiology
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solutions [3, 32]. Other applications, such as denoising, are facilitated by sparsity. For example,

a sparser representation allows more coefficients to fall below a threshold thus allowing more noise

to be removed [33]. CS-based techniques have already proven effective in ECG signal compression

[25, 34, 35, 36]. However, effectiveness of such techniques has been demonstrated for individual ECG

signals. In other words, those are adapted to specific signals, and their effectiveness as a universal

tool remains unknown. In contrast, this work proposes a low-power ECG recorder (the shaded block

in figure 1.1) that would perform well for any ECG signal [37].

1.3 Evaluation Methodology

It is a common practice to evaluate algorithms using standardized datasets of ECG signals. The

most popular database across various research areas focused on ECG is the Physionet database [42].

This thesis also uses three representative datasets, listed in table 1.1.

1.3.1 ECG Datasets

Table 1.1: Various datasets used in this thesis for experimental data generation [42]

Dataset
Sampling
freq.(Hz)

Resolution
(bits)

Availability of
Lead-wise data

No. of
patients

Annotations

PTBDB 1000 16 15 Leads† 290 (549 records) NA
ANSI -AAMI 720 12 - 4 NA
Arrhythmia 360 11 2 Leads 48 Available

† 12 standard leads and 3 Frank - X, Y, Z leads

A variety of standard ECG signals from several patients are made available by Physionet database

[42]. It includes records from subjects with different disease conditions and age groups. In this

work, three representative databases have been used for experimental data generation. Table 1.1

provides information on databases used. Although beatwise annotations are not available, PTB

database has provided labels indicating disease classes. The distribution of said 290 patients is

as follows: myocardial infarction - 148, cardiomyopathy/ heart failure - 18, bundle branch block

- 15, dysrhythmia - 14, myocardial hypertrophy - 7, valvular heart disease - 6, myocarditis - 4,

miscellaneous - 4 and healthy controls - 52. Similarly, ANSI/AAMI EC13 test waveforms represent

the extremes among ECG signals, and are used for testing the functioning of cardiac devices. In

this database, there are four natural ECG records, namely, aami3a, aami3b, aami3c and aami3d,

corresponding the respective cardiac conditions, ventricular bigeminy, slow alternating ventricular

bigeminy, rapid alternating ventricular bigeminy, and bidirectional systoles. Other signals in the

database are synthetic, and are not considered here.

An ECG signal from a database is record of heart activity for several minutes. For example, typ-

ical length of a record exceeds 40000 samples (shown in figure 1.3). For the purpose of experimental

data generation, snippets of certain length are taken into account, instead of one complete record.

Length of such snippets is chosen from the set {256, 512, 1024, 2048, 4096} (in samples), depending

upon the application. Some overlap is maintained between two such snippets. These signal snippets

are mentioned as ‘signal’ henceforth.
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Figure 1.3: Generating snippets from the ECG records

1.3.2 Quality Measures

For an ECG signal x(t), where t ∈ R, a digital ECG machine produces a digital signal x{ti},
where i ∈ Z. For simplicity, denote it by x. An algorithm takes x ∈ RN as input, where N ∈
{256, 512, 1024, 2048, 4096}, and produces x̂. This x̂ can be one of the following: an approximated

version of x, decompressed version of compressed x, recovered from low-rate samples of x or denoised

version of the received noisy x. The related algorithm is evaluated using some performance evaluation

criteria. In most of the cases, such a criterion is measuring the distance between x and x̂ using some

distance measure d. It is necessary that such objective measure is in accordance with the doctors’

opinion, for which researchers resort to mean opinion scores (MOS) collection [43, 44, 45, 46].

This work uses R2 statistics as a quality measure to evaluate proposed methods [2]. The R2

measure between x and x̂ is defined by

R2 = 1− ||x− x̂||2
2

||x− x̄||22 . (1.1)

Here, x̄ denotes the mean value of the signal x. The score is generally presented as a percentage.

R2 appears to be very similar to the popular percentage root-mean-squared difference (PRD). It is

suggested that DC bias should be subtracted from the denominator term in PRD in order to avoid

artificially lower values that the true measure [5]. R2 is thus one minus PRD with mean subtracted

from the denominator term. Note that a perfect reconstruction leads to 100% R2 accuracy, and it

is desirable to maintain high R2 values.

At this point, notice that even if average signal accuracy (as measured by R2) is high, error

concentration at feature points could undermine the integrity of clinically relevant information.

This indicates that high signal accuracy, only if accompanied by well distributed approximation

error, would ensure integrity of clinical information. In other words, it is desirable to have an error

distribution without heavy tail, and less variation in error variance taken over successive windows.

For the sake of completeness, the variance of a discrete-time signal x is defined below

V ar(x) =
1

N − 1

N∑
i=1

(xi − x̄)2. (1.2)
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Chapter 2

Sparse Representation of

Electrocardiograms

The efficacy of applications such as compression, denoising or compressive sampling, depends on

signal sparsity. In compression, the sparsest representation provides the least dimension in which

the signal space could be embedded (see section A.2). At the same time, such representation allows

for the most efficient denoising, as well as perfect reconstruction from the least number of com-

pressive samples. This chapter explores a few ways to represent ECG signals in minimal number

of transform coefficients. Initially, signal approximation problem is described mathematically and

some properties of ECG signals have been studied. Next, cumulative energy packing by various

wavelets has been studied, in order to find wavelet(s) that offer succinct representation. A major

part of this chapter is dedicated for the proposed ECG approximation method, called as Hybrid

Fourier/ wavelet approximation [47]. The concluding section compares hybrid approximation with

various representations in well known orthogonal bases, as well as Karhunen-Loève (KL) basis and

dictionary based representation.

2.1 Some Characteristics of ECG Signals

To begin with, relevant properties of ECG signals have been studied which in turn guide the design of

efficient representation. As shown in figure 2.1a, Fourier spectrum of an ECG signal often possesses

large number of significant components stretching up to an appreciably high frequency. In other

words, the Fourier representation of ECG signals is generally not sparse. Further, signal approxi-

mation error using Fourier coefficients tends to accumulate near feature points (see figure 2.10(c)),

undermining clinical fidelity. The two undesirable properties, namely, the lack of sparsity, and

inappropriate error shaping, generally make Fourier approximation unattractive.

In this backdrop, it is necessary to examine the structure of ECG signals, which consists of a

strong rhythmic (low-pass) component, and various temporally localized features (high-pass com-

ponent). The former contains the lion’s share of signal energy. Specifically, figure 2.1b depicts a

conservative example, where 90% of the signal energy is packed only up to a frequency of about

30Hz. Interestingly, notwithstanding its lack of suitability for encoding the entire spectrum, Fourier

analysis remains attractive for encoding such low-pass component. On the other hand, the the resid-
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(a)
(b)

Figure 2.1: (a) Power spectrum of signal aami3c, (b) [Cumulative energy plot for aami3c:] Com-
parison of Fourier and wavelet techniques in terms of ECG energy packing.

ual high-pass component accounts for temporally localized features that are better represented by

wavelets. Clearly, the latter component would require a far larger number of coefficients in a Fourier

representation. In view of the above observation, an encoding algorithm is proposed that divides

the ECG spectrum into low-pass and high-pass components as above, and use the Fourier and the

wavelet methods respectively for their encoding. In this work, “db4” wavelet basis is used widely,

in view of its reported superiority [26].

