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Abstract

Approximate reasoning schemes involving fuzzy sets are one of the best known applications of
fuzzy logic in the wider sense. Fuzzy Inference Systems (FIS) or Fuzzy Inference Mechanisms
(FIM) have many degrees of freedom, viz., the underlying fuzzy partition of the input and output
spaces, the fuzzy logic operations employed, the fuzzification and defuzzification mechanism used,
etc. This freedom gives rise to a variety of FIS with differing capabilities.

Desirable Properties and Types of FIS: Fuzzy inference systems are expected to possess many
desirable properties as explicated below.

• Interpolativity: When an antecedent of a rule is given as the input then the corresponding
consequent should be the inferred output.

• Continuity: If the input is close to some antecedent of the rule base then the output also
should be close to the corresponding consequent.

• Universal Approximation Capability: Whether it can approximate any continuous function
over a compact set to arbitrary accuracy. In other words, does there exist an FIS whose system
function g is such that for any continuous function f : [a, b] → R over a closed interval [a, b]

and an arbitrary given ε > 0,
max
x∈[a,b]

|f(x)− g(x)| ≤ ε.

• Monotonicity: Whether for a monotone rule base and monotonic inputs we obtain mono-
tonic outputs. In other words, whether for two inputs x′ and x′′, such that x′ ≤ x′′ the
corresponding outputs y′, y′′ are such that y′ = g(x′) ≤ g(x′′) = y′′.

• Robustness: Robustness deals with how errors in the premises affect the conclusions. Maxi-
mum possible robustness is achieved by reducing the sensitivity of the inference mechanism
to input variations to a satisfactory level, i.e., the output should not be too sensitive to un-
wanted variations of the input.

These properties can be treated as some parameters for assessing the goodness/ quality of an
inference mechanism. This means an inference mechanism which possesses some or all of these
properties are suitable to be used in applications.

In the literature, the most commonly used fuzzy inference mechanisms are Fuzzy Relational In-
ference Mechanism (FRI), Similarity Based Reasoning (SBR) and Takagi-Sugeno-Kang (TSK) Fuzzy
Systems.

Types of FRI: In this work, our main focus is on FRIs. Two of the well-known fuzzy relational
inference mechanisms are the Compositional Rule of Inference (CRI) proposed by Zadeh and the
Bandler-Kohout Subproduct (BKS) proposed by Pedrycz based on the earlier works of Bandler and
Kohout.
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Motivation: In these FRIs, the mainly used operations are either a left-continuous t-norm or a fuzzy
implication obtained as a residual of left-continuous t-norms. In all the previous works on FRI
dealing with desirable properties, the employed fuzzy implication comes from a residuated lattice.
It can be seen that many of these desirable properties of an FRI are due to the rich underlying
structure, viz., the residuated algebra. The question that arises naturally is the following:

What happens to an FRI if the fuzzy implications employed in it do not come from a residuated structure
on [0, 1]?

This forms the main motivation for the work contained in this thesis. We investigate an FRI
which employs fuzzy implications that are not known to come from a residuated algebra. One
such class of fuzzy implication is the Yager’s families of fuzzy implications which does not come
from a residuated lattice structure.

Work Presented in this Thesis:

• In this work, we discuss the BKS relational inference system with the fuzzy implication in-
terpreted as the well known Yager’s families of fuzzy implications, which do not form a
residuated structure on [0, 1].

• We show that all of the desirable properties, viz., interpolativity, continuity, robustness, uni-
versal approximation and monotonicity that are known for BKS with residuated implications
are also available under this framework, thus expanding the choice of operations available to
practitioners.

• While studying the properties like interpolativity and continuity we have proposed some
extended class of fuzzy implications which are defined on [0,∞] instead of [0, 1]. These play
an important role in giving crisp expressions to many results and properties.

• Moreover, it can be shown that the results on monotonicity and universal approximation ca-
pability are not only true for Yager’s families of fuzzy implications, but also for more general
classes of fuzzy implications.

Uniqueness of Our Work:

• To the best of the authors’ knowledge, this is the first attempt at studying the suitability of an
FRI where the operations do not come from a residuated structure.

• Some of the obtained results are valid for more general classes of fuzzy implications.

• We have proven the existence of monotonicity for FRIs by only imposing conditions on the
underlying partition and the operations but without modifying the given rule base, as is
common in the literature.
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Outline of the Thesis

This thesis can be split into two logical parts. Part I, consisting of Chapters 1 – 3, introduces Fuzzy
Relational Inference (FRI) mechanisms, presents their desirable properties and discusses the suit-
ability of existing types of FRIs and leads up to the main focus of this work, the Bandler-Kohout
Subproduct FRI with Yager’s families of fuzzy implications. Part II, consisting of Chapters 4 – 7,
investigates the conditions under which the Bandler-Kohout Subproduct FRI with Yager’s families
of fuzzy implications possess the desirable properties, thus establishing their suitability in practical
applications.

• In Chapter 1, after presenting some important definitions both from fuzzy set theory and
fuzzy logic connectives, we introduce different types of fuzzy rule bases, and go on to de-
scribe the inference procedure in a fuzzy inference mechanism.

• Following this, in Chapter 2, we begin by presenting a detailed discussion on fuzzy relational
inference (FRI) mechanisms. After reviewing some desirable properties and related results
on the suitability of existing FRIs, we set the motivation for the work contained in this thesis
and also define clearly the scope of this thesis.

• In Chapter 3, after presenting the definitions and basic properties of the Yager’s families of
fuzzy implications, we propose two modified versions of the well known Bandler-Kohout
Subproduct (BKS) inference mechanism, called the BKS-f and BKS-g inference mechanisms,
the study of which will be the main focus of this thesis.

• The Chapter 4 is devoted to investigating the interpolativity and continuity of the proposed
modified BKS inference mechanism. Here in this chapter, we begin by proposing an extension
of the well known Goguen implication (see Table 1.5) and discuss some of its properties,
which play an important role in this chapter. The main results of this chapter pertain to
finding necessary and sufficient conditions for the BKS-f and BKS-g inference mechanisms to
have interpolativity and continuity.

• The Chapter 5 deals with the robustness of the BKS-f and BKS-g inference mechanisms.

• In Chapter 6 we present a short survey on the works and results related to universal approx-
imation of fuzzy relational inference systems. Then relaxing the often insisted coherence of
an implicative model suitably to the context of function approximation, we show that FRIs
employing a rather large class of fuzzy implications - which include the BKS-f and BKS-g
inference mechanisms - are universal approximators. We illustrate the investigations and
analysis related to universal approximation with some examples.

• In Chapter 7, we investigate the monotonicity of FRIs, and along the lines of Chapter 6, show
that FRIs employing a rather large class of fuzzy implications - which include the BKS-f and
BKS-g inference mechanisms - are monotonic. Once again, we illustrate the investigations
and analysis related to monotonicity with some examples.

• Lastly, in Chapter 8 some concluding remarks and pointers to possible extensions and ap-
proaches from this thesis are given.
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Chapter 1

Fuzzy Inference Mechanism

Evolution is an inference from thousands of
independent sources, the only conceptual
structure that can make unified sense of all
this disparate information.

–Stephen Jay Gould (1995–2002)

Fuzzy sets and fuzzy logic connectives are the basic units of a fuzzy inference mechanism.
Fuzzy sets are a generalization of classical sets, where as fuzzy logic connectives are a general-
ization of classical logic operations. In this chapter, we begin by recalling the basic definitions from
fuzzy set theory and fuzzy logic connectives, following which we introduce the notion of fuzzy
rule bases and fuzzy inference mechanisms in detail.

1.1 Fuzzy Set Theory

Let X be the universe of discourse. In this work we only consider X ⊆ R to be a non-empty, closed
and bounded interval and hence X is totally ordered, linear and compact w.r.to the usual topology
on R. However, many of the concepts below are applicable to more general sets and hence the
definitions are given accordingly.

Let A ⊆ X. In classical set theory every element in X , either belongs to A or does not belong to
A. This can be represented equivalently by the characteristic functionχA : X −→ {0, 1},

χA(x) =

1, iff x ∈ A,

0, iff x /∈ A.

The degree of belongingness of an element to a classical set is either 0 or 1. Fuzzy set is nothing but
a generalization of a characteristic function, where the degree of belongingness of an element can
be any value between 0 and 1.
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1.1.1 Fuzzy Sets

Fuzzy sets are a generalization of classical sets. Fuzzy sets were first introduced by Lotfi A. Zadeh
[54] in 1965.

Definition 1.1.1. A fuzzy set A on X is a mapping from X to [0, 1], i.e, A : X → [0, 1].

A(x) is the membership function that assigns each element of X to a membership degree be-
tween 0 and 1. We denote the fuzzy power set of X as F(X), i.e., F(X) = {A|A : X → [0, 1]}.

Definition 1.1.2. A fuzzy set A is said to be

• normal if there exists an x ∈ X such that A(x) = 1 ,

• convex if X is a compcat subset of a linear space and for any λ ∈ [0, 1], x, y ∈ X ,

A(λx+ (1− λ)y) ≥ min{A(x), A(y)} .

For example in Figure 1.1(a), A is a fuzzy set which is normal and convex whereas in Fig-
ure 1.1(b), A is normal but not convex.

(a) Normal Convex Fuzzy set (b) Normal Non-convex Fuzzy set

Figure 1.1: Fuzzy sets which are normal and (a) Convex, (b) Non-convex.

Definition 1.1.3. For an A ∈ F(X), the Support, Height, Kernel, Ceiling and α-cut for an α ∈ (0, 1]

are, respectively, defined as:

Supp(A) = {x ∈ X|A(x) > 0} ,

Hgt(A) = sup{A(x)|x ∈ X} ,

Ker(A) = {x ∈ X|A(x) = 1} ,

Ceil(A) = {x ∈ X|A(x) = Hgt(A)} ,

[A]α = {x ∈ X|A(x) ≥ α} .

Definition 1.1.4. A fuzzy set A is said to be bounded if Supp(A) is a bounded set.

Note that for a normal fuzzy set Ker(A) = Ceil(A) and Hgt(A) = 1. For example in Fig-
ure 1.2(a),A is a fuzzy set which is again normal and convex with Supp(A) = [a, d], Hgt(A) = 1 and
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Ker(A) = Ceil(A) = [b, c], but in Figure 1.2(b), A is convex but not normal, with Supp(A) = [a, d],
Hgt(A) = 0.8, Ker(A) = ∅ and Ceil(A) = [b, c]. In Figure 1.2(a) and Figure 1.2(b) both the fuzzy
sets are bounded fuzzy sets as their support is bounded, whereas the fuzzy set in Figure 1.2(c) has
unbounded support, hence it is an unbounded fuzzy set.

Many of the above concepts can be specified in terms of α-cuts. From Figure 1.2(d) we can
see that the α-cut for an α ∈ (0, 1] is [A]α = [aα, bα]. Note that the support of a fuzzy set can be
defined in terms of α-cuts as Supp(A) =

⋃
α∈(0,1][A]α. For an α0 ∈ (0, 1], if Hgt(A) = α0, then

Ceil(A) = [A]α0
and for a normal fuzzy set Ker(A) = [A]1.

(a) (b)

(c) (d)

Figure 1.2: Support, Height, Kernel, Ceiling, α-cut of Fuzzy sets

1.1.2 Ordering on Fuzzy Sets

Ordering between two fuzzy sets is a vital concept. There exist different types of orderings on fuzzy
sets. In the following, we present one such ordering that will play an important role in this thesis.

Definition 1.1.5 ([38], Definition 3). For two convex fuzzy sets A1 and A2, we say that A1 ≺ A2 if for
any α ∈ (0, 1] it holds that

inf[A1]α ≤ inf[A2]α and sup[A1]α ≤ sup[A2]α .

For example, in the Figure 1.3(a), note that, [A1]α = [a1α, b
1
α] and [A2]α = [a2α, b

2
α], for every

α ∈ (0, 1] . We can see that for any α ∈ (0, 1], a1α ≤ a2α and b1α ≤ b2α, whereas in the Figure 1.3(b)
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there exists an α0 ∈ (0, 1] such that a1α0
> a2α0

and b1α0
≤ b2α0

. Thus, A1 ≺ A2 holds in Figure 1.3(a)
and A1 ⊀ A2 in Figure 1.3(b).

(a) A1 and A2 are ordered (b) A1 and A2 are not ordered

Figure 1.3: Ordering of Fuzzy sets

1.1.3 Operations on Fuzzy Sets

Similar to union, intersection and complement of classical sets, one can define these operations for
fuzzy sets. Some relevant fuzzy logic operations like fuzzy union, fuzzy intersection and fuzzy
complement are given below.

Definition 1.1.6. For any two fuzzy setsA1, A2 ∈ F(X), their union and intersection denoted byA1∪A2

and A1 ∩A2 are defined as

A1 ∪A2(x) = A1(x) ∨A2(x) = max {A1(x), A2(x)} ,

A1 ∩A2(x) = A1(x) ∧A2(x) = min{A1(x), A2(x)}.

Definition 1.1.7. Complement of a fuzzy set denoted as A(x) is defined as

A(x) = 1−A(x).

For example, in Figure 1.4(a), Figure 1.4(b) and Figure 1.4(c) the union, intersection and com-
plement of fuzzy sets are shown by the dotted lines, respectively.

Definition 1.1.8. Two fuzzy sets A1, A2 ∈ F(X) are equal if A1(x) = A2(x) for every x ∈ X .

1.1.4 Fuzzy Partition

In classical set theory, partition of a set X is defined as follows:

Definition 1.1.9. A collection of subsets of X , say, P is said to form a partition of X iff the following holds:

(i)
⋃
A∈P

A = X,

(ii) if A,B ∈ P and A 6= B then A ∩B = ∅,
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(a) A1 ∪A2. (b) A1 ∩A2.

(c) A.

Figure 1.4: Operations on fuzzy sets (a) Union, (b) Intersection and (c) Complement.

In fuzzy set theory, there are several approaches to and definitions of a fuzzy partition, see for
instance, [9, 13, 19, 27, 30]. In the following, we present a definition which is considered to be quite
general and hence is often used in the literature.

Definition 1.1.10. Let P be a finite collection of fuzzy sets on X , i.e, P = {Ak}nk=1 ⊆ F(X). P is said to
form a fuzzy partition on X if

X ⊆
n⋃
k=1

Supp(Ak) .

For instance, in Figure 1.5, {Ak}5k=1 forms a fuzzy partition on X = [a1, b5] since,

X =

5⋃
k=1

[ak, bk] =

5⋃
k=1

Supp(Ak) .

In essence, a fuzzy partition is a collection of fuzzy sets {Ak}nk=1 such that, for every x ∈ X

there exists k ∈ {1, 2, . . . , n} such that Ak(x) > 0.
In the literature, a partition P of X as defined above is also called a complete partition.

Definition 1.1.11. A fuzzy partition P = {Ak}nk=1 ⊆ F(X) is said to be

• consistent if whenever for some k, Ak(x) = 1 then Aj(x) = 0 for all j 6= k,

• a Ruspini Partition if
n∑
k=1

Ak(x) = 1 for every x ∈ X .
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Figure 1.5: {Ak}5k=1 forms a fuzzy partition on X .

In Figure 1.6, P = {Ak}6k=1 ⊆ F(X) forms a Ruspini partition. For instance, it can be verified
that for the x0 ∈ X in Figure 1.6,

6∑
k=1

Ak(x0) = A2(x0) +A3(x0) = 0.65 + 0.35 = 1 .

Figure 1.6: {Ak}6k=1 forms a Ruspini partition on X .

1.1.5 Defuzzification

Often there is a need to convert a fuzzy set to a crisp value, a process which is called Defuzzification.
This process of defuzzification can be seen as a mapping d : F(X) −→ X . There are many types of
defuzzification techniques available in the literature, see [40] for a good overview. Here, we recall
some of the defuzzifiers that will be relevent in our work.

Example 1.1.12. For a fuzzy setA ∈ F(X), with bounded ceiling Ceil(A), the Mean of Maxima (MOM)
defuzzifier gives as output the mean of all those values in X with the highest membership value, which can
be mathematically expressed as

MOM(A) =

∫
Ceil(A)

xdx∫
Ceil(A)

1dx

, if
∫

Ceil(A)

1dx 6= 0. (1.1)

The Smallest of Maxima (SOM) and Largest of Maxima (LOM) defuzzifiers can be mathematically
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expressed as

SOM(A) = min
{
x|A(x) = Hgt(A)

}
= min

{
x|x ∈ Ceil(A)

}
, and (1.2)

LOM(A) = max
{
x|A(x) = Hgt(A)

}
= max

{
x|x ∈ Ceil(A)

}
. (1.3)

In Figure 1.7, for the given fuzzy set A, SOM(A) = b, MOM(A) = x∗ =
b+ c

2
and LOM(A) = c.

Figure 1.7: Smallest of Maxima (SOM), Mean of Maxima (MOM) and the Largest of Maxima (LOM)
defuzzification techniques.

Example 1.1.13. For a fuzzy set A ∈ F(X), with bounded ceiling Ceil(A), the Center of Gravity (COG)
defuzzifier can be mathematically expressed as

COG(A) =

∫
Supp(A)

A(x)dx∫
Supp(A)

1dx

, if
∫

Supp(A)

1dx 6= 0. (1.4)

The Bisector (BIS) defuzzifier can be mathematically expressed as

BIS(A) =

{
x∗∗

∣∣∣∣∣
∫ x∗∗

x=inf Supp(A)

A(x)dx =

∫ x=sup Supp(A)

x∗∗
A(x)dx

}
. (1.5)

In Figure 1.8, for the given fuzzy set A, COG(A) = x∗ and BIS(A) = x∗∗.

1.2 Fuzzy logic Connectives

Fuzzy logic connectives like t-norms, t-conorms and fuzzy implications are a generalization of the
classical logic connectives like classical conjunctions (∧), classical disjunctions (∨) and classical
implications (→) respectively, whose truth table is given in Table 1.1.

Note that in this work, we use the term decreasing and increasing in a non-strict sense. In other
words, we call a function t1 : R→ R decreasing or non-increasing if t1(x) ≥ t1(y) whenever x ≤ y.
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Figure 1.8: Centroid(COG) and Bisector(BIS) defuzzification techniques.

p q p ∨ q p ∧ q p→ q
0 0 0 0 1
0 1 1 0 1
1 0 1 0 0
1 1 1 1 1

Table 1.1: Truth table for the classical logic connectives

Similarly, we call a function t2 : R → R increasing or non-decreasing if t2(x) ≤ t2(y) whenever
x ≤ y.

1.2.1 Triangular Norms

Triangular norms, introduced by Menger [29], are a generalization of classical conjunctions and are
defined as follows.

Definition 1.2.1 ([22], Definition 1.1). A function T : [0, 1]2 → [0, 1] is called a t-norm , if it is increasing
in both variables, commutative, associative and has 1 as the neutral element.

A t-norm T can be classified depending on various properties, but among them we define only
the following class, which is relevant in this thesis.

Definition 1.2.2 ([2], Definition 2.1.2). A t-norm T is called positive if,

whenever T (x, y) = 0 then either x = 0 or y = 0 . (T-POS)

Example 1.2.3 (cf. [2]). Table 1.2 lists a few of the basic t-norms along with their classification.

The algebraic product t-norm TP plays a very important role in our work and often will be
denoted by ’·’ in the infix notation.

1.2.2 Fuzzy Negations

Fuzzy negations are a generalization of classical negation and are defined as follows.
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Name Formula (T-POS)
minimum TM(x, y) = min(x, y) X
algebraic product TP(x, y) = xy X
Łukasiewicz TLK(x, y) = max(x+ y − 1, 0) ×

drastic product TD(x, y) =

{
0, if x, y ∈ [0, 1)

min(x, y), otherwise
×

nilpotent minimum TnM(x, y) =

{
0, if x+ y ≤ 1

min(x, y), otherwise
×

Table 1.2: Basic t-norms

Definition 1.2.4 ( [2], Definition 1.4.1). A function N : [0, 1] −→ [0, 1] is called a fuzzy negation if
N(0) = 1, N(1) = 0 and N is decreasing.

Example 1.2.5 (cf. [2]). Table 1.3 lists out some basic fuzzy negations.

Name Formula
Standard NC(x) = 1− x

Gödel ND1(x) =

{
1, if x = 0

0, if x > 0

Gödel ND2(x) =

{
0, if x = 1

1, if x < 1

Table 1.3: Basic fuzzy negations

1.2.3 Triangular Conorms

Triangular conorms are a generalization of classical disjunctions and are defined as follows.

Definition 1.2.6 ([22], Definition 1.1). A function S : [0, 1]2 → [0, 1] is called a t-conorm , if it is
increasing in both variables, commutative, associative and has 0 as the neutral element.

It can be noted that every t-conorm S can be represented as the N−dual of a t-norm T , as
S(x, y) = 1− T (1− x, 1− y), where the fuzzy negation NC(x) = 1− x is employed.

Example 1.2.7 (cf. [2]). Table 1.4 lists a few of the common t-conorms. They are the counterparts of the
t-norms in Example 1.2.3.

1.2.4 Fuzzy Implications

Fuzzy implications play a major role in the context of fuzzy inference mechanism. For a large part
of this thesis, fuzzy implications remain the focus of our investigations. Fuzzy implications are a
generalization of the classical implication as defined below.
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Name Formula
maximum SM(x, y) = max(x, y)
probabilistic sum SP(x, y) = x+ y − xy
Łukasiewicz SLK(x, y) = min(x+ y, 1)

drastic sum SD(x, y) =

{
1, if x, y ∈ (0, 1]

max(x, y), otherwise

nilpotent maximum SnM(x, y) =

{
1, if x+ y ≥ 1

max(x, y), otherwise

Table 1.4: Basic t-conorms

Definition 1.2.8 ( [2], Definition 1.1.1). A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it
satisfies, for all x, x1, x2, y, y1, y2 ∈ [0, 1], the following conditions:

if x1 ≤ x2, then I(x1, y) ≥ I(x2, y) , i.e., I( · , y) is decreasing ,

if y1 ≤ y2, then I(x, y1) ≤ I(x, y2) , i.e., I(x, · ) is increasing ,

I(0, 0) = 1 , I(1, 1) = 1 , I(1, 0) = 0 .

The set of all fuzzy implications will be denoted by I.

Example 1.2.9 (cf. [2]). Table 1.5 lists a few of the common fuzzy implications.

Name Formula
Łukasiewicz ILK(x, y) = min(1, 1− x+ y)

Gödel IGD(x, y) =

{
1, if x ≤ y
y, if x > y

Reichenbach IRC(x, y) = 1− x+ xy
Kleene-Dienes IKD(x, y) = max(1− x, y)

Goguen IG(x, y) =

{
1, if x ≤ y
y
x , if x > y

Rescher IRS(x, y) =

{
1, if x ≤ y
0, if x > y

Yager IYG(x, y) =

{
1, if x = 0 and y = 0

yx, if x > 0 or y > 0

Weber IWB(x, y) =

{
1, if x < 1

y, if x = 1

Fodor IFD(x, y) =

{
1, if x ≤ y
max(1− x, y), if x > y

Table 1.5: Examples of basic fuzzy implications

Many families of fuzzy implications have been proposed in the literature. One of the important
families to have been defined is the family of residuated implication, named as R-implication.

Definition 1.2.10 ([2], Definition 2.5.1). A function I : [0, 1]2 → [0, 1] is called an R-implication if there
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exists a t-norm T such that

I(x, y) = sup{t ∈ [0, 1] | T (x, t) ≤ y} , x, y ∈ [0, 1] .

An R-implication I generated from a t-norm T is often denoted by IT .

Example 1.2.11 (cf. [2]). Table 1.6 lists few of the well-known R-implications along with the t-norms from
which they have been obtained.

t-norm T R-implication IT
TM IGD

TP IG
TLK ILK

TD IWB

TnM IFD

Table 1.6: Examples of R-implications

1.2.5 Desirable properties of Fuzzy implications

A fuzzy implication can be classified depending on various properties. In the following definitions
we describe some important properties of fuzzy implications which are relevant in this thesis.

Definition 1.2.12 ([2]). A fuzzy implication I : [0, 1]2 → [0, 1] is said to

• satisfy the left neutrality property, if

I(1, y) = y , y ∈ [0, 1] . (NP)

• satisfy the ordering property, if

I(x, y) = 1⇐⇒ x ≤ y , x, y ∈ [0, 1] . (OP)

• be a positive fuzzy implication if

I(x, y) > 0, for all x, y ∈ (0, 1] . (I-POS)

• be a strict fuzzy implication if I is strict in both the variables i.e, for x, y, x1, x2, y1, y2 ∈ [0, 1],

if x1 < x2, then I(x1, y) > I(x2, y) ,

if y1 < y2, then I(x, y1) < I(x, y2) . (ST)

• the Law Of Importation, if for a t-norm T the following holds:

I(x, I(y, z)) = I(T (x, y), z) = I(T (y, x), z) , x, y, z ∈ [0, 1] . (LI)
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Proposition 1.2.13. Every strict fuzzy implication is a positive fuzzy Implication, i.e., if I satisfies (ST),
then it satisfies (I-POS).

Remark 1.2.14. Not all positive fuzzy implications are strict fuzzy implications, see Table 1.7.

Example 1.2.15. Table 1.7 lists the basic fuzzy implications along with their desirable properties.

Fuzzy implication (NP) (OP) (I-POS) (ST)
ILK X X X ×
IGD X X X ×
IRC X × X X
IKD X × X X
IG X X X ×
IRS × X × ×
IYG X × X X
IWB X × X ×
IFD X X X ×

Table 1.7: Basic fuzzy implications and their main properties

Example 1.2.16 (cf. [2]). Table 1.8 contain all basic fuzzy implications along with the t-norms for which
they satisfy the law of importation (LI). We see that the Rescher implication IRS does not satisfy (LI) with
respect to any t-norm T .

Implication t-norm
ILK TLK

IGD TM
IRC TP
IKD TM
IG TP
IRS ×
IYG TP
IWB any T
IFD TnM

Table 1.8: Basic fuzzy implications and the law of importation

Definition 1.2.17 ( [2], Definition 1.4.14). Let I ∈ I be any fuzzy implication. The function NI :

[0, 1] −→ [0, 1] defined by NI(x) = I(x, 0) is a fuzzy negation and is called the natural negation of I .