2.2 ECG Approximation: Theoretical Context

In the beginning the ECG signal approximation problem is placed in known theoretical context. In

particular, the problem boils down to an minimum description length (MDL) problem with search

space restrictions [48]. Consider set F of ECG signals of length N . Intuitively, F should be a

relatively small subset of the set RN of all N -length signals. In the linear signal approximation

problem, one assumes the existence of subspace ΣK of dimension K << N such that projection x̂

of any x ∈ F onto ΣK provides an ε-accurate linear approximation, i.e., ‖x − x̂‖ < ε‖x‖ for small

ε > 0. Here ‖ · ‖ indicates norm generally, and the 2-norm specifically. One then seeks that subspace

which achieves ε-accuracy with minimum K. In transform coding parlance, the above translates to

the problem of identifying the optimal unitary transform U such that the minimum number K of

transform coefficients provides ε-accuracy. In this framework, the same transform U is applied to

each signal x ∈ F , and the locations of the preserved coefficients are independent of x.

The aforementioned problem would simplify if ECG signals were to admit a statistical model. In

such hypothetical scenario, one would view various observed signals as realizations of an underlying

random vector X ∈ RN . In addition, if X were Gaussian, the optimal transform is known to be

the Karhunen-Loève transform (KLT). Further, assuming the KLT coefficients are arranged in the

descending order, one would keep the first K coefficients such that their energy is within a factor ε

of the aggregate signal energy [49]. The optimality of KLT would still hold if the distribution of X

belonged to the broader family of Gaussian scale mixtures, which is known to model a wide class of

physical phenomena [50].

As alluded earlier, statistical approximation (based on stochastic averages) of ECG signals may

not be appropriate, partly because many clinically significant ECG signals occur rather infrequently,
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and their signature includes specific temporal features. This practical requirement is better served

if the worst-case approximation performance over all ECG signals is held above a certain threshold.

In this (deterministic) framework, a strictly linear method appears overly restrictive. Without such

restriction, the problem reduces to an MDL problem [48]. Formally, given any ε > 0, consider any

function pair (φ, ψ) such that z = φ(x), x̃ = ψ(z), and ‖x − x̃‖ ≤ ε for x ∈ F . Further, record

the worst-case (longest) description length of z by sweeping through all x ∈ F . The (φ, ψ) pair for

which the aforementioned worst-case description length is minimized, needs to be obtained.

Finding the optimal pair (φ, ψ) is known to be difficult. As a practical alternative, the optimal

pair is sought over a smaller search space. In this context, the proposed hybrid Fourier/wavelet tech-

nique, where appropriate transform coefficients and their locations (only for wavelet) are retained,

indeed imposes a specific structure on φ (and hence on ψ). In particular, referring to figure 2.5, the

search for φ is conducted only by varying K1 and K2, and wavelet coefficient locations through all

possibilities.

2.3 Choice of Wavelet for Sparsest Representation

Figure 2.2: List of wavelets used

Wavelet Family

Biorthogonal and

Symlets Daubechies Meyerreverse biorthogonal

symN dbN(biorM.N , rbioM.N)

Wavelets used

1.1, 1.3, 1.5, 2.2,

2 to 8 1 to 10 Meyer
2.4, 2.6, 2.8, 3.1,

3.3, 3.5, 3.7, 3.9,

4.4, 5.5, 6.8

Figure 2.3: ECG approximation method

As discussed in the literature survey, adaptive/data-

dependent basis selection for ECG signals based on ma-

chine learning has been suggested several times. However,

the simplicity of a fixed basis is attractive in various appli-

cations, especially in the context of low cost telecardiology,

where cost of training a basis is not affordable. Indeed,

empirical studies on wavelet basis selection that have been

carried out so far either narrowly target one wavelet fam-

ily, or consider limited number of ECG signals, or only

one lead, thereby limiting their utility. In contrast, this

work considers a large collection of wavelet bases including

those from the Daubechies, Symlet, biorthogonal, and re-

verse biorthogonal families. The evaluation is performed

on PTB Diagnostic ECG Database (see table 1.1).

2.3.1 Experimental data generation

An ECG signal x of length N is chosen to start with. Its N - point discrete wavelet transform (DWT)

is computed using wavelet Ψ to obtain wavelet coefficients x̃. Next, let ỹ contain first K significant

coefficients from x̃, without altering their original locations. The remaining N -K locations in ỹ
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are set to zero. Then, a linear approximation xr of the ECG signal x is obtained by performing

Inverse DWT on ỹ. The value of K is incremented in steps of 1 until the R2 score, defined in

(1.1), reaches 99%. This procedure is depicted in figure 2.3. In this study, all ECG signals from

The PTB Diagnostic ECG Database from Physionet have been used without any pre-processing

[42]. The database offers 549 signals from 290 subjects recorded at 1000 Hz. Each record contains

information from standard 12 leads and 3 Frank leads making available over 8200 signals for analysis.

Aforementioned steps are repeated for all the ECG signals in the database, where the aim is to find

K for different leads and wavelet bases.

2.3.2 Results

Figure 2.4 compares average performance of best wavelet bases from the ‘Symlet’, ‘Daubechies’ and

‘Biorthogonal’ families, respectively, for fifteen leads. Notice that the highest sparsity is exhibited

by ‘sym4’ (Symlet), which is closely followed by ‘db4’ (Daubechies), but far ahead of ‘bior1.1’

(biorthogonal). Interestingly, the aforementioned behavior remains more or less consistent across

all fifteen leads. Even more remarkably, similar behavior is seen even across disease classes (not

shown due to space constraints). A more exhaustive study is furnished in table 2.1. Wavelet

bases which do not pack 99% of the signal energy (equivalent to achieving 99% R2 score) within

about N/8 coefficients are not shown (except Meyer wavelet). It is seen that energy compaction

efficiency is more in lower order wavelets and decreases with increasing order, in case of Daubechies

wavlets and symlets. Biorthogonal families which are popular in ECG denoising literature can not

offer very sparse representation. In this process, an interesting observation made is the following:

When considering all fifteen leads, ‘v1’ through ‘v6’ and ‘vx’ (Frank X) appear to admit sparser

representation (figure 2.4). This could also guide efficient subset selection while reconstructing the

full set of leads from a subset, a key to portable design.

Global I II III avr avl avf v1 v2 v3 v4 v5 v6 vx vy vz

130
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230

280

Leads

N
um
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Best wavelet in biorthogonal, Daubechies’ and symlet families

 

 

bior1.1
db4
sym4

Figure 2.4: Averaged performance of selected wavelets across all leads.

2.4 A Hybrid Fourier/ Wavelet Technique for ECG Approx-

imation

The proposed encoder, depicted in figure 2.5, is parameterized by three integers N , K1 and K2.

Specifically, N denotes the signal length. Further, the first K1 coefficients of the N -point FFT of
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Table 2.1: Averaged performance of various wavelets across all leads. Number of coefficients (K) is
rounded to integer.

Leads
Wavelet I II III avr avl avf v1 v2 v3 v4 v5 v6 vx vy vz Overall
sym4 143 149 166 141 153 160 100 92 94 102 100 102 96 164 104 111
sym6 144 148 165 141 153 159 100 93 95 104 101 103 97 162 105 112
sym5 144 149 166 141 154 160 101 93 96 104 101 103 97 164 106 113
db4 146 152 169 143 156 163 103 95 97 105 103 105 100 167 106 114
sym8 145 149 165 142 154 159 103 95 97 105 103 105 100 163 107 114
db3 148 154 171 145 157 166 102 94 97 105 104 106 100 170 106 115
sym3 148 154 171 145 157 166 102 94 97 106 104 106 100 170 107 115
sym7 146 150 166 143 155 160 103 95 98 106 104 106 101 164 107 115
db5 149 154 171 146 159 165 106 98 101 109 107 109 104 169 109 118
db6 153 157 174 149 162 168 110 102 105 113 112 113 108 171 113 121
db2 157 164 181 155 166 176 107 99 103 112 109 111 104 183 113 122
sym2 157 164 181 155 166 176 107 99 103 112 109 111 104 183 113 122
db7 155 159 175 152 164 169 112 105 108 116 115 116 111 172 115 124
db8 158 161 177 155 167 171 115 108 111 119 119 119 115 175 118 127
db9 162 165 181 158 170 174 118 111 114 123 123 123 118 177 121 131
db10 165 168 184 161 173 177 122 114 117 127 126 127 122 180 124 134

bior1.1 235 241 248 231 236 248 163 156 165 175 167 170 161 266 176 186
rbio1.5 236 243 249 233 237 250 164 158 166 176 169 172 163 267 178 187
rbio1.3 236 243 250 233 238 250 164 158 166 176 168 172 163 267 178 188
bior4.4 363 322 337 320 351 324 212 233 244 231 201 206 189 371 246 241
rbio4.4 492 416 425 429 462 408 317 379 390 361 307 307 299 470 380 354
Meyer 977 987 990 982 985 991 964 961 964 965 964 971 957 986 967 968

Figure 2.5: Conceptual block diagram of hybrid Fourier/wavelet encoder.

the signal are retained, which amounts to 2K1 numbers. Thus the parameter K1 determines the

cutoff frequency for the low-pass components. Next the corresponding low-pass signal, obtained via

N -point inverse FFT (IFFT), is subtracted from the original, and the residual high-pass compo-

nent remains. We take N -point discrete wavelet transform (DWT) of that residual, and retain K2

most significant coefficients. However, such significant coefficients are expected to occur at isolated

locations, which we also need to preserve. As a result, we end up with 2K2 numbers.

For the sake of simplicity, each number is assumed to be represented by a machine word, whose

length is not optimized. The signal length N is also kept fixed. In this setup, the optimal pair

(K1,K2) is sought such that the total number of retained numbers 2(K1 + K2) is minimized such

that the worst-case approximation over all ECG signals is above a certain threshold.

ANSI/AAMI EC13 test waveforms are used to present an empirical proof of our concept [42].

In the experiments, the amount of representative data required for a target level of approximation

accuracy is minimized, and results for ECG signals of length N = 4096 derived from the aforemen-

tioned test waveforms are presented. In particular, the intuition that the proposed hybrid approach

performs better signal approximation compared to pure Fourier as well as pure wavelet strategies is

corroborated through these experiments. In this regard, the signal aami3c, found to be the least com-
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pressible, and therefore is of particular interest. Indeed the other waveforms, while more compress-

ible, exhibit similar trend.

Figure 2.6: Flow chart for the proposed hy-
brid Fourier/wavelet encoder and decoder.

In particular, following savings are obtained in en-

coded data volume in hybrid approach over the pure

wavelet method: 4.15%, 6.71% and 7.81% correspond-

ing to respective accuracy level 99%, 98% and 97%.

More dramatic savings are obtained, when comparison

is made to the pure Fourier method. Further, pure

Fourier analysis accumulates error near temporal fea-

ture points, which manifests as large dynamic range of

error and high peaks in windowed error variance. Pure

wavelet analysis, on the other hand, distributes the er-

ror more evenly, thereby reducing the error dynamic

range as well as the height of peaks in windowed error

variance. Interestingly, while saving on the number of

required coefficients, our hybrid approach retains the

desirable error shaping observed in the pure wavelet

technique.

2.4.1 Proposed Algorithm

The proposed algorithm for encoding and decoding is

depicted in figure 2.6, and detailed below. While en-

coding, first N samples of the ECG signal x are col-

lected, and its N -point FFT x̃ is obtained. The first K1

Fourier coefficients (while preserving both the real and

the imaginary parts) are assigned to the first output

of the encoder. Continuing, a new coefficient vector

comprised of the first K1 and the last K1 − 1 Fourier

coefficientsis created, and the rest of the coefficients are

set to zero. Next the N -point Inverse FFT (IFFT) of

the above vector produces the low-pass component xL,

which is in turn subtracted from the originally collected

samples of x. The difference signal, the high-pass com-

ponent y, is transformed using N -point discrete wavelet transform (DWT) to ỹ, and the K2 most

significant coefficients of ỹ are identified. The locations and values of those significant coefficients

constitute the second and the third outputs of the encoder, respectively. Note that the algorithm

inputs N samples of signal x, and outputs 2(K1 +K2) representative numbers (consisting of trans-

form coefficients and some of their locations), and leads to a compression ratio of N
2(K1+K2) . In these

experiments, N is fixed, and (K1,K2) is optimized subject to a target approximation accuracy.

Continuing with figure 2.6, outputs from the encoder are fed to the decoding algorithm, which per-

forms the following operations: (1) A new vector z is formed where the preserved K1 low-pass Fourier

coefficients are restored, the last K1 − 1 coefficients are populated by the time-reversed conjugated

version of preserved coefficients (while dropping the dc coefficient), and the rest of the entries are set

12



to zero. Then the N -point IFFT of the above vector z is taken to obtain an approximation xL to the

low-pass component. (2) A second new vector w is formed where the preserved wavelet coefficients are

restored to their original locations and the rest of the entries are set to zero. The N -point IDWT of

the above second vector w then produces an approximation xH to the high-pass component. Finally,

the addition to these approximated components produces the desired approximation to the original

ECG signal x.

Figure 2.7: Flow chart for experimental data
generation.

2.4.2 Experimental Data Generation

Now the experimental setup and procedure is de-

scribed. As alluded earlier, test ECG signals from

the ANSI/AAMI EC-13 dataset [42] are generated.

As detailed in figure 2.7 (treat the shaded region as

a single black box for the time being), from each

record, windows of length N = 4096 (lasting ap-

proximately 5.7 seconds) are taken each at successive

shifts of 5 samples (0.0069 seconds), and 121 test sig-

nals are created in the process. Here two important

facts should be noted. Firstly, signal vectors encom-

passes multiple (usually, five or six) QRS complexes,

and are meaningful for clinical purposes. Secondly,

the aforementioned signal translates, despite origi-

nating from the same record, are known to exhibit

highly variable behavior under wavelet transforma-

tion; such variability is also noted in section 2.4.3.

Further, repeating the process for the four records at

hand, altogether 484 test signals are generated.

Next the quantity 2(K1 +K2) is minimized, sub-

ject to a target signal accuracy. To this end, a

test signal is picked, and the parameters K1 and

K2 are varied from 1 to 200 in steps of 1 as de-

picted in the shaded region of figure 2.7, thus gen-

erating 40000 candidate approximations of the sig-

nal at hand. These numbers arise by virtue of the

frequency content of the signals and change from

database to database. In the concluding part of the

chapter where similar experiments with Arrhythmia

database are provided, the search space limits for K1

and K2 are different. The above process is repeated

for each of the 484 test signals (121 snippets for each of the four signals). Having generated these

data, only those (K1,K2) pairs, for which the approximation accuracy is above the preset threshold

for each of the 484 test signals are retained. From the retained ones, that (those) (K1,K2) pair(s)

is(are) picked, for which 2(K1 +K2) takes the least value. To avoid confusion, instead of K1 and K2,
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99% R2 score 98% R2 score 97% R2 score
Fourier data volume 410 352 312
Wavelet data volume 386 298 256

Fourier+Wavelet=Total volume(Hybrid) 170+200=370 166+112=278 168+68=236
% savings over wavelet approach 4.15 6.71 7.81
% savings over Fourier approach 9.75 21.02 24.36

Figure 2.8: Optimization of encoded data volumes for aami3c subject to target R2 scores.