Example 1.2.18 (cf. [2]). Table 1.9 lists the natural negations of all basic fuzzy implications.
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Fuzzy implication I Natural negation NI
ILK NC

IGD ND1

IRC NC

IKD NC

IG ND1

IRS ND1

IYG ND1

IWB ND2

IFD NC

Table 1.9: Basic fuzzy implications and their natural negations

Proposition 1.2.19. Let I be any finite index set and −→ denote any fuzzy implication. Then

x −→
∧
i∈I

(yi) =
∧
i∈I

(x −→ yi) , (1.6)

x −→
∨
i∈I

(yi) ≥
∨
i∈I

(x −→ yi) , (1.7)∨
i∈I

(xi) −→ y =
∧
i∈I

(xi −→ y) , (1.8)∧
i∈I

(xi) −→ y ≥
∨
i∈I

(xi −→ y) . (1.9)

Proof. Proof follows from the following facts and noting that I is a finite index set:

• For any non-decreasing function h,

h(min(x, y)) = min(h(x), h(y)),

h(max(x, y)) = max(h(x), h(y)),

• For any non-increasing function h∗,

h∗(min(x, y)) = max(h∗(x), h∗(y)),

h∗(max(x, y)) = min(h∗(x), h∗(y)),

• Any fuzzy implication −→ is non-increasing in the first variable and non-decreasing in the
second variable.

1.3 Fuzzy Rule Bases

A fuzzy rule base is a way of representing the knowledge about a system under consideration.
It is with the help of this rule base and a given current input one draws inferences in a fuzzy
infernce system. Thus, fuzzy rule bases form one of the basic building blocks of a fuzzy inference

15



mechanism. In this section, we look into both a single fuzzy rule and a set of if-then fuzzy rules,
which is called a fuzzy rule base, in detail.

1.3.1 Fuzzy Rule

Let X,Y ⊆ R be two nonempty sets and F(X), F(Y ) be the set of all fuzzy sets on X and Y ,
respectively. A fuzzy IF-THEN rule is of the form

R(A,B) : IF x̃ is A THEN ỹ is B , (1.10)

where x̃, ỹ are linguistic variables and A ∈ F(X), B ∈ F(Y ) are linguistic expressions/values
assumed by the linguistic variables over X,Y . A and B are also known as the antecedent and the
consequent fuzzy sets of the rule base. For instance, consider the following rule,

IF Weather is Hot THEN Fanspeed is High .

Here Weather and Fanspeed are the linguistic variables and Hot, High are the linguistic values
taken by the linguistic variables in a suitable domain, e.g. , X = [15, 50] (degrees in Centigrade)
and Y = [300, 1000] (rpm).

1.3.2 Fuzzy Rule Base

Given two non-empty setsX,Y ⊆ R, a Single-Input Single-Output (SISO) fuzzy IF-THEN rule base
consists of rules of the form:

R(Ai, Cj) : IF x̃ is Ai THEN ỹ is Cj , (1.11)

where x̃, ỹ are the linguistic variables, Ai, i = 1, 2, . . . n and Cj , j = 1, 2, . . .m are the linguistic
values taken by the linguistic variables. These linguistic values are represented by fuzzy sets in
their corresponding domains, i.e., Ai ∈ F(X), Cj ∈ F(Y ).

As an example,

IF Weather is Hot THEN Fanspeed is High,

IF Weather is Cold THEN Fanspeed is Low,

IF Weather is V ery Cold THEN Fanspeed is V ery Low.

Here Temperature and Fanspeed are the linguistic variables. Hot, Cold and V ery Cold are the
linguistic values taken by the linguistic variable Weather in a suitable domain. High, Low and
V ery Low are the linguistic values taken by the linguistic variable Fanspeed in a suitable domain.

Definition 1.3.1. A fuzzy rule base is said to be a complete rule base if for any x ∈ X , there exists an
i ∈ {1, 2, . . . , n} such that Ai(x) > 0.

For a complete fuzzy rule base the antecedent fuzzy sets {Ai}ni=1 form a fuzzy partition ofX . Let
us denote this fuzzy partition of X as PX . Let the consequent fuzzy sets {Cj}mj=1 form a partition
of Y . Let us denote this partition of Y as PY . Note that the cardinalities of PX and PY may not
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be same but still we can represent every complete rule base in the form of (1.12). For example,
consider a complete rule base of the form:

IF x̃ is A1 THEN ỹ is C1 ,

IF x̃ is A2 THEN ỹ is C2 ,

IF x̃ is A3 THEN ỹ is C2 ,

IF x̃ is A4 THEN ỹ is C3 ,

IF x̃ is A5 THEN ỹ is C3 .

Clearly PX = {A1, A2, A3, A4, A5} and PY = {C1, C2, C3}. We rename the consequent fuzzy sets
such that the rule base takes the form:

IF x̃ is A1 THEN ỹ is B1 ,

IF x̃ is A2 THEN ỹ is B2 ,

IF x̃ is A3 THEN ỹ is B3 ,

IF x̃ is A4 THEN ỹ is B4 ,

IF x̃ is A5 THEN ỹ is B5 ,

where B2 = B3 and B4 = B5.

Thus we can consider a fuzzy IF-THEN rule base as consisting of rules of the form:

R(Ai, Bi) : IF x̃ is Ai THEN ỹ is Bi, i = 1, 2, . . . n, (1.12)

where Ai ∈ PX , i=1, 2, . . . n, form a partition on X and Bi ∈ PY , i=1, 2, . . . n, form a partition on Y ,
respectively. Note that not all Bi’s may be distinct.

1.3.3 Implicative and Conjunctive Rule Bases

A fuzzy rule base of the form (1.12) can be viewed in two different ways, as explained in [15, 16].
When each of the rules is viewed as a constraint, i.e., when the rules in (1.12) are combined together
as

IF x̃ is A1 THEN ỹ is B1,

...

AND

...

IF x̃ is An THEN ỹ is Bn, (1.13)

we have the conditional form (IF-THEN) of the rules. On the other hand, each of the rules can also
be viewed as just pieces of data giving possible configurations or positive information, in which
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case they are combined as follows:

x̃ is A1 AND ỹ is B1,

...

OR

...

x̃ is An AND ỹ is Bn. (1.14)

Throughout this thesis we will consider conditional rule bases of the type presented in (1.13).

1.3.4 Monotone Rule Base

One can classify fuzzy rule bases into different types. For instance, in the above sections, we have
seen two types of categorisation: (i) complete or incomplete and (ii) implicative or conjunctive. In
this thesis, the following category of rule bases also play an important role.

Definition 1.3.2 ([46]). A fuzzy rule base (1.12) is called monotone if for any two rules

IF x̃ is Ai THEN ỹ is Bi ,

IF x̃ is Aj THEN ỹ is Bj ,

such that Ai ≺ Aj , it also holds that Bi ≺ Bj , where ≺ is as defined in Definition 1.1.5.

Let us consider the fuzzy sets {A1, A2, A3, A4, A5} as shown in Figure 1.9(a) and the the fuzzy
sets {B1, B2, B3, B4} as shown in Figure 1.9(b). It can be noted that A1 ≺ A2 ≺ A3 ≺ A4 ≺ A5 and
B1 ≺ B2 ≺ B3 ≺ B4.

(a) Antecedent Fuzzy Sets (b) Consequent Fuzzy Sets

Figure 1.9: Antecedents and Consequents of Rule Base

18



Thus we see that the rule base of the type,

IF x̃ is A1 THEN ỹ is B1 ,

IF x̃ is A2 THEN ỹ is B2 ,

IF x̃ is A3 THEN ỹ is B3 ,

IF x̃ is A4 THEN ỹ is B3 ,

IF x̃ is A5 THEN ỹ is B4 ,

is a monotone rule base since A1 ≺ A2 ≺ A3 ≺ A4 ≺ A5 and B1 ≺ B2 ≺ B3 ≺ B4, where as the rule
base of the type,

IF x̃ is A1 THEN ỹ is B1 ,

IF x̃ is A2 THEN ỹ is B3 ,

IF x̃ is A3 THEN ỹ is B2 ,

IF x̃ is A4 THEN ỹ is B1 ,

IF x̃ is A5 THEN ỹ is B4

is not a monotone rule base since the antecedents of the rules 1 and 2 are ordered as A2 ≺ A3 but
their corresponding consequents are ordered differently, B3 ⊀ B2.

1.4 Fuzzy Inference Mechanism

Approximate reasoning, as introduced by Zadeh in his early papers on fuzzy logic [55, 56], has
been paraphrased thus by Hellendoorn [18]: ”Approximate reasoning in its broadest sense is a collection
of techniques for dealing with inference under uncertainty in which the underlying logic is approximate or
probabilistic rather than exact or deterministic.”
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An Inference mechanism in approximate reasoning can be seen as a function which derives a
meaningful output from imprecise inputs. Approximate reasoning schemes involving fuzzy sets
are one of the best known applications of fuzzy logic in the wider sense. Given a rule base of the
form (1.12) and an input ”x̃ is A′ ”, the main objective of a fuzzy inference mechanism is to find a
meaningful B′ such that ” ỹ is B′ ”. The mechanism of the inference is shown in Figure 1.10.

Figure 1.10: Fuzzy Inference Mechanism

A Fuzzy Inference Mechanism (FIM) can be represented in the following form:

F =
(
PX ,PY ,z,R

(
Ai, Bi

)
, µ, d

)
, (1.15)

where

• R
(
Ai, Bi

)
represents the rule base (1.12) ,

• Ai ∈ PX , Bi ∈ PY , i=1, 2, . . . n, are the corresponding antecedents and consequents of the rule
base which form fuzzy partitions on the spaces X and Y , respectively,

• z consists of some operations that form the core of the inference engine,

• µ : X −→ F(X) is a fuzzifier that converts a crisp input into a fuzzy input, and

• d : F(Y ) −→ Y is the defuzzifier which converts the fuzzy output into a crisp output.

1.4.1 Fuzzy Inference Mechanism: A Functional View

A fuzzy inference mechanism can be seen as a function from the space of fuzzy sets F(X) to the
space of fuzzy sets F(Y ) as follows:

z : F(X) −→ F(Y ).

20



Alternatively, it can also be seen as a function from the space X to the space Y as follows:

g : X
µ−→ F(X)

z−→ F(Y )
d−→ Y .

In the literature, g is known as the system function of the fuzzy inference mechanism.
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Chapter 2

Fuzzy Relational Inference
Mechanism

Beyond a doubt truth bears the same relation to
falsehood as light to darkness.

–Leonardo da Vinci (1452–1519)

As was noted in the earlier chapter, an inference mechanism in approximate reasoning can
be seen as a function which derives a meaningful output from imprecise inputs. Many kinds of
inference mechanisms using fuzzy set theory and their logical connectives have been studied in the
literature [7, 14, 25, 56]. Fuzzy relational inferences, which use fuzzy relations to model the given
rule base, occupy a central position in approximate reasoning using fuzzy sets.

In this chapter, after reviewing fuzzy relations and discussing how they are often used to model
the fuzzy rule bases, we discuss fuzzy relational inference (FRI) mechanisms in detail, including
two of the well-known FRIs, namely, the Compositional Rule of Inference (CRI) proposed by Zadeh
[26, 56], and the Bandler-Kohout Subproduct (BKS) proposed by Pedrycz [34] based on the earlier
work of Bandler and Kohout [7]. After presenting a small survey on the suitability of these FRIs,
we finally state our motivation and specify the scope of the work contained in this thesis.

2.1 Fuzzy Relations

A crisp binary relation among classical sets X,Y is a subset of X × Y denoted as ρ(X,Y ), i.e,
ρ(X,Y ) ⊆ X × Y . Each classical relation can be defined by its characteristic function ρ(X,Y ) :

X × Y → {0, 1} as:

ρ(x, y) =

1, iff (x, y) ∈ ρ ,

0, iff (x, y) /∈ ρ .

A fuzzy relation on X × Y is a generalization of the crisp relation.

Definition 2.1.1. A fuzzy binary relation R is a mapping from X × Y to [0, 1], i.e, R : X × Y → [0, 1].
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In essence a fuzzy relation can be viewed as a fuzzy set defined on the Cartesian product of
crisp sets X,Y .

2.2 Fuzzy Relations and Fuzzy Rulebases

Let us consider the rule bases of the type (1.13) and (1.14).
In fuzzy relational inference mechanisms, fuzzy relations R : X × Y → [0, 1] are employed to

represent the rule base (1.13) and (1.14). Two of the commonly employed fuzzy relations are the
following: For any x ∈ X, y ∈ Y ,

R̂→(x, y) =

n∧
i=1

(Ai(x) −→ Bi(y)) , (2.1)

Ř?(x, y) =

n∨
i=1

(Ai(x) ? Bi(y)) , (2.2)

where −→ is taken as a fuzzy implication and ? as a t-norm.
Note that the fuzzy relation R̂→ captures the conditional form (1.13) of the given rules, while

the relation Ř? captures the Cartesian product form (1.14) of the rules. For more on the semantics
of Ř? and R̂→ we refer the readers to [15, 16].

2.3 Fuzzy Relational Inference

Many types of fuzzy inference mechanisms have been proposed in the literature, see for instance,
[7, 14, 25, 56], etc. We restrict this study to fuzzy relation based inference mechanisms.

Let X,Y be two nonempty sets. Let us also consider the the rule baseR(Ai, Bi) as in (1.12) and
let the fuzzy relation R : X × Y → [0, 1], i.e, R ∈ F(X × Y ) representing or modeling the rule base
R(Ai, Bi) be given. For a given input A′ ∈ F(X), the output B′ ∈ F(Y ) can be obtained by a fuzzy
relational inference mechanism, which can be expressed as follows:

B′ = f@R (A′) = A′@R , (FRI-R)

where @ is called the composition operator, which is a mapping @: F(X) × F(X × Y ) → F(Y ). An
FRI can be represented by the following pentuple:

F = (PX ,PY ,@, R, d) , (2.3)

where PX ,PY are fuzzy partitions on X and Y , respectively, R and @ are as mentioned above, and
d : F(Y ) −→ Y is the defuzzification function which converts the output fuzzy set to a crisp value.

On comparing (2.3) with (1.15), we see that one can identify z with the function f@R : F(X) →
F(Y ) associated with the given FRI (2.3). Hence, in the sequel, we often refer to f@R also as the
inference function associated with the FRI F = (PX ,PY ,@, R, d). In the literature, one employs the
term FRI to mean both the system F and its associated inference function f@R , a practice we follow
in this thesis too. Note also that the fuzzifier µ is not explicitly specified since we deal with fuzzy
inputs A′ ∈ F(X).
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2.3.1 Compositional Rule of Inference

One of the two main FRIs is the Compositional Rule of Inference (CRI) proposed by Zadeh [56] and
is given as follows:

B′(y) = f◦R(A′) = A′(x) ◦R(x, y)

=
∨
x∈X

[A′(x) ? R(x, y)] , y ∈ Y , (CRI-R)

where ? is a t-norm. The operator ◦ is also known as the sup−T composition where T is a t-norm.
Note that f◦R(A′) is also known as the direct image of A′ over R [48]. Thus the structure of CRI can
be represented as

F = (PX ,PY , ◦, R, d) .

2.3.2 Bandler-Kohout Subproduct

Pedrycz [34] proposed another FRI mechanism based on the Bandler-Kohout Subproduct compo-
sition which is given as follows:

B′(y) = f/R(A′) = A′(x) / R(x, y)

=
∧
x∈X

[A′(x) −→ R(x, y)] , y ∈ Y , (BKS-R)

with−→ interpreted as a fuzzy implication. The operator / is also known as the inf −I composition
where I is a fuzzy implication. Note that f/R(A′) is also known as the sub-direct image of A′ over R
[48]. Thus the structure of BKS can be represented as

F = (PX ,PY , /, R, d) .

2.3.3 Singleton Inputs and FRIs with Redicible Composition

Often one needs to deal with crisp inputs, viz., an x0 ∈ X . In such a case, it is suitably fuzzified, i.e.,
a fuzzy set A′ ∈ F(X) is suitably constructed from x0. Commonly, the following singleton fuzzifier
µs : X −→ F(X) is employed to obtain a fuzzy input A′ ∈ F(X). For any x0 ∈ X ,

µs(x0) = A′(x) =

1, x = x0 ,

0, x 6= x0 .

With the above input A′, the FRI mechanisms (CRI-R) and (BKS-R) reduce to

B′(y) = R(x0, y) , y ∈ Y , (FRI-R-Singleton)

for any t-norm ? in case of (CRI-R) and any implication I satisfying (NP) in case of (BKS-R). Thus,
in the case of a singleton input, both the (CRI-R) and (BKS-R) are essentially the same (provided
−→ in (BKS-R) satisfies (NP) ) and the output is fully dependent on the model of the rule base
R. In other words, f◦R ≡ f/R ≡ fR and hence the composition ◦ or / - when the I in / = inf −I
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composition satisfies (NP) - does not play any role.

In this thesis, we call such an FRI F to be an FRI with reducible composition, i.e., those FRIs whose
output, in the case of singleton inputs with singleton fuzzification µ, does not depend on the un-
derlying composition operation and hence f@R ≡ fR.

In all the subsequent analysis contained in the rest of this thesis, we either consider inputs to be
fuzzy sets, or if the input is crisp, we use a singleton fuzzifier µs to obtain a fuzzy input. Thus for
enhanced readability and shorter notation, the role of the fuzzifier µ will not be highlighted.

2.3.4 The System Function g of an FRI

From the above, it is clear that an FRI can be seen as mapping f@R : F(X)→ F(Y ). When the given
input is a fuzzy set A′ ∈ F(X) we obtain a fuzzy output B′ = f@R (A′) ∈ F(Y ). One can also apply
the defuzzifier on B′ to obtain a final value y = d(B′) ∈ Y .

In the case of singleton inputs, the overall inference of an FRI F can be seen as a function g :

X → Y as follows:

g(x′) = d(B′(·)) = d(f@R (A′(x′))) , x′ ∈ X . (2.4)

Further, in the case of an FRI F with reducible composition, the overall inference reduces to the even
simpler function

g(x′) = d(B′(·)) = d(R(x′, ·)) , x′ ∈ X . (2.5)

In the literature, g is also known as the system function of a given F, see for instance, [23, 24].

2.4 Desirable Properties of an FRI

A fuzzy inference mechanism has many degrees of freedom, viz., the underlying fuzzy partition of
the input and output spaces, the fuzzy logic operations employed, the fuzzification and defuzzifi-
cation techniques used, etc. This freedom gives rise to a variety of FIMs with differing capabilities.

While dealing with a fuzzy relational inference mechanism (FRI), the operators employed in it
can be picked from a plethora of choices. However, the question that arises is whether an FRI with a
particular choice of operators is good. Once again, the ’goodness’ of an FRI itself can be measured
against different parameters. In the literature, some measures of goodness have been proposed
which we discuss in brief below, specifically with respect to FRIs. Note that these measures are
applicable, in general, to any FIM. However, since in this thesis we restrict our study only to FRIs,
the following discussion is given in the context of FRIs.

Interpolativity: Interpolativity is one of the most fundamental properties of an inference mech-
anism. An FRI is said to be interpolative if the following is valid: Whenever an antecedent of a rule
Ai is given as the input, the corresponding consequent Bi should be the inferred output, i.e.,

Bi = f@R (Ai) = Ai@R, i = 1, 2 . . . n., Ai ∈ F(X), R ∈ F(X × Y ).

In the case of FRIs, interpolativity pertains to the solvability of the fuzzy relational equations cor-
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responding to the system, which will be dealt with in detail in Chapter 4.

Continuity: In the literature, the continuity of an FRI is discussed at the level of f@R , i.e., when
the inputs are fuzzy sets. In this context, the continuity of an FRI can be seen as follows: If the given
fuzzy input is close to some antecedent of the rule base then continuity insists that the obtained
fuzzy output is also close to the corresponding consequent fuzzy set.

• Similar to the classical definition of continuity, we say that an FRI F or its associated infer-
ence function f@R is continuous at Ai if, for any given ε > 0, we have a δ > 0 such that,
DX (Ai, A) < δ =⇒ DY

(
Bi, f

@
R (A)

)
< ε, whereDX andDY are suitable metrics on F(X) and

F(Y ), respectively.

• We say that an FRI F or its associated inference function f@R is continuous at PX = {Ai}ni=1, if
it is continuous at Ai for every i ∈ {1, 2, . . . , n}.

Robustness: Robustness deals with how errors in the premises affect the conclusions. It is
different from continuity in that, we expect that even when the actual input fuzzy set is not close
to the intended fuzzy set but somehow are equivalent - in a certain predefined sense based on
the equality relations on the underlying set - the output of the actual fuzzy set is also close to
the corresponding intended output. Maximum possible robustness is achieved by reducing the
sensitivity of the inference mechanism to input variations to a satisfactory level, i.e., the output
should not be too sensitive to unwanted variations in the input.

Universal Approximation: In certain contexts, like in control systems, a fuzzy inference system
is essentially a function approximator. Thus it is imperative to discuss its approximation capa-
bilities, i.e., whether it can approximate any continuous function over a compact set to arbitrary
accuracy. In other words, the question we try to answer here is the following:

Let an ε > 0 and a continuous function h : [a, b]→ R over a closed interval [a, b] be given. Does
there exist

(i) a fuzzy partition PX on X = [a, b],

(ii) a fuzzy partition PY on Y = h ([a, b]),

(iii) an appropriate rule baseR(Ai, Bi) where Ai ∈ PX , Bi ∈ PY for i = 1, 2, . . . n,

(iv) a suitable fuzzy relation R that models the rulebaseR(Ai, Bi),

(v) a defuzzifier d,

so that the FRI F =
(
PX ,PY ,@, R, d

)
with system function g, as defined in (2.4) or (2.5), is such

that
max
x∈[a,b]

|h(x)− g(x)| ≤ ε .

Monotonicity: Monotonicity of an FRI refers to whether given a monotone rule base and mono-
tonic inputs we obtain monotonic outputs. Let us be given a monotone rule base, i.e., a rule base
R(Ai, Bi) where the antecedents Ai ∈ PX and consequents Bi ∈ PY are such that they maintain
the same ordering as explained in Section 1.3.4.

The question now is the following:
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Does there exist an FRI F =
(
PX ,PY ,@, R, d

)
with a suitable fuzzy relation R that models the

rule base R(Ai, Bi), and a defuzzifier d, such that for any two crisp inputs x′ and x′′ with x′ ≤ x′′,
the corresponding outputs are such that g(x′) = y′ ≤ y′′ = g(x′′)?

2.5 Works on the Suitability of FRIs

There have been many works that have dealt with the suitability of FRIs vis-á-vis the desirable
properties listed above. In this section we present a brief review of some of these works, with our
focus being able to draw a thread that will eventually lead up to the main motivation and objectives
of the work contained in this thesis.

2.5.1 Interpolativity, Continuity and Robustness of FRIs

Interpolativity of an FRI essentially relates to the solvability of the underlying fuzzy relational
equations. The works of Di Nola et al. [31] and Sanchez [41] could be seen as the earliest works
dealing with interpolativity of CRI, while that of Nosková [32] clearly deals with the interpolativity
of BKS inference mechanism.

It was Perfilieva and Lehmke [36] who discussed the conditions under which the CRI mecha-
nism is continuous. In fact, they showed that under these conditions, continuity and interpolativ-
ity are equivalent. The robustness of CRI was dealt with by Klawonn and Castro [21]. Later on
Štěpnička and Jayaram [49] have undertaken a similar study for the BKS inference mechanism.

2.5.2 Approximation Properties of FRIs

As can be seen from Section 2.4 above, both the universal approximation capability and monotonic-
ity of an FRI are discussed in the context of singleton or crisp inputs (with singleton fuzzification).
Since CRI and BKS are FRIs with reducible composition (in this context), the composition opera-
tor @ does not a play a role (see Section 2.3.3). Hence most of the works that deal with universal
approximation, do not distinguish between CRI and BKS. Note that most of these studies consider
the fuzzy implication I in the inf −I composition of BKS to come from the family of R-implications
(Definition 1.2.10) which possesses (NP), and hence such an assumption is justified.

Thus, once the partitions PX ,PY and the rule base R(Ai, Bi) are formed, an investigation into
the approximation properties of an FRI boils down to investigating the fuzzy relationR that models
the rule base and the defuzzifier d.

It should also be mentioned that, while many studies have appeared on this topic, most of them
deal with FRIs where the rules are interpreted in a non-conditional way or as just aggregation of
possibile configurations of the data (see Sections 1.3 and 2.1 for details). When an implicative or a
conditional interpretation of the rules are considered, there are only a few works dealing with their
approximation properties.

The earliest works to study the approximation capabilities of FRIs can be traced to the works of
Wang [50] and Zeng and Singh [57], where the fuzzy relation used to model the rule base is R = Ř?

(as in (2.2)) and hence can be considered to have assumed a Cartesian product interpretation of the
fuzzy rules. For some recent works on this topic, please see [35], [53] and the references therein.
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When considering the implicative model of the rule base, one of the earliest studies on this topic
was that of Castro [10], [11]. Interestingly, it was later on shown by Li et al. [24], that some of the
operations considered by Castro led to vacuous outputs. Li et al. further went on to present their
own results with the fuzzy relation R = R̂→ modeling the rule base (see Section 2.1). While their
scope does encompass a few families of fuzzy implications, explicit proofs are given only for the
family of R-implications obtained from left-continuous t-norms.

Recently, Štěpnička et al. [48] have discussed the same in a slightly more general setting. Specif-
ically, they have considered the following fuzzy relation to model the rule base: R = R⊗→∗ where
⊗ is the Łukasiewicz t-norm TLK as in Table 1.2.and →∗ is any residuated implication obtained
from a left-continuous t-norm ∗, which can be different from TLK. Once again, the assumptions
they make on some components of the FRIs are not desirable - for instance, the requirements on the
input partition make it non-Ruspini.

2.5.3 Monotonicity of FRIs

That a system function g of an FRI F may not be monotonic is, in itself, a very recently discovered
phenomenon. It was Broekhoven and De Baets [43], who studied this interesting aspect by dis-
cussing the monotonicity of FRIs, where the rules are interpreted in a non-conditional way with d
= MOM, the Mean Of Maxima defuzzification. In a follow-up work, the authors have proven the
existence of monotonicity with d = COG, the center of gravity defuzzification in [44]. However, the
results have been presented for some specific operators and hence lack in generality. Very recently,
Stepnicka and De Baets [46, 47] have taken up the the monotonocity problem where implicative or
a conditional interpretation of the rules are considered. It should be mentioned, once again, that
the fuzzy implication −→ employed in the fuzzy relation R modeling the rule base is taken to be
the residual of a left-continuous t-norm.

2.6 Motivation behind the work in this thesis

In all the existing works on FRI dealing with desirable properties, the fuzzy logic operations em-
ployed, either as part of the underlying composition @ or in the fuzzy relation R modeling the rule
base, come from a residuated lattice structure. For instance, the t-norms considered are usually
left-continuous on [0, 1]2 and the fuzzy implications are, almost always, residuals of such t-norms,
i.e., come from the family of R-implications.