(a) (b)

Figure 2.9: Record aami3c: approximation with encoded data volume 370 words, (a) Error distri-
bution for target accuracy 99%, (b) Windowed error variance with window size = 16.

in tables and plots, 2K1 and 2K2 are shown, which are the respective encoded data volumes corre-

sponding to Fourier and wavelet analyses, so that their sum gives the total volume of the encoded

data.

Specifically, in order to claim superiority of the proposed hybrid technique, it is necessary to not

only demonstrate higher compression subject to an approximation accuracy level, but also desirable

error shaping. This has been addressed next.

2.4.3 Results

The first experiment described in section 2.4.2 is presented in the beginning. In the process, it is

observed that, for any pair (K1,K2), the test signals derived from record ammi3c exhibit the least

approximation accuracy. Thus the record ammi3c is identified as the least compressible among the

records at hand. Specifically, figure 2.8(a) shows the Fourier data volume 2K1 versus the wavelet data

volume 2K2 such that the corresponding pair (K1,K2) meets the target accuracy level, set at 99%,

98% and 97% in three related experiments. Note that K2 = 0 corresponds to a pure Fourier strategy,

whereas K1 = 0 corresponds to a pure wavelet strategy. Interestingly, a hybrid Fourier/wavelet

strategy achieves the minimum encoded data volume. The specific “Fourier+wavelet=total” data

volume figures for the respective accuracy levels are given in figure 2.8(b), and are compared against

the pure strategies. Substantial savings are seen over the pure wavelet strategy, and even more

dramatic savings over pure Fourier strategy.

Fig. 2.10 shows few examples of signal approximation for a sample of aami3c. The waveforms

2.10(b), 2.10(d), 2.10(f) and 2.10(h) are signal approximations. The corresponding errors are dis-

played immediately below each waveform. The histograms of errors for these cases are shown in
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Figure 2.10: Signal approximation of aami3c record with encoded data volume of 370 words:
(a) Original signal, (b) Fourier coefficients, (d) Wavelet coefficients, (f) 170 Fourier and 200 wavelet
coefficients; corresponding R2 scores: (b) 0.9791, (d) 0.9893 and (f) 0.9907; waveform (c), (e) and
(g) are errors in (b), (d) and (f).

figure 2.9(B). The total number of coefficients chosen is 185 in each case because it was the minimum

number required (best worst-case) to achieve 99% R2 score for aami3c with hybrid approach (Fig. 2.9

(A)). It is observed that aami3c is the critical signal as it requires more number of coefficients to

achieve approximation with a certain fidelity by virtue of its sharp variations in time. In other words,

aami3c is least compressible among the signals in ANSI/AAMI EC-13 database and one can tune

and test the algorithms for aami3c. The results shown in Fig. 2.10 are best worst-case performances

over all 484 snippets. Same experiments were done on the other signals, namely aami3a, aami3b and

aami3d, and results obtained were even better. This indicates that Hybrid approach outperforms

Fourier and wavelet approximation schemes.

As reasoned earlier, error characteristics are analyzed next. As depicted in figure 2.9(a), the

error distribution for Fourier approximation admits large errors with significant probability. The

wavelet and hybrid approximation errors turn out less significant. Not surprisingly, the former has

a variance 15.8 × 10−7, whereas the latter two have virtually indistinguishable error variances at

8.61× 10−7 and 8.67× 10−7, respectively. Taking a closer look, in figure 2.9(a) the windowed error

variance is plotted, where the Fourier technique exhibits high peaks, whereas the wavelet and the
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(a) (b)

(c) (d)

Figure 2.11: Number of components to achieve particular approximation accuracy: (a) aami3a,
(b) aami3b, (c) aami3c and (d) aami3d.

hybrid schemes distribute the error almost indistinguishably.

Next the same signal approximation problem is posed from a slightly different angle. In particu-

lar, the encoded data volume is fixed at 370 words, and signal reconstruction and error characteristics

are compared under pure and hybrid strategies. Figure 2.10 depicts the original signal, rival ap-

proximated signals, and the corresponding error waveforms. Again, the Fourier analysis appears to

lump significant error at feature points, whereas the wavelet and hybrid strategies, which are virtu-

ally indistinguishable, appear to spread the error more evenly. In summary, hybrid strategy proves

to be more efficient than the state-of-the-art pure wavelet-based technique, without sacrificing the

desirable error characteristics. Of course, this strategy provides more dramatic savings over pure

Fourier strategies. Finally, it is observed that the general behavior of test signals generated from

record aami3c is exhibited by those generated from the other records. This is demonstrated for the

record aami3b in figure 2.11. Note that a smaller encoded data volume now suffices to meet the

same accuracy level, when compared to figure 2.8(a) for aami3c.

2.5 Comparison of Hybrid Approximation Method with other

Representation Methods

In this concluding section, the proposed hybrid approximation technique is finally compared with well

known transform based representation methods. ECG signals from MIT-BIH Arrythmia Database

have been used (see Table 1.1). The primary reasons for choosing this dataset include: (i) wide
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Dictionary KLT Hybrid Wavelet Fourier DCTLegends:

Plot depicting average number of coefficients required to attain desired approximation
accuracy, for various representations methods

Approximation accuracy: (a) 99%, (b) 98%, (c) 97%, (d) 96%, and (e) 95%

Fourier approximation cannot be shown in figure (a) due to large number
of coeficients required for desired approximation

Figure 2.12: ECG signal approximation for Arrythmia Database

popularity across the literature, (ii) availability of annotations, making it easy to align the ECG

features in a snippet chosen, which necessary for training purposes in case of KLT and dictionary

based approximations, and (iii) variety of disease classes available. Length of a signal snippet was

chosen to be 256 samples. Thus, for example, for a record number 100 from Arrhythmia database,

all possible segments of length 256 samples were considered. Annotations provided in the database

were used to ensure that R-peak appears in the center of a signal snippet. These snippets were then

tested for cumulative energy compaction using various wavelets and also with hybrid approximation

method, described earlier. Additionally, energy packing by DCT and FFT coefficients was also

studied. In case of representation in KL-basis as well as dictionary, entire dataset was divided

into two parts. One of those was taken as training data and the other was taken as testing data

(see [51, 52] for more details). The procedure for cumulative energy packing by coefficients of KL

representation is same as that for projection on any orthogonal basis. However, in case of dictionary

based representation, one has to train an overcomplete dictionary and solve sparse recovery problem.

We describe the sparse recovery problem in greater details in the next chapter.
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Figure 2.12 depicts average number of coefficients required for targeted approximation accuracy.

The horizontal dotted lines show average number of coefficients, rounded to nearest integer greater

than the actual average. All the subsequent calculations reported here are according to these rounded

vales. One immediate observation here is that Fourier representation requires very large number of

coefficients for energy compaction, on account of sharp features in the ECG. Therefore, results

corresponding to Fourier approximation do not appear in the plot showing results for 99% target

accuracy (R2 score). Overcomplete dictionary based representation is the most succinct, closely

followed by KL approximation. The proposed hybrid methodology outperforms wavelet and DCT

based representation. Although one may argue that the advantage of hybrid method over wavelet

representation is not significant, it is important to note that as opposed to the results shown for

signal of length 256 samples, the total savings in terms coefficients for the entire signal amounts to

a larger quantity. Nevertheless, one can observe the percentage savings in terms of coefficients, for

hybrid method over wavelet representation, which are 8.33%, 10.5%, 11.8%, 6.66% and 7.14%, for

targeted accuracy of 99%, 98%, 97%, 96% and 95%, respectively.

Further, one should note that the length of the signal samples was chosen to be 256 samples

and R-peaks were centered in such signals, to facilitate the training procedure for dictionary and

KL-basis. Thus, significant computational resources are demanded by these two methods. Although

overcomplete dictionary offers sparsest representation, it does may not fit into proposed low cost

framework, mainly due to training procedures. Even if one fixes a dictionary, one has to store a large

number of atoms. In the study presented here, size of the dictionary was chosen to be 256 × 1000,

requiring storage of 1000 atoms. On account of wide variety of ECG signals, it may be necessary

to repeat the training procedure. In contrast, fixed bases such as Fourier, wavelet and thus hybrid

method remain attractive due to simple procedures to generate this bases.
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Chapter 3

Low-rate Sampling of ECG Signals

This chapter discusses low rate sampling of ECG signals, which is possible due of sparsity of ECG

signals in wavelet bases. A brief overview of sampling theory is provided in section A.1. The universal

nonuniform sampling method mentioned here relies on recent advances in compressive sampling

theory which is briefed in section A.3. In the beginning, compressive sampling of ECG signals

with randomized measurements is presented. The recovery algorithms proposed is called targeted

orthogonal matching pursuit which is explained in section 3.1.1. Next, use of CS measurement

matrices that are row restrictions of identity matrices is presented. The method is termed as universal

because its recovery performance remains consistent irrespective of the sampling locations.

In the beginning, the problem setup is described as follows. A typical ECG signal has significant

frequency components well beyond 125Hz, and a sampling frequency of greater than 500Hz has been

prescribed for faithful reconstruction [38]. Indeed, professional-grade equipments use sampling rates

of 500Hz, 720Hz and 1000Hz [42, 2]. Such high rates corresponding to uniform sampling are not

attractive for our envisages of low-power operations. Against this backdrop, one would naturally

ask: Can the average sampling rate (and hence the power requirement) be significantly reduced is

nonuniform sampling is adopted? What will be the opportunities and obstacles facing a low-rate

nonuniform sampling scheme? This work attempts to answer some of these questions with special

emphasis on universality.

If one samples uniformly at a frequency fs ≥ 2fmax (where fmax denotes the maximum significant

frequency in the signal), then one is guaranteed an accurate reconstruction via sinc interpolation

functions by the Nyquist theorem [53]. Further, uniform sampling at rate fs still suffices even

if the signal undergoes a temporal shift, because such shift does not alter the magnitude of the

Fourier spectrum. Clearly, any signal satisfying fs ≥ 2fmax or its translates can be uniformly

sampled without loss. In other words, a uniform sampling is universal for all signals satisfying

the Nyquist theorem. Unfortunately, similar universality properties do not hold for nonuniform

sampling in general. Specifically, a general criterion for faithful reconstruction from nonuniform

sampling, analogous to the one mentioned above for uniform sampling, is yet to be discovered. To

further complicate matters, even if a signal ensures faithful reconstruction from nonuniform samples

taken in a particular pattern, translates of that signal may not admit the same even if sampling

patterns are unchanged. In this work, empirical universality of nonuniform sampling patterns for

ECG signals is explored.

19



Specifically, noting that ECG signals admit sparse representation in certain orthogonal bases

such as Daubechies Wavelet ‘DB4’ [26], and using the compressive sampling (CS) formalism [54],

Orthogonal Matching Pursuit (OMP) to reconstruct the signal from nonuniformly sampled data

[55, 56] appears to be suitable recovery method. Note that any nonuniform sampling pattern does

not guarantee faithful reconstruction; rather, a pattern (alternatively known as a measurement ma-

trix) is required to satisfy a restricted isometry property (RIP, see (A.10)). As a first step, this

work demonstrates a proof-of-concept using ANSI/AAMI standard ECG waveforms sampled at 720

Hz, and their temporal translates [42]. In the course, it is observed that significant wavelet coeffi-

cients occur within certain range of locations, which leads to a parameterized Targetted Orthogonal

Matching Pursuit (TOMP) algorithm for ECG signals. Finally, is is shown that universal nonuni-

form sampling at an average rate of 144 Hz (well below 500 Hz, suggested in literature [38] can be

realized with specific performance guarantee.

3.1 Compressive Sampling of ECG Signals

Compressive sensing (CS) theory asserts that one can recover a signal from a few linear non-adaptive

measurement, far fewer than those guided by Nyquist rate, if the underlying signal admits sparsity

in some sense and the measurement process preserves the isometry within certain bounds [54]. CS

theory has been explained briefly in section A.3. As alluded earlier, CS based applications depend

on three key factors, namely, the measurement operator, signal sparsity and recovery scheme. In

chapter 2, wavelets that offer sparse representation were identified. In this chapter, the remaining

two factors namely measurement matrix and recovery scheme have been discussed with emphasis

on universality. The recovery scheme adopted is based on Orthogonal Matching Pursuit (see sec-

tion A.3.2). The OMP algorithm is modified to what is called as Targeted Orthogonal Matching

Pursuit, explained next.

3.1.1 Targetted OMP (TOMP)

Figure 3.1: Range of coefficient indices occupying ranks 1–200.

Given the measured vector y and the measurement matrix Φ, one finds the coefficient of x

with the largest magnitude by projecting x̃ onto each column of A and selecting the largest 〈x̃, aj〉,
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Input: Measurement matrix: Θ = ΨΦ where Θ ∈ RM×N , measurement vector: y ∈ RM , Set
of column indices for ith stage: Ci where Ci−1 ⊆ Ci, Set of stagewise iteration limits
Ii, #max number of stages, Set of thresholds Pi

Output: Recovered signal: x̂, support set: S ⊂ [1, N ]
Initialization: S = ∅, flag = 0, #iterations = 0 Residue: res = y;

while number of stages i ≤ #max number of stages OR ||res||22 ≥ ε do
while flag == 0 do

Sweep: u = ΘT |
C1
res;

Update support: j0 = index of max |u|, S = S ∪ j0 ∀j0 /∈ S;
Update provisional solution:x̂ = arg min ||y −Θ|

C1
x||2 subject to support set S;

Update residue: res = y −Θ|
C1
x̂;

if ||x̂||22 ≥ P1%||y||22
OR #iterations ≥ I1 then

flag = 1;
end

end

end
Algorithm 1: Targeted Orthogonal Matching Pursuit (TOMP) Algorithm

where aj is the jth column of A. Once such coefficient is identified, a least-squares problem is solved

assuming it is the only non-zero coefficient. The new estimate for x̂ is used to compute the estimated

signal x. The algorithm is iterated using the residual to solve for the next largest coefficient of x̂

one at a time. By iterating k times, one finds an k-sparse approximation of the transform domain

vector.

Here OMP algorithm is modified to target it for standard ECG signals [42]. First discrete wavelet

transform of signal using Daubechies ‘DB4’ basis is calculated. The coefficients are arranged in the

decreasing order of magnitude, and ranked. It is noticed that the sorting indices that occupy a

certain rank for the signals under consideration lie within a certain range. This observation is

depicted in figure 3.1.

In view of figure 3.1, the OMP is targeted in the following manner. Originally, one selects

a new index from the entire search space of indices. In contrast, the search space is restricted

according to the rank of the said index. Specifically, the coefficient ranks are divided into certain

stages, and different search space is used for each stage. However, the stage is dictated also by

the cumulative energy so far recovered. Each coefficient index is added to the support, and the

coefficient value is reconstructed exactly as in OMP. However, the stage r is parameterized by three

numbers: Cr indicates the maximum index location to be searched, Pr the maximum cumulative

energy to reach to go to the next stage, and Ir the maximum number of iterations to complete before

going to next stage. One moves on to stage r + 1 if either the energy reaches Pr, or the number of

iterations reaches Ir. Over several runs, a five stage implementation was adopted, with parameters:

C1 = 100, C2 = 200, C3 = 500, C4 = 1000, C5 = 1500, P1 = 95%, P2 = 97%, P3 = 98%, P4 =

99%, P5 = 100%, I1 = 80, I2 = 80, I3 = 90, I4 = 40, I5 = 40.