From the proofs of the results in the above works, it can be seen that many of these desirable
properties of FRI are due to the rich underlying structure, viz., the residuated algebra, that lends
its operations very many nice properties. In fact, the (t-norm, fuzzy implication) pair of (T, I) form
an adjoint couple [17] and hence are immediately endowed with a long list of useful properties.

The question that naturally arises now is the following:

Let us consider an FRI where the operations employed, either in the underlying composition @ or in the
fuzzy relation R modeling the rule base, do not come from a residuated structure on [0, 1]. Does such an FRI
F =

(
PX ,PY ,@, R, d

)
possess the above desirable properties ? If not, what are the conditions under which

these properties are satisfied?
This forms the main motivation for the work contained in this thesis.
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2.7 Scope of the work in this thesis

In line with our stated motivation, we investigate the Bandler-Kohout Subproduct inference mech-
anism, where the fuzzy implication −→ used in the composition � (BKS-R) is not obtained as the
residual of a t-norm, i.e. the fuzzy implication I employed in the inf −I composition is not an
R-implication as defined in Definition 1.2.10.

While there exist many families of fuzzy implications, we restrict the scope of this work to
considering the Yager’s families of fuzzy implications, viz., f - and g-implications proposed by
Yager [52]. The choice of these families of fuzzy implications is two fold : On the one hand, these
families have been well-established in the literature over the last decade [1, 20, 28, 39, 45, 51], and
on the other hand, the intersection between the families ofR-implications and Yager’s implications
is almost neglible. In fact, it is well known that no f -implication is an R-implication [1, 2] and the
only R-implication that is also a g-implication is the Goguen implication IG [1, 2] .

Further, in this thesis we deal only with the conditional form of rulebases, i.e., of the type pre-
sented in (1.13). In essence, we discuss the desirable properties of an FRI of the form:

F = (PX ,PY ,�Y , R, d) ,

where �Y denotes that the fuzzy implications I considered in the inf −I composition comes from
the Yager’s families of fuzzy implications.

It should also be pointed out that both the f - and g-implications satisfy (NP), and hence when
considering singleton inputs with singleton fuzzification, the FRI F does become one with reducible
composition, thus making itself amenable for further analysis.

Finally, note that we deal with only Single Input Single Output (SISO) rule bases and hence the
whole study can be seen as dealing with SISO fuzzy inference systems.
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Chapter 3

Bandler-Kohout Subproduct with
Yager’s Families of Fuzzy
Implications

Every new body of discovery is mathematical in
form, because there is no other guidance we can
have.

– Charles Darwin (1809–1882)

Yager [52] introduced two families of fuzzy implications named f - and g-generated implications
based on strictly monotonic functions on [0, 1]. As noted in Chapter 2, we consider these families
of fuzzy implications instead of the usual R-implications in the BKS inference mechanism.

In this chapter we recall the definitions of these two families of fuzzy implications, in Sec-
tions 3.1 and 3.2, and also discuss some of their properties, which are relevant in this thesis. Fol-
lowing this, we propose the Bandler-Kohout Subproduct with the Yager’s families of fuzzy im-
plications, where we employ these two families of fuzzy implications. Finally, in Section 3.4, we
specify the fuzzy relation R that we will consider to model the given implicative rule base.

3.1 Yager’s Family of f -implications

In this section, we introduce the Yager’s family of f -implications. It is well known that no f -
implication can be obtained as a residual of a left-continuous t-norm and hence this family of fuzzy
implications do not impose a residuated structure on [0, 1] with any t-norm T . We also present
some relevant properties and results involving this family, which will play a crucial role in the rest
of this thesis.

Definition 3.1.1 ( [2], Definition 3.1.1). Let f : [0, 1] → [0,∞] be a strictly decreasing and continuous
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function with f(1) = 0. The function If : [0, 1]2 → [0, 1] defined by

If (x, y) = f−1 (x · f(y)) , x, y ∈ [0, 1] , (3.1)

with the understanding 0 · ∞ = 0, is a fuzzy implication and called an f -implication. The function f itself
is called an f -generator of the If generated as in (3.1).

We will often write −→f instead of If . It is worth mentioning that f can also be seen as an
additive generator of some continuous Archimedean t-norm [22].

Example 3.1.2 (cf. [2]). Table 3.1 lists few of the f -implications along with their generators from which
they have been obtained.

f -generator f f -implication If

f(x) = − lnx IYG(x, y) =

{
1, if x = 0 and y = 0

yx, if x > 0 and y > 0

f(x) = 1− x IRC(x, y) = 1− x+ xy

fc(x) = cos(π2x) Ifc(x, y) = 2
π cos−1

(
x · cos

(
π
2 y
))

fs(x) = − ln
(
sx−1
s−1

)
, s > 0 , s 6= 1 Ifs(x, y) = logs

(
1 + (s− 1)1−x(sy − 1)x

)
fλ(x) = (1− x)λ, where λ ∈ (0,∞) Ifλ(x, y) = 1− x 1

λ (1− y)

Table 3.1: Examples of f -implications

Remark 3.1.3. Note that other basic fuzzy implications ILK, IGD, IKD, IGG, IRS, IWB and IFD from
Table 1.5 are not f -implications.

Proposition 3.1.4 ( cf. [2], Theorem 3.1.4). Let f1, f2 : [0, 1] → [0,∞] be any two f -generators. Then
the following statements are equivalent:

(i) If1 = If2 .

(ii) There exists a constant c ∈ (0,∞) such that f2(x) = c · f1(x) for all x ∈ [0, 1].

Remark 3.1.5 ( cf. [2], Remark 3.1.5). From the above result it follows that if f is an f -generator such
that f(0) <∞, then the function f1 : [0, 1]→ [0, 1] defined by

f1(x) =
f(x)

f(0)
, x ∈ [0, 1] , (3.2)

is a well defined f -generator such that If = If1 and f1(0) = 1. In other words, it is enough to consider only
decreasing generators for which f(0) =∞ or f(0) = 1.

Let IF denote the set of all f -implications proposed by Yager [52]. Further, let us denote by

• IF,∞ ( IF - the set of f -implications that are generated from generators such that f(0) =∞,

• IF,1 ( IF - the set of f -implications that are generated from generators such that f(0) = 1.

Clearly IF = IF,∞
⋃
IF,1 .

Proposition 3.1.6 ([2], Proposition 3.1.6). Let f be an f -generator.
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(i) If If ∈ IF,∞, then the natural negation NIf is the Gödel negation ND1.

(ii) If If ∈ IF,1, then the natural negation NIf is a strict negation.

Proposition 3.1.7 (cf. [2], Theorem 3.1.7). If f is an f -generator, then

(i) If satisfies (NP).

(ii) If (x, y) = 1 if and only if x = 0 or y = 1, i.e., If does not satisfy (OP).

(iii) If satisfies the law of importation (LI) with the product t-norm, TP(x, y) = xy.

Proposition 3.1.8. The equation (1.8) is valid for an arbitrary index set I when −→ is any f -implication.

Proof.

L. H. S. of (1.8) =
∨
i∈I

(xi) −→f y = f−1

(∨
i∈I

(xi) · f(y)

)

= f−1

(∨
i∈I

(xi · f(y))

)
=
∧
i∈I

f−1 ((xi · f(y)))

=
∧
i∈I

(xi −→f y) = R. H. S. of (1.8) .

3.2 Yager’s Family of g-implications

In this section, we introduce the second of the Yager’s families of fuzzy implications, viz., the g-
implications. The Goguen implication IG is the only g-implication which can also be obtained as
a residual of the continuous t-norm TP. Thus, no other member of this family of fuzzy implica-
tions imposes a residuated structure on [0, 1] with any t-norm T . We also present some relevant
properties and results involving this family, which will play a crucial role in the rest of this thesis.

Definition 3.2.1 ( [2], Definition 3.2.1). Let g : [0, 1] → [0,∞] be a strictly increasing and continuous
function with g(0) = 0. The function Ig : [0, 1]2 → [0, 1] defined by

Ig(x, y) = g(−1)
(

1

x
· g(y)

)
, x, y ∈ [0, 1], (3.3)

with the understanding 1
0 = ∞ and∞ · 0 = ∞, is a fuzzy implication and called a g-implication, where

the function g(−1) in (3.3), called the pseudo-inverse of g is given by,

g(−1)(x) =

g−1(x), if x ∈ [0, g(1)] ,

1, if x ∈ [g(1),∞]
= g−1

(
min

(
1

x
· g(y), g(1)

))
.

The function g itself is called a g-generator of the I generated as in (3.3). We will often write
−→g instead of Ig .

Example 3.2.2 (cf. [2]). Table 3.2 lists few of the g-implications along with their generators from which
they have been obtained.

32



g-generator g g-implication Ig

g(x) = − ln(1− x) I(x, y) =

{
1, if x = 0 and y = 0

1− (1− y)
1
x , otherwise

g(x) = x IG(x, y) =

{
1, if x ≤ y
y

x
, if x > y

g(x) = − 1

lnx
IYG(x, y) =

{
1, if x = 0 and y = 0

yx, if x > 0 and y > 0

gt(x) = tan
(
π
2x
)

Igt(x, y) = 2
π tan−1

(
1
x · tan

(π
2
y
))

gs(x) = Igs(x, y) =

− ln
(
s1−x−1
s−1

)
, s > 0 , s 6= 1 1− logs

(
1 + (s− 1)

x−1
x (s1−y − 1)

1
x

)
Table 3.2: Examples of g-implications

Remark 3.2.3. Note that ILK, IGD, IRC, IKD, IRS, IWB and IFD from Table 1.5 are not g-implications.

Theorem 3.2.4 ( [2], Theorem 3.2.5). Let g1, g2 : [0, 1] → [0,∞] be any two g-generators. Then the
following statements are equivalent:

(i) Ig1 = Ig2 .

(ii) There exists a constant c ∈ (0,∞) such that g2(x) = c · g1(x) for all x ∈ [0, 1].

Remark 3.2.5 ( [2], Remark 3.2.6). From the above result it follows that, if g is a g-generator such that
g(1) <∞, then the function g1 : [0, 1]→ [0, 1] defined by

g1(x) =
g(x)

g(1)
, x ∈ [0, 1] , (3.4)

is a well defined g-generator such that Ig = Ig1 and g1(1) = 1. In other words, it is enough to consider only
increasing generators for which g(1) =∞ or g(1) = 1.

Let IG denote the set of all g-implications. Further, let us denote by

• IG,∞ ( IG - the set of g-implications that are generated from generators such that g(1) =∞,

• IG,1 ( IG - the set of g-implications that are generated from generators such that g(1) = 1.

Clearly IG = IG,∞
⋃
IG,1 .

Proposition 3.2.6 ([2], Proposition 3.2.7). Let g be a g-generator. If Ig ∈ IG then the natural negation
NIg is the Gödel negation ND1 .

Proposition 3.2.7 ([2], Theorem 3.2.8). Let g be a g-generator.

(i) Ig satisfies (NP).

(ii) If g(1) =∞, then Ig(x, y) = 1⇐⇒ x = 0 or y = 1, i.e., Ig does not satisfy (OP) when g(1) =∞.

(iii) Ig satisfies the law of importation (LI) with the product t-norm, TP(x, y) = xy.
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Proposition 3.2.8 ([2], Theorem 3.2.9). If g is a g-generator, then the following statements are equivalent:

(i) Ig satisfies (OP).

(ii) g(1) <∞ and there exists a constant c ∈ (0,∞) such that g(x) = c · x for all x ∈ [0, 1].

(iii) Ig is the Goguen implication IG.

3.3 Bandler-Kohout Subproduct with Yager’s families of fuzzy

implications

In this work, we consider the BKS inference mechanism, where the fuzzy implication is one of
the Yager’s families of implications. Essentially, we interpret the −→ in (BKS-R) as an f - or g-
implication and denote the modified BKS inference mechanism as /f and /g , where /f = inf −If
and /g = inf −Ig respectively. Specifically,

B′(y) = (A′ /f R)(y) =
∧
x∈X

[A′(x) −→f R(x, y)], y ∈ Y, (BKS-f )

B′(y) = (A′ /g R)(y) =
∧
x∈X

[A′(x) −→g R(x, y)], y ∈ Y . (BKS-g)

From Equation (FRI-R) we see that the above FRIs, viz., (BKS-f ) and (BKS-g), can be denoted as
f
/f
R and f/gR , respectively.

The FRIs (BKS-f ) and (BKS-g) can be represented as a pentuple:

F = (PX ,PY , /f , R, d) , (3.5)

F = (PX ,PY , /g, R, d) , (3.6)

where /f and /g are as mentioned above.

Note also that, due to Propositions 3.1.7(i) and 3.2.7(i), we see that both the f - and g-implications
satisfy the neutrality property (NP) and hence in the case of singleton inputs with singleton fuzzi-
fication, we see that the FRIs (3.5) and (3.6) are both FRIs with reducible composition, i.e., the
composition /f and /g do not play any role (see Section 2.3.3).

3.4 The Fuzzy Relation R modeling the rule base

As stated before, we limit our study to the implicative form of rules and, once again, with the
implication relating the antecedents and consequents being an f - or g-implication. In specific terms,
the fuzzy relation R representing the rule base is given as:

R̂f (x, y) =

n∧
i=1

(Ai(x) −→f Bi(y)), x ∈ X, y ∈ Y , (Imp-R̂f )

R̂g(x, y) =

n∧
i=1

(Ai(x) −→g Bi(y)), x ∈ X, y ∈ Y . (Imp-R̂g)
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In summary, in this thesis, our main objects of study are the following FRIs:

F→f
= (PX ,PY , /f , R̂f , d) , (3.7)

F→g = (PX ,PY , /g, R̂g, d) . (3.8)

For notational convenience, in this thesis, we often refer to both BKS-f and BKS-g inference
mechanisms as BKS-Y inference mechanisms. Similarly, we use the notation

F→Y = (PX ,PY ,�Y , R̂Y , d)

to refer to both F→f
,F→g

.
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Part II

Suitability of BKS-Y Fuzzy Relational
Inference Mechanism
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Chapter 4

Interpolativity and Continuity of
Bandler-Kohout Subproduct with
Yager’s Families of Fuzzy
Implications

Mathematics is the art of giving the same name
to different things.

– J. H. Poincare (1854–1912)

In this chapter, we study first of the two of the desirable properties, viz., interpolativity and
continuity for the BKS-f and BKS-g inference mechanisms. Note that the conditions underwhich
these desirable properties hold are known for BKS with residuated implications.

We recall that we deal only with the implicative form of the rule base, i.e., the antecedents of the
rules are related to their consequents using a fuzzy implication and hence fixR = R̂f and R̂g in the
sequel. Thus this work deals with FRIs of the form given in (3.7) and (3.8): F→f

=
(
PX ,PY , /f , R̂f

)
and F→g

=
(
PX ,PY , /g, R̂g

)
.

The chapter is structured in the following way. Firstly, in Section 4.1, we define an extension of
the well-known Goguen implication and discuss some of its properties, which will prove useful in
the sequel. Following this we derive some necessary and sufficient conditions for interpolativity
for the BKS-f and BKS-g inference mechanism in Section 4.2. In Section 4.3 after defining continu-
ity suitably, we have shown that continuity is equivalent to interpolativity for both the modified
inference mechanisms. Our study shows that interpolativity and continuity are available for both
the modified inference mechanisms, thus adding more choice of operations under the BKS scheme.
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4.1 Goguen implication and its Extension

In this section we recall the definition of the Goguen implication and its bi-implication and also
present some of the properties it enjoys being a residual implication. Following this, we propose
an extension of the Goguen implication and discuss some of its properties.

4.1.1 Goguen implication

Here we define Goguen implication and present some important properties possessed by it, which
will be useful later for proving our results.

Definition 4.1.1. (i) The Goguen implication, the residual of the product t-norm, IG : [0, 1]2 → [0, 1]

is defined as

IG(x, y) =

1, if x ≤ y
y

x
, if x > y

, x, y ∈ [0, 1] .

We denote IG by −→G for simplicity.

(ii) The bi-implication ([33], Equation 2.24, pg. 27) obtained from IG is defined and denoted as follows:

x←→G y = (x −→G y) ∧ (y −→G x) = min

{
1,
x

y
,
y

x

}
, x, y ∈ [0, 1] ,

with the understanding that 1
0 =∞, 0 · ∞ =∞ and 0

0 =∞ .

Proposition 4.1.2 (cf. [33], Lemma 2.7). For a, b, c ∈ [0, 1] and ’←→G’ being a Goguen bi-implication
and ’·’ being the product t-norm, we have,

(a←→G b) · (b←→G c) ≤ (a←→G c) . (4.1)

Proposition 4.1.3 (cf. [33], Lemma 2.7). Let ai, bi ∈ [0, 1] and i ∈ I, an index set. Then for ’←→G’
being a Goguen bi-implication the following inequalities are true:(∨

i∈I
ai

)
←→G

(∨
i∈I

bi

)
≥
∧
i∈I

(ai ←→G bi) , (4.2)(∧
i∈I

ai

)
←→G

(∧
i∈I

bi

)
≥
∧
i∈I

(ai ←→G bi) . (4.3)

Remark 4.1.4. In fact, Proposition 4.1.3 is true for any ’←→’ coming from a residuated lattice structure,
see [33], for more details.

4.1.2 Extended Goguen Implication

In this section we modify the Goguen implication, by extending it as a map from [0, 1]2 → [0, 1] to
a map [0,∞]2 → [0, 1], leaving the formula unchanged and call it the Extended Goguen implication.
In the sequel, this function plays an important role in giving crisp expressions to many results and
properties and hence we define it here and present some of its important properties.
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Definition 4.1.5. (i) The function I∗G : [0,∞]2 → [0, 1] defined as

I∗G(x, y) =

1, if x ≤ y
y

x
, if x > y

, x, y ∈ [0,∞] ,

is called the Extended Goguen implication. We will also denote I∗G by ∗−→G for better readability in
proofs.

(ii) The bi-implication [33] obtained from I∗G is defined and denoted as follows:

x
∗←→G y = (x

∗−→G y) ∧ (y
∗−→G x) = min

{
1,
x

y
,
y

x

}
, x, y ∈ [0,∞] ,

with the understanding that 1
0 =∞ and 0 · ∞ =∞ and 0

0 =∞ .

4.1.3 Properties of Extended Goguen Implication

In this section we present only the relevant properties which will be needed later for proving our
results.

Proposition 4.1.6. For a, b, c ∈ [0,∞] and ’ ∗←→G ’ being an Extended Goguen bi-implication and ’·’
being the product t-norm, we have,(

a
∗←→G b

)
·
(
b
∗←→G c

)
≤
(
a
∗←→G c

)
.

Proof. We have to prove that for any a, b, c ∈ [0,∞]

min

{
1,
a

b
,
b

a

}
·min

{
1,
b

c
,
c

b

}
≤ min

{
1,
a

c
,
c

a

}
.

Let α = min

{
1,
a

b
,
b

a

}
, β = min

{
1,
b

c
,
c

b

}
and γ = min

{
1,
a

c
,
c

a

}
. Now we have to prove that,

α · β ≤ γ. Note that both α and β contain three terms each. So there will be nine possible values of
α · β . Here we discuss all the cases:

Case-1: (α = 1, β = 1): Now we have,

α = 1⇐⇒ a = b,

β = 1⇐⇒ b = c

=⇒ a = b = c.

This implies, α · β = 1 = min
{

1,
a

c
,
c

a

}
= γ.
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Case-2:
(
α = 1, β =

b

c

)
: Now we have,

α = 1⇐⇒ a = b,

β =
b

c
⇐⇒ b ≤ c

=⇒ a = b ≤ c.

This implies, γ = min
{

1,
a

c
,
c

a

}
= min

{
1,
b

c
,
c

b

}
=
b

c
= α · β.

Case-3:
(
α = 1, β =

c

b

)
: Same as Case-2.

Case-4:
(
α =

a

b
, β = 1

)
: Same as Case-2.

Case-5:
(
α =

a

b
, β =

b

c

)
: Now we have,

α =
a

b
⇐⇒ a ≤ b,

β =
b

c
⇐⇒ b ≤ c

=⇒ a ≤ b ≤ c.

This implies, γ = min
{

1,
a

c
,
c

a

}
=
a

c
=
a

b
· b
c

= α · β.

Case-6:
(
α =

a

b
, β =

c

b

)
: Now we have,

α =
a

b
⇐⇒ a ≤ b,

β =
c

b
⇐⇒ c ≤ b

=⇒α · β =
a

b
· c
b
≤ b

a
· c
b

=
c

a
,

α · β =
a

b
· c
b
≤ a

b
· b
c

=
a

c
and

α · β ≤ 1.

This implies, α · β ≤ min
{

1,
a

c
,
c

a

}
= γ.

Case-7:
(
α =

b

a
, β = 1

)
: Same as Case-2.

Case-8:
(
α =

b

a
, β =

c

b

)
: Same as Case-5.

Case-9:
(
α =

b

a
, β =

b

c

)
: Same as Case-6.

Combining all the above nine cases we have α · β ≤ γ. Hence the proposition.
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Proposition 4.1.7. Let a, b, c, d ∈ [0,∞] and ’·’ be the product t-norm. Then, the following inequality is
true: (

a
∗←→G b

)
·
(
c
∗←→G d

)
≤ (a · c) ∗←→G (b · d) . (4.4)

Proof. The proof is similar to the proof of Proposition 4.1.6 .

Proposition 4.1.8. Let ai, bi ∈ [0,∞] and i ∈ I, a finite index set. Then the inequality (4.2) is true for the
extended Goguen bi-implication ∗←→G .

Proof. We prove this result for I = {1, 2}. The result then follows by induction. Thus we need to
prove the following:  ∨

i∈{1,2}

ai

 ∗←→G

 ∨
i∈{1,2}

bi

 ≥ ∧
i∈{1,2}

(
ai

∗←→G bi

)
,

or equivalently,

(a1 ∨ a2)
∗←→G (b1 ∨ b2) ≥

(
a1

∗←→G b1

)
∧
(
a2

∗←→G b2

)
.

Now, by using the monotonicity of ∗−→G and its distributivity over ∨, ∧, we have

L.H.S. = (a1 ∨ a2)
∗←→G (b1 ∨ b2)

=
[
(a1 ∨ a2)

∗−→G (b1 ∨ b2)
]
∧
[
(b1 ∨ b2)

∗−→G (a1 ∨ a2)
]

=
[
a1

∗−→G (b1 ∨ b2)
]
∧
[
a2

∗−→G (b1 ∨ b2)
]
∧
[
b1

∗−→G (a1 ∨ a2)
]
∧
[
b2

∗−→G (a1 ∨ a2)
]

≥
[
(a1

∗−→G b1) ∨ (a1
∗−→G b2)

]
∧
[
(a2

∗−→G b1) ∨ (a2
∗−→G b2)

]
∧
[
(b1

∗−→G a1) ∨ (b1
∗−→G a2)

]
∧
[
(b2

∗−→G a1) ∨ (b2
∗−→G a2)

]
(by (1.7))

≥
{[

(a1
∗−→G b1) ∧ (b1

∗−→G a1)
]
∨
[
(a1

∗−→G b2) ∧ (b1
∗−→G a2)

]}
∧
{[

(a2
∗−→G b1) ∧ (b2

∗−→G a1)
]
∨
[
(a2

∗−→G b2) ∧ (b2
∗−→G a2)

]}
(∵ (x ∨ y) ∧ (w ∨ z) ≥ (x ∧ w) ∨ (y ∧ z))

≥
{[

(a1
∗−→G b1) ∧ (b1

∗−→G a1)
]
∧
[
(a2

∗−→G b2) ∧ (b2
∗−→G a2)

]}
∨
{[

(a1
∗−→G b2) ∧ (b1

∗−→G a2)
]
∧
[
(a2

∗−→G b1) ∧ (b2
∗−→G a1)

]}
(∵ (x ∨ y) ∧ (w ∨ z) ≥ (x ∧ w) ∨ (y ∧ z))

≥
{[

(a1
∗−→G b1) ∧ (b1

∗−→G a1)
]
∧
[
(a2

∗−→G b2) ∧ (b2
∗−→G a2)

]}
=
(
a1

∗←→G b1

)
∧
(
a2

∗←→G b2

)
= R.H.S.

Hence proved.
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Proposition 4.1.9. Let ai, bi ∈ [0,∞] and i ∈ I, a finite index set. Then the inequality (4.3) is valid for
the extended Goguen bi-implication ∗←→G .

Proof. Once again we prove this result for I = {1, 2} and the result then follows by induction. Thus
we need to prove the following: ∧

i∈{1,2}

ai

 ∗←→G

 ∧
i∈{1,2}

bi

 ≥ ∧
i∈{1,2}

(
ai

∗←→G bi

)
,

or equivalently,
(a1 ∧ a2)

∗←→G (b1 ∧ b2) ≥ (a1
∗←→G b1) ∧ (a2

∗←→G b2).

Now, by using the monotonicity of ∗−→G and its distributivity over ∨, ∧, we have

L.H.S. = (a1 ∧ a2)
∗←→G (b1 ∧ b2)

=
[
(a1 ∧ a2)

∗−→G (b1 ∧ b2)
]
∧
[
(b1 ∧ b2)

∗−→G (a1 ∧ a2)
]

=
{[

(a1 ∧ a2)
∗−→G b1

]
∧
[
(a1 ∧ a2)

∗−→G b2

]}
∧
{[

(b1 ∧ b2)
∗−→G a1

]
∧
[
(b1 ∧ b2)

∗−→G a2

]}
≥ (a1

∗−→G b1) ∧ (a2
∗−→G b2) ∧ (b1

∗−→G a1) ∧ (b2
∗−→G a2)

=
[
(a1

∗−→G b1) ∧ (b1
∗−→G a1)

]
∧
[
(a2

∗−→G b2) ∧ (b2
∗−→G a2)

]
= (a1

∗←→G b1) ∧ (a2
∗←→G b2) = R.H.S.

4.2 Interpolativity of BKS-Y Inference Mechanisms

By interpolativity we mean the following: when an antecedent of a rule is given as the input then
the corresponding consequent should be the inferred output.

Definition 4.2.1. An FRI is said to be interpolative if the following is valid: Whenever an antecedent of a
rule Ai is given as the input, the corresponding consequent Bi should be the inferred output, i.e.,

Bi = f@R (Ai) = Ai@R, i = 1, 2 . . . , n., Ai ∈ F(X), R ∈ F(X × Y ).