3.1.2 Compressive Sampling of ECG Signals using Random Measurement

Matrices

This section presents greedy recovery of ECG signals from the incomplete measurements. The

measurement matrix Φ is chosen to be sparse random matrix whose entries are sampled from normal

21



  N/2 N/3 N/4 N/5 N/6 N/7 N/8 N/9 N/10 N/11 N/12 N/13 N/14 N/15 N/16   
0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

Number of measurements, N = length of the signal 

R
ec

on
st

ru
ct

io
n 

qu
al

ity
 (R

2  s
co

re
)

CS recovery results (best cases) for records ’s0107lre’ and ’s0554_re’

 

 

s0554_re, bior 1.1
s0554_re, db4
s0554_re, sym4
s0107lre, bior 1.1
s0107lre, db4
s0107lre, sym4

Figure 3.2: Signal recovery from randomly chosen samples

distribution. Such matrices are known to satisfy RIP with very high probability. The matrix Φ is

m×N , where m = N/d (rounded to integer) and d = 2, 3, .., 16. For each m, 1000 random matrices

were obtained and TOMP was employed to solve the CS recovery problem in each such case.

As an illustration, two signal records, namely ‘s0107lre’ (highly compressible) and ‘s0554 re’ (less

compressible), from PTB dataset, have been chosen. Notice that the ‘sym4’ basis leads to the best

R2 reconstruction from the same number of measurements, closely followed by ‘db4’, and distantly

followed by ‘bior1.1’. This observation corroborates the findings from figure 2.4.

3.2 Universal Nonuniform Sampling Scheme for ECG

Although compressive sensing followed by greedy recovery is able to offer faithful reconstruction

subject to target R2 score, it is costly from hardware perspective. This is because the measure-

ment matrix is chosen to be random Gaussian sensing matrix and requires multiplication operation.

A low power alternative to this is achieved by choosing measurement matrices that do not need

multiplication. Towards this, two empirical studies have been presented.

• Row restrictions of identity matrices. Indices of the rows to be kept come from random

permutations.

• Row restrictions of identity matrices. Instead of completely random restrictions, we chose

random indices in uniform bins. For example, if one wants to keep a fraction 1/d of total

samples randomly, one chooses a number from every non overlapping consecutive partitions of

length d in [1, N ], where N is the number of rows.

In each of the case 100 candidate patterns were generated and the P0 problem was solved in

each case. The following part explains use of first type of matrices. Partial results with second type

of matrices are presented in the end of this chapter. If A1 is set of all the matrices of first kind and

A2 is set of all the matrices of second kind, then one can write A1 ⊆ A2. Uniform downsampling of

the already sampled signals, which uniform restriction of identity matrix, can be seen as subset of

A2.
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Four signals from the ANSI/AAMI standard for testing ECG devices [42] were considered. Those

have been empirically found to exhibit in certain sense the extremes of ECG signals. Since the goal

is to restrict to a manageable set of signals, yet be able to demonstrate universality, those signals

appear to be a natural choice.

3.2.1 Experiments

This empirical study considered windows of 4096 samples from each original signal (which amounts

to 5.7 seconds worth of data), and obtained 121 such windows each shifted by 5 samples (0.0069

seconds), producing 121 translates for each waveform, i.e., 484 snippets. At the same time, 100

downsampling patterns for each of average downsampling ratios 2, 3, 4, 5, 6 were generated. Further,

each of the down sampling pattern is used for all 484 snippets for the corresponding downsampling

factor (2, 3, 4, 5, 6). Although inadequate for clinical purposes, R2 statistics, defined in (1.1) is used

for quality of signal reconstruction as the design criterion for comparing between various patterns [2].

Specifically, the worst performance of each pattern is taken, and the pattern that produces the best

among such worst performances is picked. In other words, the pattern that guarantees the best worst-

case performance is chosen. However, such worst-case design might be too conservative. Therefore,

best lower 5-percentile, 10-percentile, and 20-percentile performances as well are considered.

3.2.2 Results

(a) (b)

(c) (d)

Figure 3.3: Best R2 statistics over all patterns for average downsampling 2, 3, 4, 5, 6 for each individ-
ual signal as well as over all signals: (a) 0 percentile, (b) 5 percentile, (c) 10 percentile and (d) 20
percentile.
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The best worst-case (lower zero percentile) performances are plotted in figure 3.3a. Similarly, The

best lower 20-percentile performance are plotted in figure 3.3d. In each figure, such performances are

plotted for each individual signals, as well as over all signals. Note that downsampling by 2, 3, 4, 5, 6

correspond to respective average sampling rates of 360, 240, 180, 144, 120 Hz, respectively. From the

above, four inferences are drawn:

1. Performance degrades with lower average sampling rate, as expected.

2. The desired performance corresponding to a lower percentile is lower, as expected.

3. Best 20-percentile performance over all signals and that for “aami3c” are identical.

4. Best worst-case performance over all signals and that for “aami3c” are identical for all down-

sampling factors except 6.

Figure 3.4: Performance variation of the optimal pattern at average sampling rate of 144 Hz with
temporal shifts (translations).

Based on this, one should adopt “aami3c” as the critical signal for which a proposed system

need testing. However, most importantly, an average sampling rate of 144 Hz appears adequate for

all signals except one critical one, for which too it is adequate 80% of the time. In other words,

near-universality of a sampling pattern operating at an average rate of 144 Hz is demonstrated.

Next, the performance variation of the optimal pattern for a representative downsampling factor

of 5 (corresponding average sampling rate is 144 Hz) for different temporal translates is observed.

Not surprisingly (in view of figures 3.3a and 3.3d), the same pattern achieves best worst-case, 5-

percentile, 10-percentile, and 20-percentile performances over all signals. In particular, figure 3.4

shows that the same sampling pattern behaves very differently for different temporal translates.

Further, performance index and the percentile varies in a complex manner. The performance dif-

ference is 0.073 for moving from 0-percentile to 5-percentile, 0.0126 for moving from 5-percentile to

10-percentile, and 0.033 for moving from 10-percentile to 20-percentile, indicating a non-monotone

behavior.
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Figure 3.5: Reconstructed Signal after down-sampling by 2, R2 Score = 0.996 and down-sampling
by 5, R2 Score = 0.984.

Finally, the best worst-case performances are quite conservative. For example, although the

best worst-case performance at average sampling rate of 360 Hz and 144 Hz are 0.983 and 0.815,

respectively (both achieved for “aami3c”), one can achieve performances of 0.996 and 0.984 with

same patterns with favorable translations. In summary, we have demonstrated a faithful nonuniform

sampling scheme at a low (sub-Nyquist, as ECG signals generally contains frequency components

above 100 Hz [38]) average rate which is nearly universal.

In conclusion, it should be noted that the here goal has been to minimize the average sampling

rate, and the proposed nonuniform sampling scheme takes a step towards it. Recall that the primary

motivation stems from low-power operation of the sampling unit (ignoring discretization of signal

magnitude for simplicity). Although proposed scheme provides compression, optimizing it has not

been the focus. For compression schemes for ECG signals, see [36, 35, 25]. For theoretical limits of

compression, see [57]. In closing, note that the number of nonuniform sampling patterns is very large.

In fact, for signal length n = 4096, the number of possibility is an extremely large number with over

2000 decimal digits. Admittedly, most of those patterns are of little value for nonuniform sampling,

but the number of “good” patterns are still much larger than 100. Since only 100 nonuniform

sampling patterns were generated at random in this work, it is likely that patterns giving better

reconstruction performance than the present proof of concept will be discovered.

Finally, non-uniform sampling with second type of matrices is presented here. This exercise is

performed on Arrhythmia database, as the sampling rate during recording was very low (360Hz), pro-

viding another extreme testing condition for the proposed method. MIT-BIH Arrhythmia database,

recorded at 360Hz, has 48 signals. Snippet size was taken to be 4096 samples with an overlap of
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Figure 3.7: Uniform downsampling and sinc interpolation

2048 samples between two snippets. Results available for 4 signals at present are presented. Fig-

ure 3.6 shows best and worst case performances for downsampling rates of 2, 3, 4, 5 and 6. Note

that best case performance for uniform downsampling followed by sinc interpolation always outper-

forms nonuniform sampling followed by greedy recovery. However, in the worst case scenario, the

nonuniform sampling is seen to perform better. All the results shown here are averaged over several

signals.
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Chapter 4

Summary and Discussion

The two main focus areas of this work, described in section 1.1 are (i) minimal linear representation

of electrocardiogram signals, which enables one to achieve (ii) low rate sampling of electrocardiogram

signals. The thesis reports findings on choice of wavelet basis for sparsest representation, a hybrid

Fourier/ wavelet method for even sparser representation and an universal non-uniform sampling

scheme for ECG signals followed by sparse recovery. On account of wide variety of ECG signals

and thereby inability to propose model(s) for ECG signals, the work takes help of several empirical

studies to provide proof of concepts and support the claims made. In the course of these studies,

several interesting insights were obtained. This chapter discusses limitations and future scope in

this direction.

4.1 Sparse Representation

Chapter 2 has presented an empirical study on cumulative energy packing by wavelet coefficients.

It was observed that ‘sym4’ and ‘db4’ wavelets offer highly sparse representation. This study was

carried out on PTB database. Further, hybrid approximation method was presented which outper-

forms wavelets representation on average. This was demonstrated with all three databases listed

in table 1.1. However, a few cases have been observed where mere Fourier or wavelet representa-

tion suffices to offer a sparse representation. In this backdrop, it is necessary to study wavelet sub

band structure more closely and possibly seek for a way to switch between pure wavelet and hybrid

methods. Nevertheless, hybrid approximation provides a new way to represent ECG succinctly, with

desired error shaping. The next step is to test it rigorously and more importantly, extend it to a

compression algorithm. An immediate idea is to perform predictive coding on low frequency part as

it is mostly periodic and encode remaining part with entropy coding.

On a different note, it has been shown that hybrid method seeks a (K1,K2) pair based on search

over all such pairs, where search limit is decided a priori. Ideally, one would attempt to separate

periodic part completely and then encode the remaining localized features. In such case harmonic

analysis of ECG signals shall be attempted. Speech processing community can provide some clues

where voiced and unvoiced parts of a speech signal are separated. Feasibility of such approach would

also be evaluated.
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4.2 Reduction in Sampling Rates

With the sparse representation available, the thesis focuses on low rate sampling of ECG signals,

aided by recent advances in compressive sampling theory. From the empirical studies, it appears that

ECG acquisition rates well below standard rates are possible and the reconstructed signals are nearly

of same quality as those obtained with standard rates. R2 statistics supports this claim, which is a

widely accepted measure for this purpose. Thus, it can be said that CS transfers the computational

burden from encoder to decoder, enabling for simpler and low power implementation of encoder.

An important point to be noted is that compressive sampling is believed to be advantageous over

uniform sampling in terms of said savings in power consumed during acquisition. This achieved at

the cost of generation of random sampling matrices at the encoder side, making it non-deployable for

real time monitoring. Generation of the random matrix was eliminated by employing measurement

matrices which are restrictions of identity matrices. These selected matrices were able to capture

most of the information from signals. It has not been understood why these matrices are able to offer

better performance whose RIP compliance is not guaranteed. One reason could be the periodicity

and smoothness of ECG signals. This is planned to be explored further. An ongoing study was

also reported which considers use of deterministic construction of CS matrices. Further the signal

structure itself is exploited to design robust reconstruction algorithms such as Targeted Orthogonal

Matching Pursuit. This is similar to the well known model based compressed sensing proposed in

[58].

Finally, in the closure, it is imperative to note that the proposed algorithms were evaluated with

some objective quality measure. It is necessary to collect doctors’ opinion by Mean Opinion Scores

(MOS) (see, for example, [43, 44, 45, 46]).
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Appendix A

Theoretical Background

This work attempts to achieve low rate sampling of ECG signals maintaining the targeted recon-

struction quality. Towards this, nonuniform sampling at low average rate is one possible approach.

Recent advances in Compressive Sensing (CS) theory guarantee faithful signal recovery from a few

random linear measurements using various optimization schemes. One of the motivations behind

CS theory is the problem of data deluge due to advancement in digital devices and thereby possible

inundation of communication bandwidth and power. Rates dictated by the Shannon- Nyquist theo-

rem impose severe challenges both on the acquisition hardware and on the subsequent storage and

DSP processors. Following sections present the background and theory of CS in brief.

A.1 Sampling

In this section, the sampling theory is described briefly. Given an analog signal x(t), t ∈ R, one

obtains samples {x(ti)}, where {ti ∈ R}, i ∈ Z. The perfect reconstruction condition is then

∃ f such that x(t) = f(t, {x(ti)}),∀t ∈ R. (A.1)

In general f depends on x. For example, f can be found under Mean-squared error (MSE)

criterion as follows

f∗ = arg min
f

lim
T→∞

1

2T

∫ T

−T
[x(t)− f(t, {x(ti)})]2 dt. (A.2)

and

x̂(t) = f∗(t, {x(ti)}). (A.3)

Uniform sampling of a bandlimited signal x(t) simply involves taking the discrete set {x(nTs) :

n integer}, where Ts indicates the sampling period. In other words, it is a specific case of the more

general nonuniform sampling {x(tn)}, where tn = nTs. In this case, the reconstruction is achieved

as follows

x̂(t) = f(t, {x(ti)}) =

∞∑
i=−∞

x(iTs)g(t− iTs). (A.4)
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The interpolation function in this case is independent of the signal and is given as f(t) = sinc(t) =

sin(πt)/(πt).

In general, {tn} can be chosen arbitrarily, and indicates a sampling pattern. For simplicity, in

this thesis, it is assumed that tn = knTs, where kn is an integer for every n and Ts is the underlying

sampling period. In other words, this work ignores certain samples, and selects the rest from an

already uniformly sampled signal. Reconstruction of the original signal from such limited number

of samples (measurements) is addressed in the CS theory, where faithful reconstruction is possible

if the original signal admits sparse representation and the sampling pattern (measurement matrix)

satisfies restricted isometry property (RIP).

Now, let x be a discrete-time signal obtained from x(t) by uniform sampling. Thus, x ∈ RN .

For an orthogonal basis Ψ = {ψ1, ψ2, . . . , ψN} for RN , x is uniquely represented as x =
∑N

i=1 αiψi,

where α = ΨTx. In transform coding parlance, one keeps K largest αis and discards the remaining

to obtained a K-term approximation. Initial N may be large even if K is small. The set of all N

transform coefficients {αi} must be computed even though N −K of them will be discarded. The

locations of the large coefficients must be encoded.

In this backdrop, compressive sensing asks following question: Why go to so much effort to

acquire all the data when most of what we get will be thrown away? Can’t we just directly measure

the part that won’t end up being thrown away?. This issue is discussed more formally in next section.

A.2 Dimensionality Reduction Problem

Generally speaking, dimensionality reduction techniques aim to extract low-dimensional information

about a signal or collection of signals from some high-dimensional ambient space. Effective tech-

niques for processing and understanding data and information often rely on some sort of model that

characterizes the expected behavior of the information. In many cases, the model conveys a notion

of constrained structure or conciseness to the information; considering a data vector (or “signal”)

x ∈ RN , for example, one may believe that x has “few degrees of freedom” relative to its size N .