Investigating the interpolativity of an FRI leads to the problem of solving the fuzzy relational
equationBi = Ai@R forR. This leads us to the question ” Can R be any fuzzy relation in F(X×Y )

that solves the fuzzy relational equation Bi = Ai@R ??”

Definition 4.2.2. A fuzzy relation R ∈ F(X × Y ) is a correct model of the given rule base R(Ai, Bi) for
the composition @ if Ai@R = Bi holds for all i = 1, 2, . . . , n.

Hence, in the case of FRIs, interpolativity pertains to the solvability of the above fuzzy relational
equations corresponding to the system.
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4.2.1 Interpolativity of BKS with f -implications

The following result gives a necessary and sufficient condition for the interpolativity of the BKS
inference mechanism with an f -implication.

Theorem 4.2.3. Let us consider the fuzzy IF-THEN rulebase R(Ai, Bi) as in (1.12). Consider the BKS
inference mechanism of the form, F→f

=
(
PX ,PY , /f , R̂f

)
, where R̂f ∈ F(X × Y ) as given in (Imp-R̂f )

in Section 3.4 models the rule base R(Ai, Bi). Moreover, let Ai for i = 1, 2, . . . , n be normal. A necessary
and sufficient condition for R̂f to be a solution to Bi = Ai /f R is as follows: For any i, j ∈ {1, 2, . . . , n},∨

x∈X
(Ai(x) ·Aj(x)) ≤

∧
y∈Y

(
f (Bi(y))

∗←→G f (Bj(y))
)
, (4.5)

where ” ∗←→G ” is the extended Goguen bi-implication and f is the generator function of the corresponding
f -implication.

Proof. (=⇒): Let the system have interpolativity. Then we have, for any y ∈ Y , i ∈ {1, 2, . . . , n}(
Ai /f R̂f

)
(y) = Bi(y),

=⇒
∧
x∈X

Ai(x) −→f

∧
j

(Aj(x) −→f Bj(y))

 = Bi(y),

=⇒Ai(x) −→f (Aj(x) −→f Bj(y)) ≥ Bi(y), (∀j,∀x),

=⇒ (Ai(x) ·Aj(x)) −→f Bj(y) ≥ Bi(y), (∀j,∀x), (by (LI)),

=⇒f−1 (Ai(x) ·Aj(x) · f (Bj(y))) ≥ Bi(y), (∀j,∀x),

=⇒Ai(x) ·Aj(x) · f (Bj(y)) ≤ f (Bi(y)) , (∀j,∀x),

=⇒Ai(x) ·Aj(x) ≤ f(Bi(y))

f(Bj(y))
, (∀j,∀x).

Since i, j are arbitrary, interchanging them in the above inequality, we have,

Aj(x) ·Ai(x) ≤ f(Bj(y))

f(Bi(y))
.

Also trivially we have,

Aj(x) ·Ai(x) ≤ 1 .

Now from the above inequalities we see,

Ai(x) ·Aj(x) ≤ min

{
1,
f(Bi(y))

f(Bj(y))
,
f(Bj(y))

f(Bi(y))

}
(∀i, j)(∀x, y),

=⇒
∨
x∈X

(Ai(x) ·Aj(x)) ≤
∧
y∈Y

min

{
1,
f(Bi(y))

f(Bj(y))
,
f(Bj(y))

f(Bi(y))

}
(∀i, j),

which is the same as (4.5).
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(⇐=): Now let us assume that (4.5) holds. Firstly, note that the following is always valid:(
Ai /f R̂f

)
(y) ≤ Bi(y) , (∀i,∀y). (4.6)

The validity of inequality (4.6) can be seen from the following inequalities:

(
Ai /f R̂f

)
(y) =

∧
x∈X

Ai(x) −→f

∧
j

(
Aj(x) −→f Bj(y)

)
≤

Ai(x0) −→f

∧
j

(
Aj(x0) −→f Bj(y)

)
(Assuming Ai attains normality at x0)

=
∧
j

(
Aj(x0) −→f Bj(y)

)
(Using (NP))

≤ Ai(x0) −→f Bi(y) = Bi(y) (Again Using (NP)).

Thus it only remains to show that(
Ai /f R̂f

)
(y) ≥ Bi(y), (∀i,∀y). (4.7)

We have from (4.5),

Ai(x) ·Aj(x) ≤ min

{
1,
f(Bi(y))

f(Bj(y))
,
f(Bj(y))

f(Bi(y))

}
, (∀i, j)(∀x, y),

=⇒Ai(x) ·Aj(x) ≤ f(Bi(y))

f(Bj(y))
, (∀i, j, ∀x, y),

=⇒Ai(x) ·Aj(x) · f (Bj(y)) ≤ f (Bi(y)) , (∀j,∀x),

=⇒f−1 (Ai(x) ·Aj(x) · f (Bj(y))) ≥ Bi(y), (∀i, j, ∀x, y),

=⇒ (Ai(x) ·Aj(x)) −→f Bj(y) ≥ Bi(y), (∀i, j, ∀x, y),

=⇒Ai(x) −→f (Aj(x) −→f Bj(y)) ≥ Bi(y), (∀i, j, ∀x, y), (by (LI)),

=⇒
∧
j

(
Ai(x) −→f

(
Aj(x) −→f Bj(y)

))
≥ Bi(y), (∀i,∀x, y),

=⇒

Ai(x) −→f

∧
j

(
Aj(x) −→f Bj(y)

) ≥ Bi(y), (∀i,∀x, y), (by (1.6)),

=⇒
∧
x∈X

Ai(x) −→f

∧
j

(
Aj(x) −→f Bj(y)

) ≥ Bi(y), (∀i,∀y),

=⇒
(
Ai /f R̂f

)
(y) ≥ Bi(y), (∀i,∀y).

Now from (4.6) and (4.7) it follows that
(
Ai /f R̂f

)
(y) = Bi(y).
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4.2.2 Interpolativity of BKS with g-implications

The following result gives a necessary and sufficient condition for the interpolativity of the BKS
inference mechanism with a g-implication.

Theorem 4.2.4. Let us consider the fuzzy IF-THEN rulebase R(Ai, Bi) as in (1.12). Consider the BKS
inference mechanism of the form, F→g =

(
PX ,PY , /g, R̂g

)
, where R̂g ∈ F(X × Y ) as given in (Imp-R̂g)

in Section 3.4 models the rule base R(Ai, Bi). Moreover, let Ai for i = 1, 2, . . . , n be normal. A necessary
and sufficient condition for R̂g to be a solution to Bi = Ai /g R is as follows: For any i, j ∈ {1, 2, . . . , n},∨

x∈X
(Ai(x) ·Aj(x)) ≤

∧
y∈Y

(g(Bi(y))
∗←→G g(Bj(y))) , (4.8)

where ” ∗←→G ” is the extended Goguen bi-implication and g is the generator function of the corresponding
g-implication.

Proof. (=⇒): Let the system have interpolativity. Then, for any y ∈ Y , i ∈ {1, 2, . . . , n}(
Ai /g R̂g

)
(y) = Bi(y)

=⇒
∧
x∈X

Ai(x) −→g

∧
j

(Aj(x) −→g Bj(y))

 = Bi(y),

=⇒ Ai(x) −→g (Aj(x) −→g Bj(y)) ≥ Bi(y), (∀j,∀x),

=⇒ (Ai(x) · (Aj(x)) −→g Bj(y) ≥ Bi(y), (∀j,∀x) (by (LI)),

=⇒ g(−1)
(

1

Ai(x) ·Aj(x)
· g (Bj(y))

)
≥ Bi(y), (∀j,∀x) ,

=⇒ g−1
(

min

{
1

Ai(x) ·Aj(x)
· g (Bj(y)) , g(1)

})
≥ Bi(y), (∀j,∀x),

=⇒ min

{
1

Ai(x) ·Aj(x)
· g (Bj(y)) , g(1)

}
≥ g (Bi(y)) , (∀j,∀x),

=⇒ 1

Ai(x) ·Aj(x)
· g (Bj(y))) ≥ g (Bi(y)) , (∀j,∀x),

=⇒ Ai(x) ·Aj(x) ≤ g (Bj(y))

g (Bi(y))
, (∀j,∀x).

Since i, j are arbitrary, interchanging them in the above inequality, we have,

Aj(x) ·Ai(x) ≤ g(Bi(y))

g(Bj(y))
.

We also trivially have,

Aj(x) ·Ai(x) ≤ 1 .
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Now from the above inequalities we see,

Ai(x) ·Aj(x) ≤ min

{
1,
g(Bi(y))

g(Bj(y))
,
g(Bj(y))

g(Bi(y))

}
(∀i, j)(∀x, y),

=⇒
∨
x∈X

(Ai(x) ·Aj(x)) ≤
∧
y∈Y

min

{
1,
g(Bi(y))

g(Bj(y))
,
g(Bj(y))

g(Bi(y))

}
(∀i, j),

which is the same as (4.8).

(⇐=): Now let us assume that (4.8) holds. Then,

Ai(x) ·Aj(x) ≤ min

{
1,
g(Bi(y))

g(Bj(y))
,
g(Bj(y))

g(Bi(y))

}
, (∀i, j)(∀x, y),

=⇒Ai(x) ·Aj(x) ≤ g(Bj(y))

g(Bi(y))
, (∀i, j, ∀x, y),

=⇒ 1

Ai(x) ·Aj(x)
· g (Bj(y))) ≥ g (Bi(y)) , (∀i, j, ∀x, y),

=⇒min

{
1

Ai(x) ·Aj(x)
· g (Bj(y)) , g(1)

}
≥ g (Bi(y)) , (∀i, j, ∀x, y),

=⇒g−1
(

min

{
1

Ai(x) ·Aj(x)
· g (Bj(y)) , g(1)

})
≥ Bi(y), (∀i, j, ∀x, y),

=⇒g(−1)
(

1

Ai(x) ·Aj(x)
· g (Bj(y))

)
≥ Bi(y), (∀i, j, ∀x, y),

=⇒ (Ai(x) · (Aj(x)) −→g Bj(y) ≥ Bi(y), (∀i, j, ∀x, y),

=⇒Ai(x) −→g (Aj(x) −→g Bj(y)) ≥ Bi(y), (∀i, j, ∀x, y), (by (LI)),

=⇒
∧
x∈X

Ai(x) −→g

∧
j

(Aj(x) −→g Bj(y))

 ≥ Bi(y), (∀i,∀y),

=⇒
(
Ai /g R̂g

)
(y) ≥ Bi(y), (∀i,∀y).

So we have the following: (
Ai /g R̂g

)
(y) ≥ Bi(y), (∀i,∀y). (4.9)

Once again, the following inequality is always true, the proof of which is very much along the
lines as that given for (4.6): (

Ai /g R̂g

)
(y) ≤ Bi(y), (∀i,∀y). (4.10)

Now from (4.9) and (4.10) it follows that
(
Ai /g R̂g

)
(y) = Bi(y) , for all y ∈ Y .

4.3 Continuity of BKS-Y Inference Mechanisms

In [36], [37] Perfilieva et al. discussed the continuity of a CRI inference mechanism, once again
when the underlying operators were from a residuated lattice. Further, the author has defined the
correctness of a model in terms of its interpolativity. Later on Štěpnička and Jayaram [49] have dealt
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with the continuity of the BKS inference mechanism with the operations coming from a residuated
lattice. Since we are dealing with operations that come from a non-residuated lattice structure we
define continuity suitably and show that, once again, continuity is equivalent to the correctness of
the model.

4.3.1 BKS with f -Implications: Continuity ≡ Interpolativity

Definition 4.3.1. Let us consider the fuzzy IF-THEN rulebase R(Ai, Bi) as in (1.12). The fuzzy relation
R ∈ F(X × Y ) which models the rule base R(Ai, Bi), is said to be a continuous model of R(Ai, Bi) in
the BKS inference mechanism of the form, F =

(
PX ,PY , /f , R

)
, if for each i ∈ {1, 2, . . . , n} and for each

A ∈ F(X), the following inequality holds:∧
y∈Y

[
f (Bi(y))

∗←→G f ((A /f R) (y))
]
≥
∧
x∈X

[
Ai(x)

∗←→G A(x)
]
, (4.11)

where ” ∗←→G ” is the extended Goguen bi-implication and f is the generator function of the corresponding
f -implication.

Remark 4.3.2 (Why is (4.11) Continuity??). (i) Note that in the Definition 4.3.1 above, the bi-impl-
ication on the right side of the inequality ∗←→G is equivalent to ←→G, since Ai(x), A(x) ∈ [0, 1].

However, for notational consistency, we have retained the above form.

(ii) Note that if we consider f -implications with f(0) = 1 i.e., −→f∈ IF,1 then (4.11) reduces to the
following where←→G is the Goguen bi-implication:∧

y∈Y
[f (Bi(y))←→G f ((A /f R) (y))] ≥

∧
x∈X

[Ai(x)←→G A(x)] . (4.12)

(iii) Further, from [22], Example 11.7(ii), we see that←→G can be represented as

x←→G y = t(−1)(|t(x)− t(y)|) ,

where t : [0, 1] −→ [0,∞] is any additive generator of the product t-norm and hence we have t(0) =

∞.

Still considering f -generators with f(0) = 1, let us define a DX : F(X) × F(X) → R≥0 and a
DY : F(Y )×F(Y )→ R≥0 as follows:

DX (A1, A2) =
∨
x∈X

(|t (A1(x))− t (A2(x)) |) , A1, A2 ∈ F(X)

DY (B1, B2) =
∨
y∈Y

(
| (t ◦ f) (B1(y))− (t ◦ f) (B2(y)) |

)
B1, B2 ∈ F(Y ) .

It can be easily shown that (F(X), DX) and (F(Y ), DY ) are metric spaces.

The following equivalences, along the lines of the proof of Theorem 1 in [36], demonstrate why (4.12)
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can be considered as an expression capturing the continuity:∧
y∈Y

[f (Bi(y))←→G f ((A /f R) (y))] ≥
∧
x∈X

[Ai(x)←→G A(x)]

⇐⇒
∧
y∈Y

t−1 (|t (f (Bi(y)))− t (f ((A /f R) (y))) |) ≥
∧
x∈X

t−1 (|t (Ai(x))− t (A(x)) |)

⇐⇒
∨
y∈Y

(|t(f(Bi(y)))− t (f ((A /f R) (y))) |) ≤
∨
x∈X

(|t(Ai(x))− t(A(x))|)

⇐⇒
∨
y∈Y

(| (t ◦ f) (Bi(y))− (t ◦ f) ((A /f R) (y))) |) ≤
∨
x∈X

(|t (Ai(x))− t (A(x)) |)

⇐⇒DY (Bi, (A /f R)) ≤ DX (Ai, A) .

From the classical definition of continuity, we see that for any given ε > 0, we have a δ > 0 such that
whenever DX (Ai, A) < δ for any i ∈ {1, 2, . . . , n}, we have that DY (Bi, (A /f R)) < ε. Clearly, in our
case δ = ε is one possibility. Thus from the above we see that R is a continuous model of R(Ai, Bi) if and
only if the inference function f/fR : F(X) −→ F(Y ) associated with F =

(
PX ,PY , /f , R

)
is continuous

on PX .

Theorem 4.3.3. Let us consider the BKS inference mechanism of the form F =
(
PX ,PY , /f , R

)
over finite

non-empty sets X and Y . The fuzzy relation R ∈ F(X × Y ) is a correct model of fuzzy rules (1.12) if and
only if it is a continuous model of these rules.

Proof. Let R be a continuous model of the fuzzy rules (1.12). By Definition 4.3.1, the inequality
(4.11) is valid for all i = 1, 2, . . . , n and an arbitrary A ∈ F(X). Now putting A = Ai in (4.11), we
have by the strictness of f ,∧

y∈Y

[
f (Bi(y))

∗←→G f ((Ai /f R) (y))
]
≥ 1, (∀i),

=⇒ f (Bi(y))
∗←→G f ((Ai /f R) (y)) = 1, (∀i, y),

=⇒ f (Bi(y)) = f ((Ai /f R) (y)) , (∀i, y),

=⇒ (Ai /f R) (y) = Bi(y), (∀i, y).

Thus we have interpolativity starting from continuity.

Now let us assume that the model has interpolativity. Towards proving (4.11), for arbitrary
y ∈ Y , note that the following is true for any i = 1, 2, . . . , n:

f ((A /f R) (y))
∗←→G f (Bi(y))

= f ((A /f R) (y))
∗←→G f ((Ai /f R) (y)) , (∵ (Ai /f R)(y) = Bi(y))

= f

( ∧
x∈X

[A(x) −→f R(x, y)]

)
∗←→G f

( ∧
x∈X

[Ai(x) −→f R(x, y)]

)

= f

{ ∧
x∈X

f−1 [A(x) · f (R(x, y))]

}
∗←→G f

{ ∧
x∈X

f−1 [Ai(x) · f (R(x, y))]

}
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=
∨
x∈X

[A(x) · f (R(x, y))]
∗←→G

∨
x∈X

[Ai(x) · f (R(x, y))]

(∵ f(∧ni=1ai) = ∧ni=1f(ai))

≥
∧
x∈X

[
A(x) · f (R(x, y))

∗←→G Ai(x) · f (R(x, y))
]

(Using Proposition 4.1.8)

≥
∧
x∈X

([
A(x)

∗←→G Ai(x)
]
·
[
f(R(x, y))

∗←→G f(R(x, y))
])

(Using(4.4))

=
∧
x∈X

[
A(x)

∗←→G Ai(x)
]
,

from which we obtain (4.11).

Corollary 4.3.4. Let us consider the BKS inference mechanism of the form F =
(
PX ,PY , /f , R̂f

)
over

finite non-empty sets X and Y . The fuzzy relation R̂f ∈ F(X × Y ) is a correct model of fuzzy rules (1.12)
if and only if it is a continuous model of these rules.

The following result shows that if we consider f -generators with f(0) = 1 then the finiteness of
the sets X,Y can be dispensed with and the above result still remains valid.

Theorem 4.3.5. Let us consider the BKS inference mechanism of the form F =
(
PX ,PY , /f , R

)
with

f(0) = 1, i.e., −→f∈ IF,1 . The fuzzy relation R ∈ F(X × Y ), where X,Y are any non-empty domains, is
a correct model of fuzzy rules (1.12) if and only if it is a continuous model of these rules.

Proof. Note that since f(0) = 1, the continuity equation (4.11) reduces to (4.12). Since←→G satisfies
(4.1) and (4.2) even for an infinite index set I, the proof follows immediately along the lines of the
proof of Theorem 4.3.3.

Corollary 4.3.6. Let us consider the BKS inference mechanism of the form F =
(
PX ,PY , /f , R̂f

)
with

f(0) = 1, i.e., −→f∈ IF,1. The fuzzy relation R̂f ∈ F(X × Y ), where X,Y are any non-empty domains, is
a correct model of fuzzy rules (1.12) if and only if it is a continuous model of these rules.

The above study clearly demonstrates that, as in the case of BKS and CRI, F =
(
PX ,PY , /f , R̂f

)
also possesses both the desirable properties of interpolativity and continuity .

4.3.2 BKS with g-Implications: Continuity ≡ Interpolativity

Along the similar lines of continuity of a fuzzy relation R in the BKS inference mechanism of
the form F =

(
PX ,PY , /f , R

)
, we propose the following definition of continuity of R in F =(

PX ,PY , /g, R
)

.

Definition 4.3.7. Let us consider the fuzzy IF-THEN rulebase R(Ai, Bi) as in (1.12). The fuzzy relation
R ∈ F(X × Y ) which models the rule base R(Ai, Bi), is said to be a continuous model of R(Ai, Bi) in
the BKS inference mechanism of the form F =

(
PX ,PY , /g, R

)
, if for each i ∈ {1, 2, . . . , n} and for each

A ∈ F(X), the following inequality holds:∧
y∈Y

[
g (Bi(y))

∗←→G g ((A /g R)(y))
]
≥
∧
x∈X

[
Ai(x)

∗←→G A(x)
]
, (4.13)
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where ” ∗←→G ” is the extended Goguen bi-implication and g is the generator function of the corresponding
g-implication.

Remark 4.3.8. (i) Note that if we consider g-implications with g(1) = 1, i.e., −→g∈ IG,1then (4.13)
reduces to the following where −→G is the Goguen bi-implication:∧

y∈Y
[g (Bi(y))←→G g ((A /g R)(y))] ≥

∧
x∈X

[Ai(x)←→G A(x)] . (4.14)

(ii) A similar explanation as in Remark 4.3.2 can be given as to why (4.14) can be considered as an expres-
sion capturing the continuity.

Theorem 4.3.9. Let us consider the BKS inference mechanism of the form F =
(
PX ,PY , /g, R

)
over finite

non-empty sets X and Y . The fuzzy relation R ∈ F(X × Y ) is a correct model of fuzzy rules (1.12) if and
only if it is a continuous model of these rules.

Proof. Let R be a continuous model of the fuzzy rules (1.12). By Definition 4.3.7, we have,∧
y∈Y

[
g (Bi(y))

∗←→G g ((A /g R) (y))
]
≥
∧
x∈X

[
Ai(x)

∗←→G A(x)
]
,

for all i = 1, 2, . . . n and an arbitrary A ∈ F(X). Letting A = Ai in the above inequality, we get by
the strictness of g,∧

y∈Y

[
g (Bi(y))

∗←→G g ((A /g R) (y))
]
≥ 1, (∀i),

=⇒g (Bi(y))
∗←→G g ((Ai /g R) (y)) = 1, (∀i, y),

=⇒g (Bi(y)) = g ((Ai /g R) (y)) , (∀i, y),

=⇒ (Ai /g R) (y) = Bi(y). (∀i, y).

So we have interpolativity starting from continuity.

Now let us assume that the model has interpolativity. Towards proving (4.13), for arbitrary
y ∈ Y , note that the following is true for any i = 1, 2, . . . , n:

g (Bi(y))
∗←→G g ((A /g R) (y))

= g ((A /g R) (y))
∗←→G g ((Ai /g R) (y)) (∵ (Ai /g R)(y) = Bi(y))

= g

( ∧
x∈X

[A(x) −→g R(x, y)]

)
∗←→G g

( ∧
x∈X

[Ai(x) −→g R(x, y)]

)

= g

{ ∧
x∈X

g(−1)
[

1

A(x)
· g(R(x, y))

]}
∗←→G g

{ ∧
x∈X

g(−1)
[

1

Ai(x)
· g(R(x, y))

]}
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= g

{ ∧
x∈X

g−1
[
min

{
1

A(x)
· g(R(x, y)), g(1)

}]}
∗←→G g

{ ∧
x∈X

g−1
[
min

{
1

Ai(x)
· g(R(x, y)), g(1)

}]}

=
∧
x∈X

[
min

{
1

A(x)
· g(R(x, y)), g(1)

}]
∗←→G

∧
x∈X

[
min

{
1

Ai(x)
· g(R(x, y)), g(1)

}]
≥
∧
x∈X

[
min

{
1

A(x)
· g(R(x, y)), g(1)

}
∗←→G min

{
1

Ai(x)
· g(R(x, y)), g(1)

}]
(by Proposition 4.1.9)

≥
∧
x∈X

[{
1

A(x)
· g(R(x, y))

∗←→G
1

Ai(x)
· g(R(x, y))

}
∧
{
g(1)

∗←→G g(1)
}]
(by Proposition 4.1.9)

=
∧
x∈X

[
1

A(x)
· g(R(x, y))

∗←→G
1

Ai(x)
· g(R(x, y))

]
≥
∧
x∈X

[
1

A(x)

∗←→G
1

Ai(x)

]
·
[
g(R(x, y))

∗←→G g(R(x, y))
]

(Using(4.4))

=
∧
x∈X

[
1

A(x)

∗←→G
1

Ai(x)

]
=
∧
x∈X

[
Ai(x)

∗←→G A(x)
]
,

from whence we have (4.13).

Corollary 4.3.10. Let us consider the BKS inference mechanism of the form F =
(
PX ,PY , /g, R̂g

)
over

finite non-empty sets X and Y . The fuzzy relation R̂g ∈ F(X × Y ) is a correct model of fuzzy rules (1.12)
if and only if it is a continuous model of these rules.

The following result shows that if we consider g-generators with g(1) = 1 then the finiteness of
the sets X,Y can be dispensed with and the above result still remains valid.

Theorem 4.3.11. Let us consider the BKS inference mechanism of the form F =
(
PX ,PY , /g, R

)
with

g(1) = 1, i.e., −→g∈ IG,1. The fuzzy relation R ∈ F(X × Y ), where X,Y are any non-empty domains, is
a correct model of fuzzy rules (1.12) if and only if it is a continuous model of these rules.

Proof. Note that since g(1) = 1, the continuity equation (4.13) reduces to (4.14). Since←→G satisfies
(4.1) and (4.2) even for an infinite index set I, the proof follows immediately along the lines of the
proof of Theorem 4.3.9.

Theorem 4.3.12. Let us consider the BKS inference mechanism of the form F =
(
PX ,PY , /g, R̂g

)
with

g(1) = 1, i.e., −→g∈ IG,1. The fuzzy relation R̂g ∈ F(X × Y ), where X,Y are any non-empty domains, is
a correct model of fuzzy rules (1.12) if and only if it is a continuous model of these rules.

The above study clearly demonstrates that, as in the case of BKS and CRI, F =
(
PX ,PY , /g, R̂g

)
also possesses both the desirable properties of interpolativity and continuity .
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Chapter 5

Robustness of Bandler-Kohout
Subproduct with Yager’s Families of
Fuzzy Implications

Before God we are all equally wise - and equally
foolish.

– Albert Einstein (1879 – 1955)

Robustness is an essential property of an inference mechanism. Robustness of an FRI f@R deals
with how variations in the intended input affect the conclusions. It is different from continuity in
that, we expect that even when the actual input fuzzy set is not equal to the intended fuzzy set but
both are equivalent - in a certain predefined sense based on the equality relations on the underlying
set - the output fuzzy set should be equal to the corresponding intended output. In other words,
the FRI f@R respects the order and equivalence present in the underlying universe of discourse.

Perhaps a small example will illustrate the concept of robustness. Let us consider the following
scenario: Suppose a person goes to a stationary shop to buy a pen which usually costs Rs. 10.
However, on reaching there he comes to know that the cost of the pen has gone up to Rs. 11. Now
the question is whether he will buy the pen or not? The answer normally is ’YES’. Interestingly,
if the cost of the pen was Rs. 20 instead of Rs. 10, then for the same question, the answer would
probably be ’NO’. So for Rs. 10 and Rs. 11, the person takes the same decision whereas for Rs. 10
and Rs. 20, the decisions are different.

Now, consider that the same person goes to a garment shop to buy a shirt which usually costs,
say, Rs. 500. Once again, on reaching there he comes to know that cost is Rs. 510. Clearly, the
answer to the question as to whether he will buy it will be ’YES’.

Thus we see that a difference of Rs. 10 is negligible in one case, while it is not in another case.
Or in other words, 10 6≈ 20 in one context, while in another context 500 ≈ 510.

Thus robustness can be thought of capturing the extent to which any variation in the price of a
pen or a shirt does not affect the original decision. In the context of a fuzzy inference mechanism,
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robustness can be seen as the ability of the inference mechansim to capture this underlying equality
without affecting the output.

That both the CRI and BKS with residuated implications enjoy robustness is well-known. In
this chapter, we discuss the BKS-f and BKS-g relational inference systems and show that robust-
ness is also available under these settings, thus expanding the choice of operations available to
practitioners.

Similar to interpolativity and continuity, robustness is also discussed at the level of fuzzy sets.
So, the defuzzification function d does not play a role here and hence, we deal with FRI of the form
F = (PX ,PY , /, R).

We recall that we deal only with the implicative form of the rule base, i.e., the antecedents of
the rules are related to their consequents using a fuzzy implication and hence fix R = R̂f and R̂g

in the sequel. Thus, we deal with F→f
=
(
PX ,PY , /f , R̂f

)
and F→g

=
(
PX ,PY , /g, R̂g

)
.

The chapter is structured in the following way: After recalling some definitions and results on
fuzzy equivalence relation and extensionality in Section 5.1, we introduce the notion of robustness
of an FRI in Section 5.2 and present the main results in Section 5.3.

5.1 Fuzzy Equivalence Relation and Extensionality

Similar to the equivalence relation in classical set theory, similarity relation or fuzzy equivalence
relation has been proposed. Similarity relations have been used to characterize the inherent indis-
tinguishability in a fuzzy system [21].

Definition 5.1.1 ([21], Definition 2.5). A fuzzy equivalence relation E : X ×X → [0, 1] with respect to
the t-norm ? on X is a fuzzy relation over X ×X which satisfies the following for all x, y, z ∈ X :

• E(x, x) = 1. (Reflexivity)

• E(x, y) = E(y, x). (Symmetry)

• E(x, y) ? E(y, z) ≤ E(x, z). (? -Transitivity)

We denote a fuzzy equivalence relation by the pair (E, ?).

Definition 5.1.2 ([21], Definition 2.7). A fuzzy setA ∈ F(X) is called extensional with respect to a fuzzy
equivalence relation (E, ?) on X if, for every x, y ∈ X

A(x) ? E(x, y) ≤ A(y).

Definition 5.1.3 ([21], Definition 2.8). Let A ∈ F(X) and (E, ?) be a fuzzy equivalence relation on X .
The fuzzy set,

Â =
∧
{C : A ≤ C and C is extensional w.r.to (E, ?)}, (5.1)

is called the extensional hull of A. By A ≤ C we mean that for all x ∈ X,A(x) ≤ C(x), i.e, ordering in the
sense of inclusion.

Interestingly, the extensional hull Â of fuzzy set A, has a simpler way of calculation as given
below.
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Proposition 5.1.4 ([21], Proposition 2.9). Let A ∈ F(X) and (E, ?) be a fuzzy equivalence relation on
X . Then the extensional hull A can be obtained by

Â(x) =
∨
{A(y) ? E(x, y) | y ∈ X} .

5.2 Robustness of an FRI

We define extensionality of a fuzzy partition in terms of extensionality of fuzzy sets as in Defini-
tion 5.1.2. Based on this notion of extensionality, we then define the notion of robustness for fuzzy
relational inference mechanism w.r. to (E, ?).

Definition 5.2.1. A fuzzy partition PX ⊆ F(X) is called extensional with respect to a fuzzy equivalence
relation (E, ?) on X if, for all A ∈ PX , for every x, y ∈ X

A(x) ? E(x, y) ≤ A(y).

Definition 5.2.2. Let A ∈ F(X) and (E, ?) be a fuzzy equivalence relation on X . A fuzzy relational
inference mechanism is said to be robust w.r.to (E, ?) if the associated inference function f@R is such that

f@R (A) = f@R (Â) , (5.2)

where Â is the extensional hull of the fuzzy set A as defined in (5.1).

In other words, robustness of an inference mechanism is achieved by controlling the sensitivity
of the inference mechanism to input variations to a satisfactory level, i.e., the output should only be
as sensitive to input variations as is allowed or acceptable with respect to the underlying equality,
as specified by the fuzzy equivalence relation defined over the domain.

5.3 Robustness of BKS-Y Inference Mechanisms

The study of robustness in an FRI using implicative form of rules has largely been confined to op-
erations that come from a residuated lattice. The robustness of CRI was dealt with by Klawonn and
Castro [21]. Later on Štěpnička and Jayaram [49] have undertaken a similar study for BKS inference
mechanism with R-implications. Both the above works show that, when combined with appropri-
ate models of fuzzy rules, CRI and BKS are robust inference mechanisms. In the following two
subsections, we show a similar result which ensures the robustness of BKS-f and BKS-g inference
mechanisms when the rules are modeled by the relations R̂f and R̂g , respectively.
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5.3.1 Robustness of BKS-f Inference Mechanism

The following result shows that BKS with f -implications is a robust inference mechanisms.

Theorem 5.3.1. Let us consider the fuzzy IF-THEN rulebase R(Ai, Bi) as in (1.12). Consider the BKS
inference mechanism of the form F→f

=
(
PX ,PY , /f , R̂f

)
, where R̂f ∈ F(X × Y ) models the rule base

R(Ai, Bi). Moreover let (E, ·), where ’·’ is the product t-norm, be a fuzzy equivalence relation on X , such
that PX is extensional w.r.to (E, ·), i.e, every Ai, i = 1, 2, . . . n is extensional w.r.to (E, ·). Then F→f

is
robust w.r.to (E, ·), i.e., f/f

R̂f
satisfies (5.2) for any fuzzy set A′ ∈ F(X), i.e., A′ /f R̂f = Â′ /f R̂f .

Proof. Clearly, by the definition of Â′ we have the following:

Â′ ≥ A′ =⇒Â′ −→f R̂f ≤ A′ −→f R̂f =⇒ Â′ /f R̂f ≤ A′ /f R̂f .

Since R̂f is given by (Imp-R̂f ), we have

(
Â′ /f R̂f

)
(y) =

∧
x∈X

[
Â′(x) −→f

n∧
i=1

(Ai(x) −→f Bi(y))

]
, y ∈ Y.

Since every Ai is extensional with respect to (E, ·), for any x, x′ ∈ X and for any i = 1, 2, . . . n,

Ai(x
′) ≥ Ai(x) · E(x, x′)

=⇒ Ai(x
′) −→f Bi(y) ≤ [Ai(x) · E(x, x′)] −→f Bi(y), y ∈ Y. (5.3)

Now for any x ∈ X and y ∈ Y , we have

Â′(x) −→f

n∧
i=1

(Ai(x) −→f Bi(y))

=

( ∨
x′∈X

[A′(x′) · E(x, x′)]

)
−→f

n∧
i=1

(Ai(x) −→f Bi(y)) , (using Proposition 5.1.4)

=
∧
x′∈X

(
[A′(x′) · E(x, x′)] −→f

n∧
i=1

(Ai(x) −→f Bi(y))

)
, (using Proposition 3.1.8)

=

n∧
i=1

∧
x′∈X

([A′(x′) · E(x, x′)] −→f (Ai(x) −→f Bi(y))) , (using (1.6))

=

n∧
i=1

∧
x′∈X

(A′(x′) −→f [E(x, x′) −→f (Ai(x) −→f Bi(y))]) , ( by (LI) )

=

n∧
i=1

∧
x′∈X

(A′(x′) −→f [(E(x, x′) ·Ai(x)) −→f Bi(y)]) , ( by (LI) )

≥
n∧
i=1

∧
x′∈X

(A′(x′) −→f [Ai(x
′) −→f Bi(y)]) , (using (5.3))

= (A′ /f R̂f )(y) .

Thus Â′ /f R̂f ≥ A′ /f R̂f and the result follows.
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5.3.2 Robustness of BKS-g Inference Mechanism

Theorem 5.3.2. Let us consider the fuzzy IF-THEN rulebase R(Ai, Bi) as in (1.12). Consider the BKS
inference mechanism of the form F→g

=
(
PX ,PY , /g, R̂g

)
, where R̂g ∈ F(X × Y ) models the rule base

R(Ai, Bi). Moreover let (E, ·), where ’·’ is the product t-norm, be a fuzzy equivalence relation on X , such
that PX is extensional w.r.to (E, ·), i.e, every Ai, i = 1, 2, . . . n is extensional w.r.to (E, ·). Then F→g

is
robust w.r.to (E, ·), i.e., f/g

R̂g
satisfies (5.2) for any fuzzy set A′ ∈ F(X), i.e., A′ /g R̂g = Â′ /g R̂g .

Proof. Clearly, by definition of Â′ we have the following:

Â′ ≥ A′ =⇒Â′ −→g R̂g ≤ A′ −→g R̂g =⇒ Â′ /g R̂g ≤ A′ /g R̂g .

Since R̂g is given by (Imp-R̂g), we have

(
Â′ /g R̂g

)
(y) =

∧
x∈X

[
Â′(x) −→g

n∧
i=1

(Ai(x) −→g Bi(y))

]
, y ∈ Y.

Since every Ai is extensional with respect to (E, ·), for any x, x′ ∈ X and for any i = 1, 2, . . . n,

Ai(x
′) ≥ Ai(x) · E(x, x′)

=⇒ Ai(x
′) −→g Bi(y) ≤ [Ai(x) · E(x, x′)] −→g Bi(y), y ∈ Y. (5.4)

Now for any x ∈ X and y ∈ Y ,

Â′(x) −→g

n∧
i=1

(Ai(x) −→g Bi(y))

=

( ∨
x′∈X

[A′(x′) · E(x, x′)]

)
−→g

n∧
i=1

(Ai(x) −→g Bi(y)) , (using Proposition 5.1.4)

=
∧
x′∈X

(
[A′(x′) · E(x, x′)] −→g

n∧
i=1

(Ai(x) −→g Bi(y))

)
, (using Proposition 3.1.8)

=

n∧
i=1

∧
x′∈X

([A′(x′) · E(x, x′)] −→g (Ai(x) −→g Bi(y))) , (using (1.6))

=

n∧
i=1

∧
x′∈X

(A′(x′) −→g [E(x, x′) −→g (Ai(x) −→g Bi(y))]) , ( by (LI) )

=

n∧
i=1

∧
x′∈X

(A′(x′) −→g [(E(x, x′) ·Ai(x)) −→g Bi(y)]) , ( by (LI) )

≥
n∧
i=1

∧
x′∈X

(A′(x′) −→g [Ai(x
′) −→g Bi(y)]) , (Using (5.4))

= (A′ /g R̂g)(y) .

Thus Â′ /g R̂g ≥ A′ /g R̂g and the result follows.

The above study clearly demonstrates that, as in the case of BKS and CRI, the (BKS-f ) and
(BKS-g) inference mechanisms also possess robustness.
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Chapter 6

Universal Approximation Capability
of SISO Fuzzy Relational Inference
Mechanisms based on Fuzzy
Implications

Truth is much too complicated to allow
anything but approximations.

– John von Neumann (1903–1957)

One of the important factors considered while employing an fuzzy inference mechanism is its
approximation capability. While many studies have appeared on this topic, most of them deal with
FRIs where the rules are interpreted in a non-conditional way or as just aggregation of possibile
configurations of the data (recall the discussion in Sections 1.3 and 2.1 for details). When an im-
plicative or a conditional interpretation of the rules is considered, there are only a few works that
deal with their approximation properties.

In this chapter, we present the results that fuzzy relational inference mechanisms with implica-
tive interpretation of the rule base are universal approximators under suitable choice of operations
for the other components of the FRI. The presented proofs make no assumption on the form or
representations of the considered fuzzy implications and hence show that a much larger class of
fuzzy implications other than what is typically considered in the literature can be employed mean-
ingfully in FRIs based on implicative models. We present the results of non residuated implications
like Yager’s families of fuzzy implications as a corollary. A concept of weak coherence is proposed,
which plays an important role in enlarging the class of fuzzy implications that can be considered.

In Section 6.1 we present a short survey on the works and results related to universal approx-
imation of fuzzy relational inference systems. Further, the results in this chapter are valid for a
much larger class of fuzzy implications than the Yager’s families of fuzzy implications. This ex-
tended scope of this chapter is clearly specified in Section 6.2. Relaxing the often insisted coherence

60



of an implicative model suitably to the context of function approximation, Section 6.3 investigates
the class of fuzzy implications that can be used in FRIs to ensure this form of weak coherence. This
section also presents some well-known families of fuzzy implications that belong to the above ad-
missible class of fuzzy implications. Finally, Sections 6.4 and 6.5 contain the main results of this
chapter, which shows that FRIs employing a rather large class of fuzzy implications - which in-
clude the R-implications and Yager’s families of fuzzy implications - are universal approximators.
Section 6.7 presents some examples that illustrate the investigations and analysis of the previous
sections.

6.1 FRIs as Universal Approximators

In this subsection, we only briefly recall some of the important works dealing with the approxi-
mation properties of FRIs and refer the readers to the excellent review of Tikk et al. [42] for more
details and the other recent works, for instance [35], [53] and the references therein.

The earliest works to appear on this topic dealt with FRIs where R = Ř? and hence can be
considered to have assumed a Cartesian product interpretation of the fuzzy rules as given in Sec-
tion 2.1, see Wang [50] and Zeng and Singh [57].

It was Castro [10], who was the first to deal with the approximation properties of FRIs that
employed −→ to model the rulebase. However, as was already pointed out by Li et al. Remark 2.4,
[24], Castro has considered an FRI as given below:

B′(y) =
∨
j

(B′j(y)) =
∨
j

(Aj(x0) −→ Bj(y)) ,

which is clearly not an appropriate model to work with, since under most practical settings for
any given x0 ∈ X there will always exist a rule with an antecedent Ai0 such that Ai0(x0) = 0

(for instance, when Ai’s are of finite support) and since 0 −→ b = 1 for any b ∈ [0, 1], when the
maximum t-conorm is used to aggregate the individual outputs one always obtains that B′(y) = 1

for all y ∈ Y . Note that this is the case when the input partitions are of the Ruspini type - a property
that is normally both practical and desirable.

In the same work, after pointing out the above, Li et al. (see Theorem 3.4, [24]) have given a
constructive proof of the approximation capability of an FRI with R = R̂→. However, the scope of
their work is restricted to the following three families of fuzzy implications, namely,R-implications
from left-continuous t-norms, (S,N )- andQL-implications. Further, many of the results are without
complete proofs, thus making a deeper understanding of the approach difficult.

Perfilieva and Kreinovich [35] have discussed approximation capability of fuzzy systems that
reflect the CNF-DNF duality. However, the considered / constructed partitions are not ’fuzzy’
and hence the constructed rule base contains antecedents and consequents that are crisp sets. Fur-
ther, they make an implicit assumption that the considered implications can be written as a gen-
eralization of the classical material implication, which in the context of fuzzy logic connectives is
equivalent to assuming that the considered implication is an (S,N)-implication [2, 3]. While this
assumption is valid in their context, since the relations RCNF [35] are crisp and hence only need to
deal with {0, 1} values, in general, this is not true when we consider truth-values over the entire
[0, 1] interval.
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Recently, Štěpnička et al. [48] considered an FRI with R = R⊗→∗ where ⊗ is the Łukasiewicz
t-norm TLK(x, y) = max(0, x + y − 1) and→∗ is any residuated implication obtained from a left-
continuous t-norm ∗, which can be different from TLK. They have shown that the FRIs F⊗→∗ =

FTLK
→∗ =

(
PX ,PY , RTLK

→∗ ,MOM
)

are universal approximators. Their result is true for any contin-
uous function f but the Ai’s do not form a Ruspini partition which is normal and desirable in
practical settings.

6.2 Enlarged Scope of this chapter

From Section 2.3.4 we recall that in the case of singleton inputs overall inference of an FRI F can be
seen as a function g : X → Y as follows:

g(x′) = d(B′(·)) = d(f@R (A′(x′))) , x′ ∈ X .

Further, in the case of an FRI F with reducible composition, the overall inference reduces to the even
simpler function

g(x′) = d(B′(·)) = d(R(x′, ·)) , x′ ∈ X . (6.1)

In this work, we show that FRIs with reducible composition of the form FT→ =
(
PX ,PY , RT→, d

)
are

universal approximators, where we consider the following generalised form of R̂→:

RT→(x, y) = Tni=1(Ai(x) −→ Bi(y)) , , (Imp-RT→)

where T is any t-norm not necessarily the minimum t-norm. A concept of weak coherence is pro-
posed, which plays an important role in enlarging the class of fuzzy implications that can be con-
sidered. The proof is general enough for a large class of fuzzy implications and is valid for any
continuous function, not necessarily monotonic and the partitions used are of the Ruspini type.
Thus, we believe that these results are very much applicable in most of the practical and desirable
contexts [15, 48, 49].

6.3 Weak Coherence and Implicative Models

Dubois et al. [15] defined the concept of coherence for an implicative model R̂→ ( see (2.1)) of a rule
base as follows, which is suitably modified to fit into our notation.

Definition 6.3.1 ([12], [15]). Given an implicative rule base (1.13), a fuzzy relation RT→(x, y), as in
(Imp-RT→) modelling this rule base, is coherent if for any x ∈ X there exist y ∈ Y such that RT→(x, y) = 1.

The coherence property states that for any x, the final fuzzy output B′ should be normal, i.e.,
Ker(B′) 6= ∅. Coherence of an implicative model of a rule base is very much dictated by the seman-
tics involved [15]. Further, it is essential when using defuzzification techniques that are dependent
on the kernel to be non-empty.

However, there exist other reasonable defuzzification methods that do not depend on the kernel
of the output fuzzy set and, further, in the setting of function approximation, as is the case here,
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perhaps there is an arguable justification to not to insist on this otherwise extremely important
property.

6.3.1 A Weaker form of Coherence

Relaxing the coherence property we define the following weaker form of coherence.

Definition 6.3.2. For a given implicative rule base (1.13), a fuzzy relation RT→(x, y) is said to be weakly
coherent if for any x ∈ X there exist y ∈ Y such that RT→(x, y) > 0.

From (FRI-R-Singleton) and (Imp-RT→), we have the following:

B′(y) = RT→(x0, y) = Tni=1(Ai(x0) −→ Bi(y))

= T
(
A1(x0) −→ B1(y), A2(x0) −→ B2(y), . . . , An(x0) −→ Bn(y)

)
.

Now if the antecedent fuzzy sets are normal and form a Ruspini partition (See Definition 1.1.11),
then x0 intersects atmost two fuzzy sets say, Am, Am+1. Then the above reduces to

B′(y) = T (Am(x0) −→ Bm(y), Am+1(x0) −→ Bm+1(y)) = T (B′m(y), B′m+1(y)) ,

where B′m and B′m+1 are the fuzzy sets Bm and Bm+1 modified by the fuzzy implication −→ with
Am(x0), Am+1(x0).

It is clear that for B′ to be non-empty the supports of B′m and B′m+1 should intersect, i.e.,
Supp(B′m)∩ Supp(B′m+1) 6= ∅ and also the t-norm T should be positive. It should be mentioned
that this positivity condition is sufficient but not necessary - for instance, B′ may be non-empty
even for T not being positive, if the two consequent fuzzy sets overlap in sufficiently high degrees.
While coherence insists that the kernels of B′m and B′m+1 should intersect, the weak coherence
defined above relaxes this to a mere intersection of their supports.

It should be noted that while relaxing coherence to weak coherence does expand the set of
fuzzy implications that can be considered in R̂→, it still does not encompass the whole set of fuzzy
implications I.

In the following, we discuss the class of fuzzy implications that can be considered for an FRI
withRT→ to be at least weakly coherent. This leads us to study the effect of using fuzzy implications
to modify fuzzy sets.

6.3.2 Fuzzy Sets modified by Fuzzy Implications

From the above section it is clear that to ensure weak coherence, we need to deal with fuzzy sets
that are modified by a fuzzy implication. Thus studying the properties of such modified fuzzy sets
is important and we proceed to do this in the section.

Definition 6.3.3. Let C ∈ F(X) and I ∈ I be any fuzzy implication. We say that a CIα ∈ F(X) is the
modification or modified fuzzy set of C by I at a given α ∈ [0, 1] if

CIα(x) = I(α,C(x)), x ∈ X. (6.2)
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Since in this work we consider modification only by a fuzzy implication, we often use the sim-
pler term modified fuzzy set without any explicit mention of either I or the α ∈ [0, 1].

The following results show that modification by an I ∈ I preserves convexity and also gives
some relations between the supports of the original and modified fuzzy sets when an I ∈ I is used.

Proposition 6.3.4. For a convex fuzzy set C, a fuzzy implication I and any α ∈ [0, 1], CIα = I(α,C) is
also convex.

Proof. C being a convex fuzzy set, for all λ ∈ [0, 1] and x, y ∈ X , we have C(λx + (1 − λ)y) ≥
C(x) ∧ C(y). Now for any α ∈ [0, 1] we have the following:

C(λx+ (1− λ)y) ≥ C(x) ∧ C(y)

=⇒I(α,C(λx+ (1− λ)y)) ≥ I(α,C(x) ∧ C(y))

=⇒I(α,C(λx+ (1− λ)y)) ≥ I(α,C(x)) ∧ I(α,C(y))

=⇒CIα(λx+ (1− λ)y) ≥ CIα(x) ∧ CIα(y).

This proves that the modified fuzzy set CIα = I(α,C) is convex.

Remark 6.3.5. In fact, the above result is true for any increasing function t. In Proposition 6.3.4, t(C) =

CIα = I(α,C), where α ∈ [0, 1] is a constant.

Proposition 6.3.6. Let C be a bounded, normal, continuous convex fuzzy set, I ∈ I and α ∈ [0, 1].
Consider the following inclusion relating the supports of C and its modified set CIα:

Supp(CIα) ⊇ Supp(C) . (6.3)

(i) If I is a non-positive fuzzy implication, then there exists an α ∈ [0, 1] such that (6.3) is not valid.

(ii) For a given I ∈ I, let AI = {x ∈ [0, 1]|I(x, 0) = 0} and let δ = inf AI .

(a) If α < δ, then (6.3) is valid always.

(b) If α > δ, then (6.3) is valid only if I is positive.

(c) Let α = δ. If δ ∈ AI , then (6.3) is valid only if I is positive, while (6.3) holds for any I ∈ I if
δ /∈ AI .

Proof. (i) Since I is non-positive, there exists some x0, y0 ∈ (0, 1) such that I(x0, y0) = 0. By
the monotonicity of I we have that for α ∈ [x0, 1] and y ∈ [0, y0], I(α, y) = 0. Since C is
continuous, normal and convex, there will exist a U ⊆ X such that C(x) ≤ y0 on U . If we take
α ∈ [x0, 1] then CIα(x) = 0 for all x ∈ U , i.e., Supp(CIα) ( Supp(C). For a graphical illustration
see Figure 6.1(a) where I = IRS as defined in Table 1.5.

(ii) Let δ = inf AI = inf{x ∈ [0, 1]|I(x, 0) = 0}. Note that for any I ∈ I, I(1, 0) = 0 and hence
{x ∈ [0, 1]|I(x, 0) = 0} 6= ∅. Consider an α ∈ [0, 1].

(a) Let α < δ. Then I(α, 0) > 0 and by the monotonicity of I , we have I(α, β) > 0 for any
β ∈ [0, 1].

• On the one hand, if x ∈ X \ Supp(C), then C(x) = 0 and CIα(x) > 0,
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(a) Supp(CIα) ( Supp(C) (b) Supp(C) ⊆ Supp(CIα)

Figure 6.1: Inclusions between the supports of the original and modified fuzzy sets, when (a) I is
non-positive, (b) I is positive and NI 6= ND1.

• On the other hand, when x ∈ Supp(C), then C(x) > 0 and CIα(x) > 0.

Thus it is clear that Supp(C) ⊆ Supp(CIα) and (6.3) holds. For a graphical illustration see
Figure 6.1(b) where I = IRC as defined in Table 1.5.

(b) Let α > δ. Once again, by the monotonicity of I , we have I(α, 0) = 0. If x ∈ X \Supp(C),
then C(x) = 0 and hence CIα(x) = 0. If x ∈ Supp(C), then C(x) ∈ (0, 1]. In fact, by the
continuity and normality of C, for any β ∈ (0, 1) there exists an x ∈ Supp(C) such that
C(x) = β. Now, if I is not positive, i.e., if there exists a β ∈ (0, 1) such that I(α, β) = 0

then for all x ∈ Supp(C) such that C(x) ≤ β we have that CIα(x) = 0. Thus to ensure
that (6.3) holds we need an I which is positive.

(c) Let α = δ. If δ ∈ AI , then I(δ, 0) = I(α, 0) = 0 and hence it reduces to the case (b) above.
If δ /∈ AI , then I(δ, 0) = I(α, 0) > 0 and hence it reduces to the case (a) above.

Remark 6.3.7. Note that, from Proposition 6.3.6 we see that whenever δ < 1, to ensure that (6.3) holds
we need an I ∈ I that is positive. If an I ∈ I which is positive and whose NI = ND1 is used to modify C
above, then the supports of CIα, C are equal, i.e., Supp(CIα) = Supp(C), for all α ∈ (0, 1]. For a graphical
illustration see Figure 6.2 where I = IGD as defined in Table 1.5.

Also, note that when I ∈ I is positive but NI 6= ND1 then the modified fuzzy set may have infinite
support, in which case (6.3) holds trivially (Figure 6.1(b)).

6.3.3 Classes of Admissible Fuzzy Implications

From Section 6.3.1 above we know that for an RT→ to ensure weak coherence, we need the support
of the output fuzzy sets B′m and B′m+1 - which are the modified fuzzy sets of Bm, Bm+1 using a
fuzzy implication I ∈ I - to intersect. Also, it can be seen from Section 6.3.2 that when we use
a non-positive fuzzy implication the supports of these modified fuzzy sets can shrink and hence
there is a possibility that the intersection of their supports is empty, which is not desirable. Hence
to ensure weak coherence at the least, we see that the class of implications I that can be considered
should be restricted.
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Figure 6.2: Supp(C) ⊆ Supp(CIα) - When I is positive and NI = ND1 - see Remark 6.3.7

Towards this end, let us consider the following subsets of I:

• IOP - the set of all fuzzy implications satisfying ordering property (OP),

• I+ - the set of all fuzzy implications which satisfies positivity (I-POS),

• I+ND1
- the set of all fuzzy implications which satisfies positivity (I-POS) and NI = ND1.