Let F ∈ RN denote the class of signals of interest, for example, class of all ECG signals. Let

Ψ = {ψ1, ψ2, . . . , ψN} be an orthonormal basis for RN . A signal x ∈ RN is uniquely represented

as x =
∑N

i=1 αiψi, where α = ΨTx. Let the set Ω = {1, 2, 3, . . . , N}, whose cardinality |Ω| = K.

Then K-term approximation to x is written as x̂ =
∑

i∈Ω αiψi. Let F = span{ψi}i∈Ω. The linear

geometry of these signal classes leads to simple, linear algorithms for dimensionality reduction. An

`2- nearest “linear approximation” to a signal x ∈ RN can be computed via orthogonal projection

onto the subspace F (setting αi to zero for i 6∈ Ω). Also, the best K-dimensional subspace to

approximate a class of signals in RN can be discovered using principal components analysis (PCA)

(also known as the Karhunen-Loeve transform)

In a sparse model, every signal from the class F can again be represented (either exactly or

approximately) using a K-term representation from some basis Ψ, but unlike the linear case in, the

relevant set Ω of basis elements may change from signal to signal. Few coefficients are required to

represent any given signal and algorithms for dimensionality reduction must typically adapt to the

changing locations of the significant coefficients. Thus, best K-term “nonlinear approximations”

can be computed simply by thresholding the expansion coefficients α in the basis (letting Ω contain

the indices of the K largest coefficients and then setting αi to zero for i 6∈ Ω).
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No single K-dimensional subspace suffices to represent all K-sparse signals; instead the set of all

sparse signals in the basis Ψ forms a nonlinear union of distinct K-dimensional subspaces in RN .

ΣK := F =
⋃

Ω={1,2,...,N},|Ω|=K

span{ψi}i∈Ω. (A.5)

Approximation by thresholding can be interpreted as the orthogonal projection of x onto the

nearest subspace in ΣK , a simple but nonlinear technique owing to the nonlinear geometry of ΣK .

A few questions leading to CS theory are as follows:

• How to find the nearest ΣK?

• Can a non-adaptive, linear method assure dimensionality reduction?

A.3 Compressive Sensing

For an n-dimensional vector x ∈ RN , where N is large, compressive measurements y ∈ RM , where

M << N are obtained as

y = Φx. (A.6)

Φ is called as measurement matrix. In general, it is an impossible task to find x given y and Φ as

M samples of y yield a (N −M) dimensional subspace of possible solutions for the original x that

would match our given observations. In other words, as Φ is rank deficient. As it has non-empty

null-space, one can get y = Φx1 = Φx2. However, CS attempts to recover the sparse x, out of

all possible x. A vector x is K-sparse if it has at most K non-zero coefficients in that basis (i.e.

||x||0 ≤ K, where ||.||0 denotes the l0 norm). A signal x has to be sparse either in time domain

or under some sparsifying transform Ψ (at least approximately, if not exactly). Thus, we restrict

ourselves to ΣK , the class of all K-sparse signals. We can now write measurement process as

y = ΦΨx̃ = Θx. (A.7)

Here x̃ = ΨTx, i.e. transformed vector. Traditional techniques for solving for x (e.g., inversion,

least squares) do not work because (A.7) is severely under-determined (since M << N). However,

advances in CS have shown that if M ≥ 2K and Θ meets certain properties, then (A.7) can be

solved uniquely for x, by looking for the sparsest x that satisfies the equation. The CS recovery

problem is stated as

P0 : x̂ = arg min ||x||0 such that y = Θx. (A.8)

The solution to this problem, however, involves a combinatorial algorithm in which every x with

||x||0 ≤ K is checked to find the one that results in the measured samples y. This problem is known

to be Nondeterministic-Polynomial-Time (NP) Complete for any practical signal. However, recent

results have shown that (A.8) can be solved by introducing convex relaxation as below

P1 : x̂ = arg min ||x||1 such that y = Θx (A.9)

where l1-norm ||x||1 =
∑n

i=1 |xi|.
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As long as the number of samples m = O(k log n) and the matrix Φ meets the restricted isometry

property (RIP) with parameters(2k,
√

2− 1), solutions to the P0 and P1 problems are same.

A.3.1 Restricted Isometry Property (RIP)

One cannot solve y = Θx for x with any arbitrary Φ (M << N), even if M ≥ 2K. However,

recovery of x is guaranteed if matrix Φ meets the Restricted Isometry Property (RIP), stated as

(1− ε)||v||2 ≤ ||Θv||2 ≤ (1 + ε)||v||2 (A.10)

with parameters (K, ε), where ε ∈ (0, 1) for all K-sparse vectors v. Essentially, the RIP states

that a measurement matrix will be valid if every possible set of K columns of Θ form an approximate

orthogonal set. Another way to state this is, if x, x′ ∈ ΣK and x 6= x′ then, Φx 6= Φx′. That is,

the distances are preserved even after projection. Further, we want the sampling matrix Φ to be

as incoherent to the compression basis Ψ as possible. Examples of matrices that have been proven

to meet RIP with very high probability include Gaussian matrices, Bernoulli matrices and partial

Fourier matrices.

The sampling matrices used in this work are:

• Sparse random matrices whose entries are sampled from Gaussian distribution.

• Row restrictions of identity matrices. Indices of the rows to be kept come from random

permutations.

• Row restrictions of identity matrices. Instead of completely random restrictions, we chose

random indices in uniform bins. For example, if one wants to keep a fraction 1/d of total

samples randomly, one chooses a number from every non overlapping consecutive partitions of

length d in [1, N ], where N is the number of rows.

A.3.2 Greedy Reconstruction Algorithms

Owing to simplicity, one often attempts to solve (A.8) using greedy algorithms. Orthogonal Matching

Pursuit (OMP) has proved to be one of the most successful greedy algorithms [55]. Given the

measured vector y and the measurement matrix Φ, one finds the coefficient of x with the largest

magnitude by projecting x̃ onto each column of A and selecting the largest 〈x̃, aj〉, where aj is the

jth column of A. Once such coefficient is identified, a least-squares problem is solved assuming it is

the only non-zero coefficient. The new estimate for x̂ is used to compute the estimated signal x.

The algorithm is iterated using the residual to solve for the next largest coefficient of x̂ one at a

time. By iterating k times, one finds an k-sparse approximation of the transform domain vector.

A.4 Dictionary Learning

The method of dictionary learning identifies a tunable selection of basis vectors providing sparse

representation to the given set of signals.

Given a set of signals {xi}Ni=1, K-SVD [51] seeks the dictionary D that provides the sparsest

representation for each example in this set. To begin with, for some arbitrary dictionary D, the
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method starts finding the matrix Ψ, each of whose columns is sparse enough, from the following

optimization problem

Ψ = arg minΘ

∑
l

‖ Θl ‖1 subject to X = DΘ. (A.11)

where Θl is the lth column of Θ. Using Ψ, the pair (D,Ψ) is then updated as follows:

(D̂, Ψ̂) = arg min
D,Ψ
‖X −DΨ‖2F subject to ‖γi‖0 ≤ T0∀i. (A.12)

where γi represents the ith column of Ψ , X is the matrix whose columns are xi and T0 is the

sparsity parameter. Here, ‖A‖F denotes the Frobenius norm and is defined as ‖A‖F =
√∑

ij Aij .

The K-SVD algorithm alternates between the sparse coding (A.11), solved using an `1 solver such

as OMP, and dictionary update (A.12), requiring least square methods, till there is a convergence

in the dictionaries so learnt.
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