Since in most practical settings we deal only with fuzzy sets that are bounded, continuous,
convex and that which often form a Ruspini partition, it is sufficient to consider fuzzy implications
I ∈ I that either

• satisfy the ordering property (OP), i.e., I ∈ IOP, in which case often we can ensure even
coherence [48], or

• are positive (I-POS) with NI = ND1, i.e., I ∈ I+ND1
, in which case we can ensure at least a

weak coherence.

Thus, in the following sections we will deal with rules modeled by fuzzy relations RT→ where
the fuzzy implication−→ either satisfies (OP) or is positive with or without (OP) but whose natural
negation NI = ND1, the Gödel negation as in Table 1.3.

Remark 6.3.8. Note that the properties (OP), positivity (I-POS) and NI = ND1 are not mutually exclu-
sive. Table 6.1 lists some fuzzy implications illustrating the same.

6.3.4 Some Families of Fuzzy Implications that belong to IOP ∪ I
+

ND1

In fact, many established families of fuzzy implications fall in either of the above two classes. For
the definitions and the properties these families satisfy, please refer to the monograph [2].

• Let ITBC denote the set of all R-implications obtained from border continuous t-norms. Then
every I ∈ ITBC satisfies (OP) ([3], Proposition 5.8). Further, the set of all R-implications ob-
tained from left-continuous t-norms ITLC ( ITBC and hence we have that

ITLC ( ITBC ( IOP .
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Implications (OP) (I-POS) NI = ND1

IG(x, y) = min(1, yx ) X X X
ILK(x, y) = min(1, 1− x+ y) X X ×

IRS(x, y) =

{
1, if x ≤ y
0, if x > y

X × X

I(x, y) =


1, if x ≤ y
0.5, if x > y and x ∈ [0, 0.5)

0, if (x, y) ∈ [0.5, 1)× [0, 0.5)

0.5, if x > y and y ∈ [0.5, 1)

X × ×

IYG(x, y) = min (1, yx) × X X
IRC(x, y) = 1− x+ xy × X ×

I(x, y) =

{
1, if x = 0 or y = 1

0, if x > 0 or y < 1
× × X

I(x, y) =


0, if (x, y) ∈ [0.7, 1]× [0, 0.6]

0.5, if (x, y) ∈ [0.4, 0.7]× [0, 0.6]

1, otherwise
× × ×

Table 6.1: Fuzzy Implications that satisfy some or all of the properties of (OP), (I-POS) and NI =
ND1.

• If I∗S denotes the set of all (S,N)− implications such that N = NS , the natural negation of S,
is a strong negation and the pair (S,NS) is such that S(NS(x), x) = 1, x ∈ [0, 1] then every
I ∈ I∗S satisfies (OP) ([3], Theorem 4.7). Hence

I
∗

S ( IOP .

• Let I∗QL denote the set ofQL-implications obtained from the triplet (TM, S,NS) where TM(x, y)

= min(x, y), S is any t-conorm and NS , the natural negation of S, is a strong negation and the
pair (S,NS) is such that S(NS(x), x) = 1, x ∈ [0, 1]. Then every I ∈ I∗QL satisfies (OP) ([5],
Section 4.4). Hence

I
∗

QL ( IOP.

• From Section 3.1 we recall that, IF is the set of all f -implications and IF,∞ ( IF is the set of
f -implications that are generated from generators such that f(0) = ∞. Every I ∈ IF,∞ is
positive and its natural negation is the Gödel negation (see Proposition 3.1.6), i.e., NI = ND1.
Thus

IF,∞ ( I
+

ND1
.

• Recall from Section 3.2 that IG denotes the set of all g-implications. Every I ∈ IG is positive
and NI = ND1 (see Proposition 3.2.6). Thus

IG ( I
+

ND1
.

• For examples of fuzzy implications from other well-known families, viz., (U,N)-, RU - impli-
cations and the relationships among the properties they satisfy, please see, for instance, [4, 6]
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or the work of Bustince et al. [8].

6.4 FT→OP
are Universal Approximators

Let us denote by RT→OP
the fuzzy relation where the fuzzy implication −→ is from IOP and the

corresponding FRI by FT→OP
=
(
PX ,PY , RT→OP

, d
)

where, PX = {Ai}ni=1 ⊆ F(X) and PY =

{Bi}ni=1 ⊆ F(Y ).
Recall from (FRI-R-Singleton), for any y ∈ Y ,

B′(y) = RT→(x0, y) = Tni=1(Ai(x0) −→OP Bi(y))

= T
(
A1(x0) −→OP B1(y), A2(x0) −→OP B2(y), . . . , An(x0) −→OP Bn(y)

)
. (6.4)

Note that to get a final crisp output y′ ∈ Y , we need to defuzzify the above B′ ∈ F(Y ) using d.
In this section, we show that, FRIs of the type FT→OP

=
(
PX ,PY , RT→OP

,MOM
)

are universal
approximators, i.e., they can approximate any continuous function over a compact set to arbitrary
accuracy. Moreover, we show that the approximator function is continuous.

In the following results we take X = [a, b] and Y = h([a, b]), but for the sake of readability we
retain the same notations.

Theorem 6.4.1. For any continuous function h : [a, b] → R over a closed interval and an arbitrary given
ε > 0, there is an FRI FT→OP

=
(
PX ,PY , RT→OP

,MOM
)

with PX and PY being Ruspini partitions such
that

(i) the system function g as defined in (6.1) is continuous on [a, b], and

(ii) max
x∈[a,b]

|h(x)− g(x)| < ε.

Proof. We prove this result in the following steps.
Step I : Choosing the points of normality
Since h is continuous over a closed interval [a, b], h is uniformly continuous on [a, b].

Thus for a given ε > 0 there exists δ > 0 (depending on ε) such that, for all w,w′ ∈ [a, b],

|w − w′| < δ =⇒ |h(w)− h(w′)| < ε

2
.

Step I (a): A Coarse Initial Partition
With the δ defined above and taking l = 1 +

⌈
b−a
δ

⌉
we now choose wi ∈ X, i = 1, 2, . . . l, such

that |wi − wi+1| < δ.
Let zi = h(wi), the value h takes at the above chosen wi, for i = 1, 2, . . . l. We call these points

wi and zi the points of normality on the input space and the output space, respectively.
In Figure 6.3, the points w1, w2, . . . , w11 and the points z1, z2, . . . z8 (in paranthesis) are the points of

normality in the input and the output spaces, respectively.
Step I (b): Redundancy Removal and Reordering
Let us choose the distinct zi’s from the above and sort them in ascending order. Let σ : Nl −→ Nk

denote the above permuation map such that zi = uσ(i), for i = 1, 2, . . . l and uj , j = 1, 2, . . . , k are
in ascending order.
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Figure 6.3: An Illustrative Example for Step I in the proof of Theorem 6.4.1. The intersection of the
thin-dotted and thick-dotted lines with the x-axis give the points wi and w(q)

i,i+1, respectively.

Once again, from Figure 6.3, by rearranging the zi’s in ascending order and renaming them we obtain:
u1 = z1 < u2 = z8 < u3 = z6 < u4 = z5 < u5 = z7 < u6 = z2 < u7 = z4 < u8 = z3.

Step I (c): Refinement of the input space partition:
Thus for each i = 1, 2, . . . , l we have h(wi) = zi = uσ(i). However, note that consecutive points

of normality wi, wi+1 in the input space need not be mapped to consecutive points of normality
uσ(i), uσ(i)+1 or uσ(i), uσ(i)−1.

In Figure 6.3, h(w1) = u1 and h(w2) = u6. Thus for the consecutive points w1 and w2 the function
values are u1 and u6, which are not consecutive.

To ensure the above, we further refine the input space partition. To this end, we refine every
sub-interval [wi, wi+1], for i = 1, 2, . . . l − 1 as follows. Note that h(wi+1) = uσ(i+1).
Refinement Procedure:

For every i = 1, 2, . . . l − 1 do the following:

(i) If uσ(i+1) = uσ(i)+1 or uσ(i)−1 then we do nothing.

(ii) Let uσ(i+1) = uσ(i)+p, where p ≥ 2. For every u ∈ {uσ(i)+1, uσ(i)+2, . . . , uσ(i)+p−1} we find
a point v ∈ [wi, wi+1] such that h(v) = u. Note that the existence of such a v ∈ [wi, wi+1] is
guaranteed by the continuity - essentially the ontoness - of the function h. If u = uσ(i)+q , for
some 1 ≤ q ≤ p− 1, then we denote the point v as w(q)

i,i+1.

(iii) Similarly, let uσ(i+1) = uσ(i)−p, where p ≥ 2. For every u ∈ {uσ(i)−1, uσ(i)−2, . . . , uσ(i)−p+1}
we find a v ∈ [wi, wi+1] such that h(v) = u. Once again, if u = uσ(i)−q , for some 1 ≤ q ≤ p− 1,
then we denote v as w(q)

i,i+1.

From Figure 6.3, it can be seen that we have inserted pointsw(1)
1,2, w

(2)
1,2, w

(3)
1,2, w

(4)
1,2 ∈ [w1, w2]. Proceeding

similarly, the following sub-intervals, shown in Figure 6.3, have been refined: [w2, w3], [w4, w5], [w8, w9]

and [w9, w10].
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Step I (d): Final Points of Normality:
Once the above process is done, we again rename the points of normality in the input space,

viz., wi’s and w(q)
i,i+1’s as x1, x2, . . . , xn(n ≥ l) and the uσ(i)’s of the the output space as y1, y2, . . . yk.

Step II : Construction of the Fuzzy Partitions - PX ,PY
In the next step, we construct fuzzy sets on both the input and output spaces with the above

obtained xi’s and yj ’s as the points of normality, as given below.
Step II (a): Fuzzy Partition on the input space PX = {Ai}ni=1.
We construct n fuzzy sets such that

• Supp(Ai) = (xi−1, xi+1) for i = 2, . . . , n − 1, while Supp(A1) = [x1, x2) and Supp(An) =
(xn−1, xn],

• each Ai is normal at xi, i.e., Ai(xi) = 1,

• each Ai is a continuous convex fuzzy set, strictly increasing on [xi−1, xi] and strictly decreas-
ing on [xi, xi+1].

• {Ai}ni=1 form a Ruspini partition (See Definition 1.1.11 for instance).

For instance, let each of the Ai’s (i = 2, . . . , n − 1) be a triangular fuzzy set, (i.e, each Ai is linear and
strictly increasing on [xi−1, xi], each Ai is linear and strictly decreasing on [xi, xi+1]), let A1 be right-half-
triangular, (i.e., A1 is linear and strictly decreasing on [x1, x2)) and let An be left-half-triangular, (i.e., An
is linear and strictly increasing on (xn−1, xn]). Further, let all the Ai’s attain normality at xi. Then, clearly,
the fuzzy partition {Ai}ni=1 of the input space X is a Ruspini partition and each of the Ai’s is continuous,
convex, of finite support and Ai(xi) = 1.

Step II (b): Fuzzy Partition on the output space PY = {Cj}kj=1.
We construct k fuzzy sets in a similar way as above, such that

• Supp(Cj) = (yj−1, yj+1) for j = 2, . . . , k − 1, while Supp(C1) = [y1, y2) and Supp(Ck) =
(yk−1, yk],

• each Cj is normal at yj , i.e., Cj(yj) = 1,

• each Cj is a continuous convex fuzzy set, strictly increasing on [yj−1, yj ] and strictly decreas-
ing on [yj , yj+1].

• {Cj}kj=1 form a Ruspini partition.

Here obviously, |yj − yj−1| < ε
2 , j = 1, 2, . . . k.

Step III: Construction of the smooth rule base
We construct the rule base with n rules of the form:

IF x̃ is Ai THEN ỹ is Cj , i = 1, 2, . . . n, (6.5)

where the consequent Cj in the i-th rule is chosen such that yj = h(xi), where xi is the point at
which Ai attains normality.

Now as in Section 1.3.2, we can rewrite the rule base (6.5) as follows:

IF x̃ is Ai THEN ỹ is Bi , i = 1, 2, . . . n. (6.6)
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Note that not all Bi’s may be distinct.
Note that, since h is continuous, by the above assignment of the rules, we have that rules whose

antecedents are adjacent also have adjacent consequents, i.e., for any i = 1, 2, . . . n − 1 we have
Supp(Bi) ∩ Supp(Bi+1) 6= ∅. Thus the constructed rule base is smooth [46].

Step IV : Approximation capability of the output
Let x′ ∈ X be the arbitrary given input. Clearly, x′ ∈ [xm, xm+1] for some m ≤ n − 1. Once

again, by our construction, x′ belongs to atmost two adjacent Ai’s, and they are Am, Am+1. Thus,
from (6.4),

B′(y) = T [Am(x′) −→OP Bm(y), Am+1(x′) −→OP Bm+1(y)]

= T [sm −→OP Bm(y), sm+1 −→OP Bm+1(y)] ,

where we introduce the notations sm = Am(x′) and sm+1 = Am+1(x′) for better readability in the
proofs. Note that since Ai’s form a Ruspini partition, we have that sm + sm+1 = 1. Further, note
that by the construction of {Ai, Bj}, Bm, Bm+1 are adjacent fuzzy sets.

Consider the kernel of B′. We choose the defuzzified output y′ such that it belongs to Ker(B′).
In fact, as we show below, by the construction of {Ai, Bj} we see that Ker(B′) is a singleton and
this becomes the defuzzified output.

Since T is a t-norm, we know that T (p, q) = 1 if and only if p = 1 and q = 1. Further, note that
p −→OP q = 1 if and only if p ≤ q and sm + sm+1 = 1 and hence we have

Ker(B′) = {y|B′(y) = 1}

= {y|sm −→OP Bm(y) = 1}
⋂

{y|sm+1 −→OP Bm+1(y) = 1}

= {y|sm ≤ Bm(y)}
⋂
{y|sm+1 ≤ Bm+1(y)} .

Let αm = inf{α| sm −→OP α = 1} and βm+1 = inf{β|sm+1 −→OP β = 1}. Since −→OP has (OP),
clearly αm = sm and βm+1 = sm+1.

By the continuity and convexity ofBm, Bm+1 there exist am, bm, am+1, bm+1 such thatBm(am) =

Bm(bm) = sm and Bm+1(am+1) = Bm+1(bm+1) = sm+1. By the monotonicity of the implication
in the second variable, for every y ∈ [am, bm] we have that sm → Bm(y) = 1 and for every y ∈
[am+1, bm+1] we have that sm+1 → Bm+1(y) = 1. Thus,

{y|sm ≤ Bm(y)} = [am, bm] ,

{y|sm+1 ≤ Bm+1(y)} = [am+1, bm+1] , and

Ker(B′) = {y|B′(y) = 1} = [am, bm]
⋂

[am+1, bm+1].

Claim: Ker(B′) = {am+1} = {bm} 6= ∅.
Firstly, note that for any sm ∈ [0, 1] by the normality of Bm we have that Bm(ym) = 1 and hence

ym ∈ {y|sm ≤ Bm(y)} =⇒ ym ∈ [am, bm] 6= ∅. Similarly, ym+1 ∈ [am+1, bm+1] 6= ∅. It suffices to
show that am+1 ≤ bm from whence Ker(B′) = [am+1, bm].

Note that since m < m + 1 and Bm, Bm+1 are adjacent fuzzy sets, either ym < ym+1 or ym >

ym+1. Without loss of generality, let us assume ym < ym+1. Now, from am+1 ∈ Supp(Bm+1) we
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have that ym ≤ am+1 ≤ ym+1. Similarly, ym ≤ bm ≤ ym+1. Hence, ym ≤ am+1, bm ≤ ym+1. Since,

sm + sm+1 = 1 =⇒ Bm+1(am+1) +Bm(bm) = 1,

=⇒ Bm+1(am+1) = 1−Bm(bm),

=⇒ Bm+1(am+1) = Bm+1(bm),

=⇒ bm ∈ [am+1, bm+1],

i.e., am+1 ≤ bm .

Now, to see that bm = am+1, note that since {Bj} form a Ruspini partition and Bm, Bm+1 are
adjacent fuzzy sets, we have Bm+1(am+1) = 1−Bm(am+1) and hence

Bm(am+1) = sm = Bm(bm). (6.7)

Since bm, am+1 ∈ Supp(Bm) ∩ Supp(Bm+1) on which both Bm, Bm+1 are strictly monotonic ( but
of opposite types) we have that bm = am+1.

Since d is the MOM defuzzification, we get that y′ = g(x′) = d(B′) = am+1 = bm ∈ [ym, ym+1].

Claim: g is continuous on [a, b].

Let us consider an x′ ∈ [a, b]. Clearly, x′ ∈ [xm, xm+1] for some 1 ≤ m < n and g(x′) = bm ∈
[ym, ym+1]. Let Am(x′) = sm ∈ [0, 1].

To show that g is continuous at x′, we need to show that for any given ε > 0, we can find a δ > 0

such that, for any x∗ ∈ [a, b], whenever

|x∗ − x′| < δ then |g(x∗)− g(x′)| < ε. (6.8)

Since Bm is strictly decreasing and continuous on [ym, ym+1], we have that B−1m : [0, 1] −→
[ym, ym+1] exists. Thus from (6.7) we have bm = B−1m (sm).

Further, B−1m is strictly decreasing and continuous on [0, 1]. Hence, for any ε1 > 0 there exists
some δ1 > 0 such that for any s∗m ∈ [0, 1],

|s∗m − sm| < δ1 =⇒ |B−1m (s∗m)−B−1m (sm)| < ε1. (6.9)

Since Am : [xm, xm+1] −→ [0, 1] is continuous, for any ε2 > 0 there exists some δ2 > 0 such that

|x∗ − x′| < δ2 =⇒ |Am(x∗)−Am(x′)| < ε2. (6.10)

Let s∗m = Am(x∗). Then g(x∗) = b∗m ∈ [ym, ym+1] and

|s∗m − sm| = |Am(x∗)−Am(x′)| , and (6.11)

|g(x∗)− g(x′)| = |b∗m − bm| = |B−1m (s∗m)−B−1m (sm)| . (6.12)

Now, let us set ε1 = ε and ε2 = δ1. Then, for δ = δ2, we have
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|x∗ − x′| < δ =⇒|Am(x∗)−Am(x′)| < ε2 , (using (6.10))

=⇒|s∗m − sm| < ε2 = δ1 , (using (6.11))

=⇒|B−1m (s∗m)−B−1m (sm)| < ε1 = ε , (using (6.9))

=⇒|b∗m − bm| < ε ,

=⇒|g(x∗)− g(x′)| < ε . (using (6.12))

Thus for any ε > 0, there exists a δ > 0 such that, whenever |x∗−x′| < δ then |g(x∗)−g(x′)| < ε,
i.e., g is continuous on [a, b] .

Clearly, now,
|ym − g(x′)| < ε

2
or |ym+1 − g(x′)| < ε

2
.

Without loss of generality, let |ym − g(x′)| < ε

2
, i.e., |ym − y′| <

ε

2
.

Further, since x′ ∈ [xm, xm+1] we have |h(x′)− ym| <
ε

2
. Putting them all together, we have

|g(x′)− h(x′)| = |y′ − h(x′)|

≤ |y′ − ym|+ |ym − h(x′)|

<
ε

2
+
ε

2
< ε.

Since x′ is arbitrary we have, max
x∈[a,b]

|h(x)− g(x)| < ε .

6.5 FT→D1
are Universal Approximators

While in the previous section, we dealt with fuzzy implications satisfying (OP), this class of fuzzy
implications is rather limited. In this section, we consider those positive implications whose natural
negations are Gödel negation.

Let us denote by RT→D1
the fuzzy relation where the fuzzy implication −→ is from I+ND1

and the

corresponding FRI by FT→D1
=
(
PX ,PY , RT→D1

, d
)

.
Once again, recall that from (FRI-R-Singleton), with R = RT→D1

for any y ∈ Y , we have

B′(y) = RT→D1
(x0, y) = Tni=1(Ai(x0) −→D1 Bi(y))

= T
(
A1(x0) −→D1 B1(y), A2(x0) −→D1 B2(y), . . . , An(x0) −→D1 Bn(y)

)
. (6.13)

We now show that the FRIs FT→D1
=
(
PX ,PY , RT→D1

,MOM
)

are universal approximators, i.e.,
they can approximate any continuous function over a compact set to arbitrary accuracy.

Theorem 6.5.1. For any continuous function h : [a, b] → R over a closed interval and an arbitrary given
ε > 0, there is an FRI FT→D1

=
(
PX ,PY , RT→D1

,MOM
)

with PX and PY being Ruspini partitions such
that the system function g approximates h uniformly, i.e., max

x∈[a,b]
|h(x)− g(x)| < ε.

Proof. Once again the proof is given in many steps. Steps I–III dealing with the construction of the
input and output partitions and the rule base are done in exactly the same way as in Steps I–III of
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the proof of Theorem 6.4.1.

Step IV: Approximation capability of the output

Once again, let x′ ∈ X be the arbitrary given input. Clearly, x′ ∈ [xm, xm+1] for some m ≤ l− 1.
Once again, by our construction, x′ belongs to Am, Am+1. Thus, from (6.13),

B′(y) = T [Am(x′) −→D1 Bm(y), Am+1(x′) −→D1 Bm+1(y)]

= T [sm −→D1 Bm(y), sm+1 −→D1 Bm+1(y)]

= T
[
B′m(y), B′m+1(y)

]
where sm = Am(x′) and sm+1 = Am+1(x′). Note that since Ai’s form a Ruspini partition, we have
that sm + sm+1 = 1.
Now since −→D1 is positive and such that x −→D1 0 = 0 for any x ∈ (0, 1], we have from Re-
mark 6.3.7 that the supports of both the modified fuzzy sets B′m, B′m+1 are the same as those of
Bm, Bm+1, i.e., Supp(B′m)=Supp(Bm) and Supp(B′m+1) = Supp(Bm+1). Hence,

Supp(B′) = Supp(B′m) ∩ Supp(B′m+1)

= Supp(Bm) ∩ Supp(Bm+1)

= Supp(Bm ∩Bm+1) = [ym, ym+1] . (6.14)

Now since (6.14) holds we have,

y′ = g(x′) = MOM(B′)

∈ Supp(Bm ∩Bm+1) = [ym, ym+1].

So |ym − g(x′)| < ε

2
and |ym+1 − g(x′)| < ε

2
. Now consider |ym − g(x′)| < ε

2
. Once again, since

x′ ∈ [xm, xm+1] we have |h(x′)− ym| <
ε

2
. Putting them all together, we have

|g(x′)− h(x′)| = |y′ − h(x′)|

≤ |y′ − ym|+ |ym − h(x′)|

<
ε

2
+
ε

2
< ε.

Since x′ is arbitrary we have, max
x∈[a,b]

|h(x)− g(x)| < ε .

6.6 Approximation Capability of BKS-Y Inference Mechanisms

In Chapters 4 and 5, we have seen that the FRIs with Yager’s families of fuzzy implications F→Y
possess the following desirable properties, namely, interpolativity, continuity and robustness.

In this section, we show that FRIs with Yager’s families of fuzzy implications are also universal
approximators. The results are, in fact, some special cases of the above Theorem 6.5.1.
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Corollary 6.6.1. For any continuous function h : [a, b] → R over a closed interval and an arbitrary given
ε > 0, there is an FRI F→f

=
(
PX ,PY , R̂f ,MOM

)
with R̂f as defined in (Imp-R̂f ) and −→f∈ IF,∞ and

PX and PY being Ruspini partitions such that the system function g approximates h uniformly, i.e.,

max
x∈[a,b]

|h(x)− g(x)| < ε.

Proof. Every −→f∈ IF,∞ is positive and its natural negation is the Gödel negation. Thus −→f∈
IF,∞ ( I

+

ND1
and the result follows from Theorem 6.5.1.

Corollary 6.6.2. For any continuous function h : [a, b] → R over a closed interval and an arbitrary given
ε > 0, there is an FRI F→g =

(
PX ,PY , R̂g,MOM

)
with R̂g as defined in (Imp-R̂g) and −→g∈ IG and

PX and PY being Ruspini partitions such that the system function g approximates h uniformly, i.e.,

max
x∈[a,b]

|h(x)− g(x)| < ε.

Proof. Every −→g∈ IG is positive and its natural negation is the Gödel negation. Thus −→g∈ IG (
I+ND1

and the result follows from Theorem 6.5.1.

6.7 Illustrative Examples

In this section we illustrate our results through some examples. We consider 3 functions one each
from the following three types or classes of functions, viz., those that are (i) purely monotonic, (ii)
mixed monotonic and symmetric, and (iii) mixed monotonic and asymmetric. We then approxi-
mate these functions by the FRIs FT→OP

or FT→D1
as proposed and constructed in Sections 6.4 and

6.5.
We consider the Mean of Maxima defuzzification and the input and output space partitions are

constructed as detailed in Section 6.4. However, we consider different fuzzy implication operators
I coming from both the classes, viz., IOP and I+ND1

, in the examples.
In the given figures, the original functions h(x) are shown in thick lines, the approximating

system functions g(x) in thin lines and the bounds h(x) − ε and h(x) + ε are plotted using dotted
−− lines.

Example 6.7.1. Let us consider the function

h(x) = ln(x), x ∈ [2, 7] ,

which is strictly increasing on the interval [2, 7] and let ε = 0.1. According to the proposed construction we
obtain 50 rules, since δ = ε = 0.1. We approximate h using the FRI FT→OP

, where the implication operator
employed in the relation RT→OP

is the Rescher implication IRS ∈ IOP \ I
+

ND1
(see Table 6.1), which satisfies

(OP) and its natural negation NIRS
= ND1, but IRS is not positive. The function h and its approximation

g are shown in Figure 6.4.

Example 6.7.2. Let us consider the function

h(x) = sin(x), x ∈ [−2π, 2π] ,
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Figure 6.4: The natural logarithm function h(x) = lnx approximated within ε = 0.1 bound over
[2, 7]

which is mixed monotonic and symmetric on the interval [−2π, 2π]. However, note that it is piecewise
strictly increasing or decreasing. Let ε = 0.1. According to the proposed construction we obtain 130 rules.
We approximate h using the FRI FT→OP

, where the implication operator employed in the relation RT→OP

is the Łukasiewicz implication ILK ∈ IOP \ I
+

ND1
(see Table 6.1) which satisfies (OP) and is positive, but

NILK
6= ND1. The function h and its approximation g are shown in Figure 6.5.

Figure 6.5: The function h(x) = sin(x) approximated within ε = 0.1 bound over [−2π, 2π].
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(a) Using 20 rules obtained from the unrefined partition

(b) Using 38 rules obtained from the refined partition

Figure 6.6: A 4th degree polynomial h(x) = −x4 + 2x2 − x approximated over [−2, 2] within ε = 2
bound.

Example 6.7.3. Let us consider the function

h(x) = −x4 + 2x2 − x, x ∈ [−2, 2] ,
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which is both mixed monotonic and asymetric on the interval [−2, 2]. Let ε = 2.
It is clear from the proof of Theorem 6.4.1 that the δ obtained for a given ε is extremely conservative.

Thus, in this case we would get a δ = 0.0025. However, we have assumed δ = 0.25 and proceeded to verify
the approximation capability. According to the proposed construction, with δ = 0.25, we obtain 20 rules by
Step I(a) of Theorem 6.4.1, which are then refined to 38 rules by Step I(b) and Step I(c) of Theorem 6.4.1.
We approximate h using the FRI FT→D1

, where the implication operator employed in the relation RT→D1
is

the Yager implication IYG ∈ I
+

ND1
\ IOP (see Table 6.1) which does not satisfy (OP), but is both positive and

NIYG
= ND1.

The approximated function is shown in Figure 6.6. Figure 6.6(a) gives the plot of the approximator g that
was obtained from the original rule base with 20 rules that were obtained before the refinement of the input
space, while Figure 6.6(b) gives the plot of the approximator g that was obtained by employing the refined
rule base with 38 rules.

Remark 6.7.4. From Step I(a) of the proof of Theorem 6.4.1, note that the number of rules generated from
the proposed construction in Section 6.4 is dependent both on the function and the ε value given but not
on the fuzzy implication employed in FT→. It is also clear from the illustrated examples that even a coarser
partition of the input space than what is proposed can still approximate the given function within the bounds,
i.e., even with a bigger δ we can still get the same ε approximation. Of course, the δ itself can be adapted
depending on the prior knowledge of the slope of the given function to be approximated.
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Chapter 7

Monotonicity of SISO Fuzzy
Relational Inference Mechanisms
based on Fuzzy Implications

The mathematical sciences particularly exhibit
order, symmetry and limitations; and these are
the greatest forms of the beautiful.

– Aristotle (367 BC–347 BC)

Monotonicity of the system function (see Section 2.3.4) of an inference mechanism is one of
the essential properties of an inference mechanism, unavailibility of which leads to an unreliable
inference mechanism [43], [44], [46], [47]. Let us be given a monotone rule base of the form (see
Definition 1.3.2):

RM (Ai, Bi) : IF x̃ is Ai THEN ỹ is Bi, i = 1, 2, . . . n, (7.1)

where the antecedents Ai ∈ PX and consequents Bi ∈ PY are such that they maintain the same
ordering as explained in Section 1.3.4. Given a monotone rule base and monotonic inputs, mono-
tonicity of an FRI refers to whether we obtain monotonic outputs.

Absence of monotonicity of the system function of an inference mechanism is not desirable. For
example, let us consider a fuzzy rule base given by an expert for an air conditioner. The rules are
typically of the form ”The higher is the room temperature, the higher is the fan speed”’ and hence the
rule base is clearly monotone. The non-monotonicity of the resulting system function is not at all
desirable, since for higher temperature the fan speed should not decrease.

The question now is the following:

For a given monotone rule base RM (Ai, Bi), does there exist an FRI F =
(
PX ,PY ,@, R, d

)
with a suitable fuzzy relation R that models the rule base RM (Ai, Bi), and a defuzzifier d, such
that for any two crisp inputs x′ and x′′ with x′ ≤ x′′, the corresponding outputs are such that
g(x′) = y′ ≤ y′′ = g(x′′)?
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Let us give an example which shows that a fuzzy relational inference mechanism, may or may
not be monotone.

Example 7.0.5. Let the input and output space be X = [0, 1] and Y = [0, 1], respectively. Let us consider
the fuzzy sets A1 = 〈0, 0, 0.2, 0.3〉, A2 = 〈0.2, 0.3, 0.5, 0.9〉, A3 = 〈0.5, 0.9, 1, 1〉 and B1 =

〈0, 0, 0.2, 0.6〉, B2 = 〈0.2, 0.6, 0.8, 1〉, B3 = 〈0.8, 1, 1, 1〉, as shown in the Figure 7.1, where a
quadruple 〈a, b, c, d〉 represents a trapezoidal fuzzy set A as shown in the Figure 7.2.

It can be easily verified that A1 ≺ A2 ≺ A3 and B1 ≺ B2 ≺ B3.

(a) The antecedent fuzzy sets Ai’s (b) The consequent fuzzy sets Bi’s

Figure 7.1: The Fuzzy Sets Ai’s and Bi’s

Figure 7.2: The Trapezoidal Fuzzy Set representing A = 〈a b, c, d〉.

Consider the rule base,

IF x̃ is Ai THEN ỹ is Bi, i = 1, 2, 3, (7.2)

which is monotone, since A1 ≺ A2 ≺ A3 and B1 ≺ B2 ≺ B3.
Let us consider the FRI with reducible composition F→ =

(
PX ,PY , R̂→, d

)
, where−→= ILK. Then

the system function (sometimes called the input-output function) is as shown in Figure 7.3 for two different
types of defuzzification methods, viz., (i) Center of Gravity (COG) (see (1.4)) and (ii) Mean of Maxima
(MOM) (see (1.1)). From the Figure 7.3, it can be noticed that the system function in one of the cases is
monotonic and in another case it is not. Hence the FRI F→ =

(
PX ,PY , R̂→,MOM

)
with −→= ILK is

monotonic, whereas F→ =
(
PX ,PY , R̂→,COG

)
with −→= ILK is not.
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(a) System function with COG defuzzifica-
tion

(b) System function with MOM defuzzifica-
tion

Figure 7.3: System function of the FRI F→ given in Example 7.0.5 with (a) COG and (b) MOM
defuzzifier and −→= ILK, the Lukasiewicz implication.

Example 7.0.6. Let us again consider the same rule base as in Example 7.0.5. Now we consider the FRI
with reducible composition F→ =

(
PX ,PY , R̂→, d

)
, where −→= IKD. Then the system function is

as shown in Figure 7.4 for two different types of defuzzification methods, viz., (i) Center of Gravity (COG)
(see (1.4)) and (ii) Mean of Maxima (MOM) (see (1.1)). From the Figure 7.4, it can be noticed that the

(a) System function with COG defuzzifica-
tion

(b) System function with MOM defuzzifica-
tion

Figure 7.4: System function of the FRI F→ given in Example 7.0.6 with (a) COG and (b) MOM
defuzzifier and −→= IKD, the Kleene-Dienes implication.

system function in both the cases is not monotonic, hence the FRIs F→ =
(
PX ,PY , R̂→,COG

)
and F→ =(

PX ,PY , R̂→,MOM
)

with −→= IKD are not monotonic.

In this chapter, we discuss the monotonicity of FRIs when an implicative model of the rule base
is employed, i.e., where the operation between the antecedents and consequents is taken as a fuzzy
implication. In Section 7.1, we present a short survey of the works related to monotonicity of fuzzy
relational inference systems. In Section 7.2, we define the scope of this chapter by specifying clearly
both the admissible class of fuzzy implications, and the class of fuzzy sets that are admissible
as antecedents and consequents in a given monotone rule base RM (Ai, Bi). Sections 7.3 and 7.4
contain the main contributions of this chapter, which shows that FRIs employing a rather large
class of fuzzy implications - which include Yager’s families of fuzzy implications - are monotonic.
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Section 7.5 presents some examples that illustrate the investigations and analysis of the previous
sections.

7.1 Monotonicity of FRIs

In the study of monotonicity of the system function of a fuzzy inference mechanism, most of the
works in the literature deal with FRIs where the rules are interpreted in a non-conditional way or
as just aggregation of possible configurations of the data (see the discussions in Sections 1.3 and 2.1
for more details). When an implicative or a conditional interpretation of the rules are considered,
there are only a few works dealing with monotonicity of the system function.

The earliest works to appear on this topic dealt with FRIs where R = Ř? (as defined in Sec-
tion 2.1) and hence can be considered to have assumed a Cartesian product interpretation of the
fuzzy rules, see Broekhoven and De Baets [43], [44]. In these two works the authors are specific in
terms of choosing the operators in the inference mechanism. For instance, their results are valid
only for R = Ř? where ? a is t-norm specified by ? = TM, TP or TLK as in Table 1.2. They have
shown that the FRIs F =

(
PX ,PY , Ř?,MOM

)
and F =

(
PX ,PY , Ř?,COG

)
are monotonic only for

the above mentioned t-norms. The results lack generality in terms of choosing the opertaors in the
inference mechanism.

Later Štěpnička and De Baets in [46] and [47] considered an FRI with R = R̂→ where −→ is
any residuated implication obtained from a left-continuous t-norm. The authors have modeled the
rule base after modifying the antecedent and consequent fuzzy sets in some specified manner and
denoted them as, R̂↑→, R̂↓→ and R̂l→. Finally, they have shown that with the modified rule bases,
the FRIs F =

(
PX ,PY , R̂↑→,FOM

)
, F =

(
PX ,PY , R̂↓→,LOM

)
and F =

(
PX ,PY , R̂l→,MOM

)
are

monotonic.

7.2 Enlarged Scope of This Chapter

In this work, we show that FRIs of the form F→ =
(
PX ,PY , R̂→, d

)
can be made monotonic for

suitable choice of operations. The proof is general enough for a large class of fuzzy implications
and the partitions formed by the antecedents Ai ∈ PX and consequents Bi ∈ PY fuzzy sets are
of the Ruspini type. Further, we do not modify the antecedent and consequent fuzzy sets of the
rule base. However, in the following we clearly specify the type of admissible antecedents and
consequents in a given monotone rule base. Further, we also restrict the scope of this chapter to a
subclass of fuzzy implications, for which at least weak coherence can be ensured. It should also be
mentioned that our results are valid for a large class of fuzzy implications, that also contains the
Yager’s families of fuzzy implications.

7.2.1 Class of Admissible Fuzzy Sets in the Rule Base

Let F∗(X) denote the space of fuzzy sets on X which are normal, convex and strict on both sides
of the ceiling.

For instance, the fuzzy set A in Figure 7.5 is normal and convex but not strict on both sides of
the ceiling.
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Figure 7.5: Normal, convex but not strict on both sides of the ceiling.

(a) Ceiling is a single point (b) Ceiling is an interval

Figure 7.6: Normal, convex and strict on both sides of the ceiling.

In Figure 7.6(a), the ceiling of the triangular fuzzy setA is a single point andA is normal, convex
and strict on both sides of the ceiling. In Figure 7.6(b), the ceiling of the trapezoidal fuzzy set A
is an interval and A is again normal, convex and strict on both ides of the ceiling. Note that both
these triangular and trapezoidal fuzzy sets belong to F∗(X) and further, the graphs of these fuzzy
sets on either side of the ceiling are linear functions of x ∈ X . In fact, the graphs of any fuzzy set
A ∈ F∗(X) over the region Supp(A) \Ceil(A) are strictly monotonic, linear or non-linear functions
of x - see, for instance, the fuzzy sets in Figure 7.6 in thick and thin dashed lines.

The fuzzy sets Ak ∈ F∗(X), k = 1, 2, . . . , 6 in both Figure 7.7 and Figure 7.8 form a Ruspini
partition (see Definition 1.1.11).

Figure 7.7: {Ak}6k=1 forms a Ruspini partition on X .
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Figure 7.8: {Ak}6k=1 forms a Ruspini partition on X .

For instance, if we consider the x0 ∈ X , as in Figure 7.7, then

6∑
k=1

Ak(x0) = A2(x0) +A3(x0) = 0.65 + 0.35 = 1 .

Again if we consider the x0 ∈ X , as in Figure 7.8. Then

6∑
k=1

Ak(x0) = A2(x0) +A3(x0) = 0.16 + 0.84 = 1 .

It should be noted that the collection of fuzzy sets Ak ∈ F∗(X), k = 1, 2, . . . , 6 in both Figure 7.7
and Figure 7.8 are normal, convex and strict on both side of their ceilings. The only difference is
that, in the first case, both sides of the ceilings of Ak ∈ F∗(X), k = 1, 2, . . . , 6 are linear functions of
x whereas in the 2nd case they are not.

In this chapter, we only consider monotone rule bases RM (Ai, Bi) where Ai ∈ F∗(X), Bi ∈
F∗(Y ) and form Ruspini partitions on the underlying domains X,Y , respectively.

7.2.2 Classes of Admissible Fuzzy Implications

From Section 6.3.2 in Chapter 6, it is clear that for an FRI with reducible composition, F→ =
(
PX ,PY ,

R̂→, d
)

, to obtain a nonempty output, we at least need to ensure weak coherence (as defined in
Definition 6.3.2).

For a given monotone rule base of the form (7.1) and a singleton input x0 ∈ X , from (2.1) and
(FRI-R-Singleton), we have the following:

B′(y) = R→(x0, y) =

n∧
i=1

(Ai(x0) −→ Bi(y))

= (A1(x0) −→ B1(y)) ∧ (A2(x0) −→ B2(y)) ∧ . . . ∧ (An(x0) −→ Bn(y)). (7.3)

Now if the antecedent fuzzy sets form a Ruspini partition, then x0 intersects atmost two fuzzy sets
say, Am, Am+1. Then the above reduces to

B′(y) = (Am(x0) −→ Bm(y)) ∧ (Am+1(x0) −→ Bm+1(y)) = B′m(y) ∧B′m+1(y) ,
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where B′m and B′m+1 are the fuzzy sets Bm and Bm+1 modified by the fuzzy implication −→ with
Am(x0), Am+1(x0).

It is clear that for B′ to be non-empty the supports of B′m and B′m+1 should intersect, i.e.,
Supp(B′m)∩ Supp(B′m+1) 6= ∅ . While coherence insists that the kernels of B′m and B′m+1 should
intersect, the weak coherence defined in Definition 6.3.2 relaxes this to a mere intersection of their
supports.

From Section 6.3.1 we know that for a fuzzy relation R̂→ to ensure weak coherence at the least,
the class of implications I that can be considered should be restricted.

Since in most practical settings we deal only with fuzzy sets that are bounded, continuous,
convex and that which often form a Ruspini partition, to ensure weak coherence or non emptiness
of the output, it is sufficient to consider fuzzy implications I ∈ I that either

• satisfy the ordering property (OP), i.e., I ∈ IOP, in which case often we can ensure even
coherence [48], or

• are positive i.e., I ∈ I+ , in which case we can ensure at least a weak coherence.

It is clear from Proposition 6.3.6(i) that if we use a non-positive implication, then the support of
B′m and B′m+1 may shrink, giving rise to an empty fuzzy set as B′, which is not at all desirable.

Thus, in this chapter, we limit the study of monotonicity to FRIs that employ fuzzy implications
that come from the class I+ . Further, among fuzzy implications I ∈ I+ we only consider those that
are strict (ST) (see Definition 1.2.12) and denote this class by Ist ( I+.

Towards better clarity and readability of the proofs presented later, we partition Ist into two
subclasses, viz., (i) IstND1

, which contain fuzzy implications I that are strict (ST) with NI = ND1 and
(ii) IstNcD1

, which contain fuzzy implications I that are strict (ST) but with NI different from ND1.

Remark 7.2.1. Note that IOP and Ist are mutually exclusive. Table 7.1 lists some fuzzy implications
illustrating the same.

Implication I ∈ I I ∈ IOP I ∈ Ist I ∈ IND1

× X X X
× X X ×

IG(x, y) = min(1, yx ) X × X
ILK(x, y) = min(1, 1− x+ y) X × ×

IYG(x, y) = min (1, yx) × X X
IRC(x, y) = 1− x+ xy × X ×

I(x, y) =

{
0, if x > 0 and y = 0

1, otherwise
× × X

I(x, y) =



0, if(x, y)

∈ [0.7, 1]× [0, 0.6]

0.5, if(x, y)

∈ [0.4, 0.7]× [0, 0.6]

1, otherwise

× × ×

Table 7.1: Fuzzy Implications that satisfy some, all or none of (OP), (ST) and NI = ND1.
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7.2.3 Some families of Fuzzy Implications that belong to IstND1
∪ IstNc

D1
= Ist

In fact, many established families of fuzzy implications fall in either of the above two classes. For
the definitions and the properties these families satisfy, please refer to the monograph [2].

• From Section 3.1 we recall that IF is the set of all f -implications and IF,∞ ( IF is the set of
f -implications that are generated from generators such that f(0) =∞. Every I ∈ IF,∞ is strict
and its natural negation is the Gödel negation (see Proposition 3.1.6), i.e., NI = ND1. Thus

IF,∞ ( IstND1
.

• Again from Section 3.1 recall that IF,1 ( IF is the set of f -implications that are generated from
generators such that f(0) = 1. Every I ∈ IF,1 is strict but their natural negation is a strict
negation which is not the Gödel negation (see Proposition 3.1.6), i.e., NI 6= ND1. Thus

IF,1 ( IstNcD1
.

• If IG denotes the set of all g-implications, then every I ∈ IG is positive and NI = ND1 (see [1],
Proposition 4). Thus

IG ( IstND1
.

In the following sections we will only deal with rules modeled by fuzzy relations R̂→ where the
fuzzy implication −→ satisfies (ST). However, as noted above, the presented results are valid for
the Yager’s families of f - and g-implications.

7.3 Monotonicity of FRI F→ST

In this section we discuss the monotonicity of the system function of the FRI

F→ST
=
(
PX ,PY , R̂→ST

,MOM
)
, where R̂→ST

=

n∧
i=1

(Ai −→ST Bi) , and −→ST∈ Ist .

While investigating this FRI we partition the set Ist into two parts (i) IstND1
and (ii) IstNcD1

as given in
Section 7.2.2 and investigate the following FRIs for monotonicity:

F→D1
=
(
PX ,PY , R̂→D1

,MOM
)
, and R̂→D1

=

n∧
i=1

(Ai −→D1 Bi) ,

F→D1c =
(
PX ,PY , R̂→D1c ,MOM

)
, and R̂−→D1c =

n∧
i=1

(Ai −→D1c Bi) ,

where −→D1∈ IstND1
and −→D1c∈ IstNcD1

.
In the following two results we propose some sufficient conditions under which the correspond-

ing system functions of F→D1
and F→D1c are monotonic.

Theorem 7.3.1. Let us be given a fuzzy IF-THEN rule base RM (Ai, Bi) as in (7.1) which is monotone
and Ai ∈ PX , i = 1, 2, . . . , n, form a Ruspini partition on X and Bi ∈ PY , i = 1, 2, . . . n, form a
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Ruspini partition on Y , respectively. Further, let every element of PX and PY be normal, convex and strictly
monotone on both sides of the ceiling, i.e., PX ⊆ F∗(X) and PY ⊆ F∗(Y ). Then the system function g of
the FRI F→D1

=
(
PX ,PY , R̂→D1

,MOM
)

is monotonic, where −→D1∈ IstND1
.

Proof. While the proof is valid for any fuzzy sets which are normal, convex and strict on both sides
of the ceiling, for better readability we prove this result only for triangular fuzzy sets. For an input
x′ ∈ X the fuzzy relational inference mechanism (FRI-R-Singleton) with R = R̂→D1

is of the form,

B′(y) = R̂→D1
(x′, y), y ∈ Y. (7.4)

Let the convex fuzzy sets {Ai}ni=1, {Bi}ni=1 be such that Supp(Ai) = [xi−1, xi+1], Supp(Bi) =

[yi−1, yi+1], i = 2, 3, . . . , n − 1, Supp(A1) = [x1, x2], Supp(An) = [xn−1, xn], Supp(B1) = [y1, y2],
Supp(Bn) = [yn−1, yn]. Further, let Ai(xi) = 1 and Bi(yi) = 1 for i = 1, 2, . . . , n.

Let x′ ∈ X be any given input. Clearly, x′ ∈ [xm, xm+1] for some m ∈ {1, 2, . . . , n − 1}. Since
{Ai}ni=1 are normal and form a Ruspini partition, Aj(x′) = 0, for all j 6= m,m+ 1 . Then from (7.4),
we have

B′(y) = [Am(x′) −→D1 Bm(y)] ∧ [Am+1(x′) −→D1 Bm+1(y)].

Let Am(x′) = s′m and Am+1(x′) = s′m+1. Thus,

B′(y) = [s′m −→D1 Bm(y)] ∧ [s′m+1 −→D1 Bm+1(y)] = B′m(y) ∧B′m+1(y) .

Clearly, since Bm, Bm+1 are convex and normal, B′m, B′m+1 are also convex and normal (see Propo-
sition 6.3.4). Hence B′ = B′m ∩B′m+1 is also convex. Let y′ = MOM(B′).

Since we consider the rule base to be only monotone and not strictly monotone, there can be
two possibilities: (i) Bm 6= Bm+1 and (ii) Bm = Bm+1.

Case I - Bm 6= Bm+1:

Claim 1. If x′ ∈ [xm, xm+1], then y′ ∈ [ym, ym+1] for any m ∈ {1, 2, . . . , n− 1}.

For a better understanding of the proof we refer to Figure 7.9 where the implication used is IYG(x, y) =

min (1, yx), the Yager’s implication. Note that IYG ∈ IstND1
.

From Remark 6.3.7 we can verify that, since x −→D1 0 = 0 for any x ∈ (0, 1], we have that the
supports of both the modified fuzzy setsB′m = sm −→D1 Bm andB′m+1 = sm+1 −→D1 Bm+1

are the same as those of Bm, Bm+1, i.e.,

Supp(B′m) = Supp(Bm) and Supp(B′m+1) = Supp(Bm+1) .

Hence, Supp(B′) = Supp(B′m) ∩ Supp(B′m+1) = Supp(Bm) ∩ Supp(Bm+1)

= Supp(Bm ∩Bm+1) = [ym, ym+1] . (7.5)

Since (7.5) holds we have,

y′ = g(x′) = MOM(B′) ∈ Supp(Bm ∩Bm+1) = [ym, ym+1].

Thus, y′ ∈ [ym, ym+1]. Hence the Claim 1. 2
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Figure 7.9: The Modified Fuzzy Sets, using IYG(x, y) = min (1, yx)

Let x′, x′′ ∈ X be the two given inputs such that x′ ≤ x′′. By considering the following two
subcases, we show that the obtained outputs y′, y′′ ∈ Y also are such that, y′ ≤ y′′.

Subcase-1: Let x′, x′′ ∈ [xm, xm+1], for some m ∈ {1, 2, . . . , n − 1} . By the above claim we
obtain, y′, y′′ ∈ [ym, ym+1].

Now, since Am is strictly decreasing on [xm, xm+1] and Am+1 is strictly increasing on
[xm, xm+1],

x′ ≤ x′′ and x′, x′′ ∈ [xm, xm+1] =⇒ Am(x′) ≥ Am(x′′) and Am+1(x′) ≤ Am+1(x′′),

i.e., s′m ≥ s′′m and s′m+1 ≤ s′′m+1, (7.6)

where s′′m = Am(x′′) and s′′m+1 = Am+1(x′′).

For any y ∈ [ym, ym+1] we obtain the following inequalities:

s′m ≥ s′′m =⇒s′m −→D1 Bm(y) ≤ s′′m −→D1 Bm(y),

=⇒B′m(y) ≤ B′′m(y) .

Similarly, s′m+1 ≤ s′′m+1 =⇒s′m+1 −→D1 Bm+1(y) ≥ s′′m+1 −→D1 Bm+1(y),

=⇒B′m+1(y) ≥ B′′m+1(y) .

Claim 2. y′ = MOM(B′) ∈ Supp(Bm ∩ Bm+1) = [ym, ym+1] is the point of intersection of
B′m and B′m+1.

On [ym, ym+1], B′m is strictly decreasing and B′m+1 is strictly increasing. Let B′m and
B′m+1 intersect at y0 ∈ [ym, ym+1], i.e,

B′m(y0) = B′m+1(y0). (7.7)

Now, for y ∈ [ym, y
0), it holds that B′m(y) > B′m(y0) = B′m+1(y0) > B′m+1(y) and we
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have the following inequality:

B′(y) = min
(
B′m(y), B′m+1(y)

)
= B′m+1(y) (∵ B′m(y) > B′m+1(y))

< B′m+1(y0) (∵ B′m+1 is strictly increasing in [ym, ym+1])

= B′m(y0) = B′(y0) . (7.8)

Again for y ∈ (y0, ym+1], it holds that, B′m(y) < B′m+1(y) and we have the following
inequality:

B′(y) = min
(
B′m(y), B′m+1(y)

)
= B′m(y) (∵ B′m(y) < B′m+1(y))

< B′m(y0) (∵ B′m is strictly decreasing in [ym, ym+1])

= B′m+1(y0) = B′(y0) . (7.9)

From (7.7), (7.8) and (7.9), we have

y′ = MOM(B′) = y0 ,

the point of intersection of B′m and B′m+1. Hence the Claim 2. 2

Since B′m and B′m+1 are monotonic on [ym, ym+1], we have that y′, y′′ ∈ [ym, ym+1] are
also the points which satisfy the following:

B′m(y′) = B′m+1(y′) =⇒ s′m −→D1 Bm(y′) = s′m+1 −→D1 Bm+1(y′) , (7.10)

B′′m(y′′) = B′′m+1(y′′) =⇒ s′′m −→D1 Bm(y′′) = s′′m+1 −→D1 Bm+1(y′′) . (7.11)

Now, to prove monotonicity, we need to show that y′ ≤ y′′.

If possible, let us assume to the contrary that y′ > y′′. Since Bm and Bm+1 are, respec-
tively, strictly decreasing and strictly increasing on [ym, ym+1],

y′ > y′′ and y′, y′′ ∈ [ym, ym+1]

=⇒ Bm(y′) < Bm(y′′) and Bm+1(y′) > Bm+1(y′′) . (7.12)

This leads to the following inequalities:

s′m+1 −→D1 Bm+1(y′) > s′m+1 −→D1 Bm+1(y′′) (∵ −→D1 is strict and using (7.12))

≥ s′′m+1 −→D1 Bm+1(y′′) (∵ s′m+1 ≤ s′′m+1 from (7.6))

= s′′m −→D1 Bm(y′′) (Using (7.11))

> s′′m −→D1 Bm(y′) (Using (7.12))

≥ s′m −→D1 Bm(y′) , (∵ s′m ≥ s′′m from (7.6))
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i.e., s′m+1 −→D1 Bm+1(y′) > s′m −→D1 Bm(y′) , a contradiction to (7.10). So we have

x′ ≤ x′′ =⇒ y′ ≤ y′′.

Subcase-2: Let x′ ∈ [xm, xm+1] and x′′ ∈ [xm+p, xm+p+1], p ≥ 1. By the Claim 1 above, we
have y′ ∈ [ym, ym+1] and y′′ ∈ [ym+p, ym+p+1], p ≥ 1 and hence y′ ≤ y′′.

Thus, the system function g is monotonic.

Case II- Bm = Bm+1:

Claim 3. If x′ ∈ [xm, xm+1], then y′ ∈ [ym, ym+1] for any m ∈ {1, 2, . . . , n− 1}.

From (7.4), we have

B′(y) = [Am(x′) −→D1 Bm(y)] ∧ [Am+1(x′) −→D1 Bm(y)]

= [s′m −→D1 Bm(y)] ∧ [s′m+1 −→D1 Bm(y)]

= [(s′m ∨ s′m+1) −→D1 Bm(y)].

Since Bm(ym) = 1,

B′(ym) = (s′m ∨ s′m+1) −→D1 Bm(ym) = (s′m ∨ s′m+1) −→D1 1 = 1 .

From the fact that −→D1 is strict, Bm is strictly increasing on [ym−1, ym] and strictly decreas-
ing on [ym, ym+1], we have (s′m ∨ s′m+1) −→D1 Bm is strictly increasing on [ym−1, ym] and
strictly decreasing on [ym, ym+1]. So B′ reaches 1 only at ym. Hence Ker(B′) = {ym}, conse-
quently,

y′ = g(x′) = MOM(B′) = ym.

Note that, trivially, y′ ∈ [ym, ym+1]. Hence the Claim 3. 2

Let x′, x′′ ∈ X be the two given inputs such that x′ ≤ x′′. By considering the following
two subcases, we show that the obtained outputs y′, y′′ ∈ Y also are similarly ordered, i.e.,
y′ ≤ y′′.

Subcase-1: Let x′, x′′ ∈ [xm, xm+1], for some m ∈ {1, 2, . . . , n − 1} . By the above claim we
obtain, y′ = y′′ = ym. Thus, trivially, we have x′ ≤ x′′ =⇒ y′ ≤ y′′.

Subcase-2: Let x′ ∈ [xm, xm+1] and x′′ ∈ [xm+p, xm+p+1], p ≥ 1. Since, Bm = Bm+1, we have
y′ = ym and y′′ ∈ [ym+p, ym+p+1]. So, y′ ≤ y′′.

Thus, the system function g is monotonic.

Remark 7.3.2. For better readability the proof of Theorem 7.3.1 has been presented only for triangular
fuzzy sets, whereas the proof is valid for any fuzzy sets which are normal, convex and strict on both sides
of the ceiling. It should be noted that, the result remains unaffected, when we consider trapezoidal fuzzy
sets instead of triangular fuzzy sets, since the only extra case that needs to be considered is when the input
x′ falls in the kernel of an antecedent fuzzy set Am. However, in this case, due to the Ruspini partition of
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the antecedent fuzzy sets PX , it can be easily shown that the output g(x′) will fall within the kernel of the
corresponding consequent fuzzy set Bm.

Theorem 7.3.3. Let us be given a fuzzy IF-THEN rule base RM (Ai, Bi) as in (7.1) which is monotone
and Ai ∈ PX , i = 1, 2, . . . , n, form a Ruspini partition on X and Bi ∈ PY , i = 1, 2, . . . , n, form
a Ruspini partition on Y , respectively. Further, let every element of PX and PY be normal, convex and
strictly monotone on both sides of the ceiling, i.e., PX ⊆ F∗(X) and PY ⊆ F∗(Y ). Then the system
function g of the FRI F→D1c =

(
PX ,PY , R̂→D1c ,MOM

)
is monotonic, where −→D1c∈ IstND1c

.

Proof. Once again, while the proof is valid for any fuzzy sets which are normal, convex and strict
on both sides of the ceiling, for better readability we prove this result only for triangular fuzzy sets.

For an input x′ ∈ X the fuzzy relational inference mechanism (FRI-R-Singleton) with R =

R̂→D1c is of the form,

B′(y) = R̂→D1c (x′, y), y ∈ Y. (7.13)

Let the convex fuzzy sets {Ai}ni=1, {Bi}ni=1 be such that Supp(Ai) = [xi−1, xi+1], Supp(Bi) =

[yi−1, yi+1], i = 2, 3, . . . , n − 1, Supp(A1) = [x1, x2], Supp(An) = [xn−1, xn], Supp(B1) = [y1, y2],
Supp(Bn) = [yn−1, yn]. Further, let Ai(xi) = 1 and Bi(yi) = 1 for i = 1, 2, . . . , n.

Let x′ ∈ X be any given input. Clearly, x′ ∈ [xm, xm+1] for some m ∈ {1, 2, . . . , n − 1}. Since
{Ai}ni=1 are normal and form a Ruspini partition, Aj(x′) = 0, for all j 6= m,m+ 1 . From (7.13),

B′(y) = [Am(x′) −→D1c Bm(y)] ∧ [Am+1(x′) −→D1c Bm+1(y)].

Once again, let Am(x′) = s′m and Am+1(x′) = s′m+1. Thus,

B′(y) =[s′m −→D1c Bm(y)] ∧ [s′m+1 −→D1c Bm+1(y)] = B′m(y) ∧B′m+1(y) .

Clearly, since Bm, Bm+1 are convex and normal, B′m, B′m+1 are also convex and normal (see Propo-
sition 6.3.4). Hence B′ = B′m ∩B′m+1 is also convex.

Let y′ = MOM(B′). Now, since the rule base is monotone, there can be two possibilities: (i)
Bm 6= Bm+1 and (ii) Bm = Bm+1.

Firstly we prove the result when Bm 6= Bm+1.

Case I - Bm 6= Bm+1:

Claim 4. If x′ ∈ [xm, xm+1], then y′ ∈ [ym, ym+1] for m ∈ {1, 2, . . . , n− 1} .

Here we prove the claim by considering three different subcases:

Subcase-1 (s′m > s′m+1 > 0): For a better understanding of the proof we refer to the Figure 7.10
where the implication used is IRC(x, y) = 1 − x + xy, the Reichenbach implication. Note that
IRC ∈ IstND1c

.

Recall that B′m(y) = s′m −→D1c Bm(y) and B′m+1(y) = s′m+1 −→D1c Bm+1(y). We
partition the space Y = [y1, yn] into the following five sub-domains:

Y = {y|y ≤ ym−1} ∪ [ym−1, ym] ∪ [ym, ym+1] ∪ [ym+1, ym+2] ∪ {y|y ≥ ym+2} , (7.14)
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Figure 7.10: The modified fuzzy sets using IRC(x, y) = 1− x+ xy, 0 < s′m+1 < s′m

and then discuss the behavior of B′m and B′m+1 on these five sub-domains.

Behavior of B′m and B′m+1 :

• Over {y|y ≤ ym−1}: For y ≤ ym−1, Bm(y) = Bm+1(y) = 0. Hence,

B′m(y) = s′m −→D1c Bm(y) = s′m −→D1c 0 = constant = c′m(say) and

B′m+1(y) = s′m+1 −→D1c Bm+1(y) = s′m+1 −→D1c 0 = constant = c′m+1(say).

Now using the strictness of −→D1c , we have

B′m(y) = c′m = s′m −→D1c 0 < s′m+1 −→D1c 0 = c′m+1 = B′m+1(y).

Thus B′m and B′m+1 never intersect in {y|y ≤ ym−1}.

• Over [ym−1, ym]: For any y ∈ [ym−1, ym], Bm+1(y) = 0 while on this interval Bm is
strictly increasing. Since −→D1c is strict, B′m = s′m −→D1c Bm is strictly increasing.
Hence, B′m+1(y) = s′m+1 −→D1c 0 = c′m+1, which is a constant value. Now, since
B′m is strictly increasing on this interval, and

B′m(ym−1) = c′m ,

B′m(ym) = s′m −→Dc
1
Bm(ym) = s′m −→D1c 1 = 1 ,

the range of B′m over [ym−1, ym] is [c′m, 1]. Once again,

c′m+1 = s′m+1 −→D1c 0

> s′m −→D1c 0

= s′m+1 −→D1c Bm(ym−1)

= B′m(ym−1) = c′m.

Now, c′m+1 > c′m implies that c′m+1 ∈ [c′m, 1] and hence, clearly, B′m and B′m+1 inter-
sect at only one point in [ym−1, ym]. Let it be y∗ ∈ [ym−1, ym].
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• Over [ym, ym+1]: On the interval [ym, ym+1], Bm is strictly decreasing while Bm+1

is strictly increasing. Since−→D1c is strict, B′m is strictly decreasing, B′m+1 is strictly
increasing and thus they intersect exactly at one point. Let it be y′ ∈ [ym, ym+1].

• Over [ym+1, ym+2]: For any y ∈ [ym+1, ym+2], Bm(y) = 0, while on this interval
Bm+1 is strictly decreasing. Hence, B′m(y) = s′m −→D1c 0 = c′m, which is a con-
stant value and by the strictness of −→D1c , B′m+1 = s′m+1 −→D1c Bm+1 is strictly
decreasing. Now, since

B′m+1(ym+1) = s′m+1 −→Dc
1
Bm+1(ym+1) = s′m+1 −→D1c 1 = 1 ,

B′m+1(ym+2) = s′m+1 −→D1c 0 = c′m+1 ,

and B′m+1 is strictly decreasing on this interval, the range of B′m+1 over the interval
[ym+1, ym+2] is [c′m+1, 1]. Again, since c′m+1 > c′m and c′m /∈ [c′m+1, 1] clearly, B′m and
B′m+1 do not intersect in [ym−1, ym].

• Over {y|y ≥ ym+2}: For y ≥ ym+2, Bm(y) = Bm+1(y) = 0. Hence,

B′m(y) = s′m −→D1c Bm(y) = s′m −→D1c 0 = constant = c′m and

B′m+1(y) = s′m+1 −→D1c Bm+1(y) = s′m+1 −→D1c 0 = constant = c′m+1.

Now using the strictness of −→D1c , we have

B′m(y) = c′m = s′m −→D1c 0 < s′m+1 −→D1c 0 = c′m+1 = B′m+1(y) ,

and hence B′m and B′m+1 never intersect on {y|y ≥ ym+2}.

The behavior of bothB′m andB′m+1 on the partition of Y as given in (7.14) is summarized
in the following Table 7.2, where by↗ and↙, we mean strictly increasing and strictly
decreasing, respectively.

y ≤ ym−1 [ym−1, ym] [ym, ym+1] [ym+1, ym+2] y ≥ ym+2

B′m Constant (c′m) ↗ ↙ Constant (c′m) Constant (c′m)
B′m+1 Constant (c′m+1) Constant (c′m+1) ↗ ↙ Constant (c′m+1)

Table 7.2: Behavior of B′m and B′m+1 on the output space Y , when s′m > s′m+1

Hence the only points of intersection between B′m and B′m+1 are y∗ ∈ [ym−1, ym] and
y′ ∈ [ym, ym+1]. From Claim 2 of Theorem 7.3.1, we have

y0 = g(x′) = MOM(B′)

= MOM(B′m ∩B′m+1)

= MOM{y ∈ Y |B′m(y) = B′m+1(y)} = max(y∗, y′) .

Since B′m+1 is constant on [y∗, ym] and increasing on [ym, ym+1], B′m+1(y′) > B′m+1(y∗)

and hence, B′(y′) > B′(y∗) and

y0 = y′ ∈ [ym, ym+1].
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Hence the Claim 4. 2

Subcase-2 (s′m+1 > s′m > 0): Along similar lines as argued in Subcase-1, Claim 4 can be proven
in this case too.

For a better understanding we refer to Figure 7.11 where the implication used is the same Re-
ichenbach implication.

Figure 7.11: The modified fuzzy sets using IRC(x, y) = 1− x+ xy, s′m+1 > s′m > 0

The behavior of both B′m and B′m+1 on the partition of Y as given in (7.14) when s′m+1 >

s′m > 0 is summarized in the following Table 7.3, where, once again, by ↗ and ↙, we
mean strictly increasing and strictly decreasing, respectively.

y ≤ ym−1 [ym−1, ym] [ym, ym+1] [ym+1, ym+2] y ≥ ym+2

B′m Constant (c′m) ↗ ↙ Constant (c′m) Constant (c′m)
B′m+1 Constant (c′m+1) Constant (c′m+1) ↗ ↙ Constant (c′m+1)

Table 7.3: Behavior of B′m and B′m+1 on the output space Y , when s′m < s′m+1

Subcase-3 (s′m = s′m+1 = 1
2 ): Similarly, as in Subcase-1, we partition the space Y as given in

(7.14) and discuss the behavior of B′m and B′m+1 over these five sub-domains.

For a better understanding we refer to the Figure 7.11 where the implication used is once again
the same Reichenbach implication.

Behavior of B′m and B′m+1 :

• Over {y|y ≤ ym−1}: For y ≤ ym−1, Bm(y) = Bm+1(y) = 0. Hence,

B′m(y) = s′m −→D1c Bm(y) = s′m −→D1c 0 = constant = c′m(say) and

B′m+1(y) = s′m+1 −→D1c Bm+1(y) = s′m+1 −→D1c 0 = constant = c′m+1(say).

Now since, s′m = s′m+1 = 1
2 , we have,

c′m = B′m(y) = B′m+1(y) = c′m+1 ,
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Figure 7.12: The modified fuzzy sets using IRC(x, y) = 1− x+ xy, s′m+1 = s′m = 1
2

for y ≤ ym−1 and hence B′m and B′m+1 overlap and are identically equal over the
sub-domain {y|y ≤ ym−1}.

• Over [ym−1, ym]: On the interval [ym−1, ym],Bm is strictly increasing whileBm+1 ≡
0. Since −→D1c is strict, B′m = s′m −→D1c Bm = 1

2 −→D1c Bm is strictly increasing,
while B′m+1 = s′m+1 −→D1c 0 = 1

2 −→D1c 0 = c′m+1 , which is a constant value.
Since B′m is strictly increasing on this interval,

B′m(ym−1) = c′m, and

B′m(ym) = s′m −→Dc
1
Bm(ym) = s′m −→D1c 1 =

1

2
−→D1c 1 = 1 ,

the range of B′m on [ym−1, ym] is [c′m, 1]. Once again,

c′m+1 = s′m+1 −→D1c 0 =
1

2
−→D1c 0

= s′m −→D1c 0 = s′m −→D1c Bm(ym−1)

= B′m(ym−1) = c′m.

Thus, B′m and B′m+1 intersect at only one point in [ym−1, ym] and that point is ym−1.

• Over [ym, ym+1]: Once again, on the interval [ym, ym+1], Bm is strictly decreasing
while Bm+1 is strictly increasing and by the strictness of −→D1c we have that B′m is
strictly decreasing, B′m+1 is strictly increasing and that they intersect exactly at one
point, say, y′ ∈ [ym, ym+1].

• Over [ym+1, ym+2]: On the interval [ym+1, ym+2], Bm ≡ 0 while Bm+1 is strictly
decreasing. Hence, B′m = s′m −→D1c 0 = 1

2 −→D1c 0 = c′m, which is a constant
value, while by the strictness of −→D1c we see that B′m+1 = s′m+1 −→D1c Bm+1 is
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strictly decreasing. Now, since

B′m+1(ym+1) = s′m+1 −→Dc
1
Bm(ym) =

1

2
−→D1c 1 = 1 ,

B′m+1(ym+2) = s′m+1 −→D1c 0 =
1

2
−→D1c 0 = c′m+1 ,

and B′m+1 is strictly decreasing in this interval, the range of B′m+1 over the interval
[ym+1, ym+2] is [c′m+1, 1]. Since c′m+1 = c′m, B′m and B′m+1 intersect exactly at one
point in [ym+1, ym+2] and that point is ym+1.

• Over {y|y ≥ ym+2}: For y ≥ ym+2, Bm(y) = Bm+1(y) = 0. Hence,

B′m(y) = s′m −→D1c Bm(y) =
1

2
−→D1c 0 = constant = c′m and

B′m+1(y) = s′m+1 −→D1c Bm+1(y) =
1

2
−→D1c 0 = constant = c′m+1.

Now since, s′m = s′m+1 = 1
2 , we have, B′m(y) = B′m+1(y) for y ≥ ym+1 and thus B′m

and B′m+1 overlap and are identically equal over {y|y ≥ ym+2}.

The behavior of both B′m and B′m+1 on the partition of Y as given in (7.14) when s′m =

s′m+1 = 1
2 is summarized in the following Table 7.4.

y ≤ ym−1 [ym−1, ym] [ym, ym+1] [ym+1, ym+2] y ≥ ym+2

B′m Constant (c′m) ↗ ↙ Constant (c′m) Constant (c′m)
B′m+1 Constant (c′m+1) Constant (c′m+1) ↗ ↙ Constant (c′m+1)

Table 7.4: Behavior of B′m and B′m+1 on the output space Y , when s′m = s′m+1 = 1
2

Thus the set of points over which B′m and B′m+1 intersect can be summarised as follows:

{y ∈ Y |B′m+1(y) = B′m(y)} = {y|y ≤ ym−1} ∪ {y′} ∪ {y|y ≥ ym+2} .

Firstly, note that B′m+1(y) = B′m(y) = c′m on the sub-domains {y|y ≤ ym−1} and {y|y ≥
ym+2}. Further, since y′ ∈ [ym, ym+1]

B′m(y′) = s′m −→D1c Bm(y′) > s′m −→D1c Bm(ym+1) =
1

2
−→D1c 0 = c′m ,

while B′m+1(y′) = s′m+1 −→D1c Bm+1(y′) > s′m+1 −→D1c Bm+1(ym) =
1

2
−→D1c 0 = c′m .

Thus, from Claim 2 of Theorem 7.3.1, we have

g(x′) = MOM(B′)

= MOM(B′m ∩B′m+1)

= MOM{y ∈ Y |B′m(y) = B′m+1(y)} = y′ .

Hence x′ ∈ [xm, xm+1] =⇒ y′ ∈ [ym, ym+1] for m ∈ {1, 2, . . . , n− 1} .
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Let x′, x′′ ∈ X be the two given inputs such that x′ ≤ x′′. We consider the following two cases
and show that the obtained outputs y′, y′′ ∈ Y also are similarly ordered, i.e., y′ ≤ y′′.

Subcase-1: Let x′, x′′ ∈ [xm, xm+1], for somem ∈ {1, 2, . . . , n−1} . The argument to show that
y′ ≤ y′′ proceeds along similar lines of the corresponding case as given in Theorem 7.3.1
above.

Subcase-2: Let x′ ∈ [xm, xm+1] and x′′ ∈ [xm+p, xm+p+1], p ≥ 1. By the Claim 4 above, we
have y′ ∈ [ym, ym+1] and y′′ ∈ [ym+p, ym+p+1], p ≥ 1 and hence y′ ≤ y′′.

Case II - Bm = Bm+1:

Once again, the proof when Bm = Bm+1 follows along similar lines of the corresponding case in
Theorem 7.3.1 above.

7.4 Monotonicity of BKS-Y Inference Mechanisms

In Chapters 4, 5 and 6 we have seen that BKS with Yager’s families of fuzzy implications F→Y
possess the following desirable properties, namely, interpolativity, continuity, robustness and uni-
versal approximation capability. Here in this section we show that, BKS with Yager’s families of
fuzzy implications are also monotonic, i.e., the corresponding system functions are monotonic. The
results are, in fact, some special cases of the above Theorem 7.3.1 and Theorem 7.3.3

Corollary 7.4.1. Let us be given a fuzzy IF-THEN rule base RM (Ai, Bi) as in (7.1) which is monotone
and Ai ∈ PX , i = 1, 2, . . . , n, form a Ruspini partition on X and Bi ∈ PY , i = 1, 2, . . . , n, form
a Ruspini partition on Y , respectively. Further, let every element of PX and PY be normal, convex and
strictly monotone on both sides of the ceiling, i.e., PX ⊆ F∗(X) and PY ⊆ F∗(Y ). Then the system
function g of the FRI F→f

=
(
PX ,PY , R̂f ,MOM

)
is monotonic, where R̂f is as defined in (Imp-R̂f ) and

−→f∈ IF = IF,∞ ∪ IF,1.

Proof. Every −→f∈ IF is strict. Thus −→f∈ IF ( Ist and the result follows from Theorem 7.3.1 and
Theorem 7.3.3.

Corollary 7.4.2. Let us be given a fuzzy IF-THEN rule base RM (Ai, Bi) as in (7.1) which is monotone
and Ai ∈ PX , i = 1, 2, . . . , n, form a Ruspini partition on X and Bi ∈ PY , i = 1, 2, . . . , n, form
a Ruspini partition on Y , respectively. Further, let every element of PX and PY be normal, convex and
strictly monotone on both sides of the ceiling, i.e., PX ⊆ F∗(X) and PY ⊆ F∗(Y ). Then the system
function g of the FRI F→g

=
(
PX ,PY , R̂g,MOM

)
is monotonic, where R̂g is as defined in (Imp-R̂g) and

−→g∈ IG.

Proof. Every −→g∈ IG is strict and its natural negation is the Gödel negation. Thus −→g∈ IG (
IstND1

( Ist and the result follows from Theorem 7.3.1.
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7.5 Illustrative Examples

In this section we illustrate the results of the previous section through some examples.

Let us consider the rule base as given in Example 7.0.5 and the FRIs:

(i) F→D1
=
(
{Ai}3i=1, {Bi}3i=1, R̂→D1

,MOM
)

and

(ii) F→D1c =
(
{Ai}3i=1, {Bi}3i=1, R̂→D1c ,MOM

)
.

In the examples, we have considered five defuzzification methods and investigated the be-
haviour of the system function for monotonicity. The defuzzification methods are: (i) MOM (Mean
of Maxima), (ii) LOM (Largest of Maxima), (iii) SOM (Smallest of Maxima), (iv) COG (Centroid)
and (v) BIS (Bisector). For more details on these defuzzification methods and their formulae, see
Section 1.1.5

7.5.1 Illustrative examples for monotonicity of F→D1c
=
(
{Ai}, {Bi}, R̂→D1c

, d
)

Example 7.5.1. Let us consider the fuzzy system F→D1c with the the rule base (7.2), and let the implication
operator employed in the relation R̂→D1c be the Reichenbach implication, which is strict but does not satisfy
(OP) and also NIRC

6= ND1, i.e., IRC ∈ IstNcD1
(see Table 7.1).

The corresponding system functions with different types of defuzzification are shown in Figures 7.13-
7.17. From Figure 7.13, we can see that the system function g is monotonic as claimed in Theorem 7.3.3.

Figure 7.13: System function of the FRI F→D1c given in Example 7.5.1 with MOM defuzzifier and
−→D1c= IRC, the Reichenbach implication.
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Figure 7.14: System function of the FRI F→D1c given in Example 7.5.1 with LOM defuzzifier and
−→D1c= IRC, the Reichenbach implication.

Figure 7.15: System function of the FRI F→D1c given in Example 7.5.1 with SOM defuzzifier and
−→D1c= IRC, the Reichenbach implication.

Figure 7.16: System function of the FRI F→D1c given in Example 7.5.1 with COG defuzzifier and
−→D1c= IRC, the Reichenbach implication.
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Figure 7.17: System function of the FRI F→D1c given in Example 7.5.1 with BIS defuzzifier and
−→D1c= IRC, the Reichenbach implication.

7.5.2 Illustrative examples for monotonicity of F→D1
=
(
{Ai}, {Bi}, R̂→D1

, d
)

Example 7.5.2. Let us consider the fuzzy system F→D1
with the the rule base (7.2), and let the implication

operator employed in the relation R̂→D1
be the Yager’s implication, which is strict, NIYG

= ND1 but does
not satisfy (OP), i.e., IYG ∈ IstND1

(see Table 7.1).
The corresponding system functions with different types of defuzzification are shown in Figures. 7.18-

7.22. Once again, Figure 7.18, shows that the system function g is monotonic as claimed in Theorem 7.3.1.

Figure 7.18: System function of the FRI F→D1
given in Example 7.5.2 with MOM defuzzifier and

−→D1= IYG, the Yager’s implication.

Remark 7.5.3. Note that we have proven our results, viz., Theorems 7.3.1 and 7.3.3 for the FRIs F→D1

and F→D1c with MOM defuzzification. The examples above illustrate these results, albeit by considering
some specific fuzzy implications from each of the classes of IstND1

and IstNcD1
.
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Figure 7.19: System function of the FRI F→D1
given in Example 7.5.2 with LOM defuzzifier and

−→D1= IYG, the Yager’s implication.

Figure 7.20: System function of the FRI F→D1
given in Example 7.5.2 with SOM defuzzifier and

−→D1= IYG, the Yager’s implication.

Figure 7.21: System function of the FRI F→D1
given in Example 7.5.2 with COG defuzzifier and

−→D1= IYG, the Yager’s implication.

102



Figure 7.22: System function of the FRI F→D1
given in Example 7.5.2 with BIS defuzzifier and

−→D1= IYG, the Yager,s implication.

Note that, among the defuzzification methods considered, the MOM, SOM and LOM methods can be
seen as Ceiling-based methods, since the defuzzified value depends only on the ceiling of the fuzzy set under
consideration. In the case of convex fuzzy sets, these three methods are such that the defuzzified output falls
within the ceiling of the fuzzy set, while the same is not true for COG and BIS methods always.

However, it is interesting to note the following. On the one hand, in Example 7.5.1, for the FRI F→D1c

with →D1c= IRC, the corresponding system function is monotonic with MOM defuzzification as well as
with other ceiling-based defuzzification methods (e.g., SOM and LOM), whereas it is not monotonic while
considering the other two defuzzification methods, viz., COG and BIS.

On the other hand, in Example 7.5.2, for the FRI F→D1
with →D1= IYG, the corresponding system

function is monotonic with all the defuzzification methods considered here.
This seems to point to the fact that Theorems 7.3.1 and 7.3.3 may be valid even when d is taken to be any

ceiling based defuzzification method instead of the MOM defuzzification method.
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Chapter 8

Concluding Remarks and some Open
Problems

The future belongs to those who believe in the
beauty of their dreams.

– Eleanor Roosevelt (1884 – 1962)

8.1 Summary of the work contained in this thesis

Fuzzy relational inference mechanisms are one of the earliest inference mechanisms to be studied.
However, all of the known works have concentrated on FRIs that employ operations that come from
a residuated lattice structure. In this work, we have proposed two modified versions of the well
known Bandler-Kohout Subproduct (BKS) inference mechanism, by employing the Yager’s families
of fuzzy implications instead of the usual residual implications. Calling them as BKS-f and BKS-g
inference mechanisms, we have shown that many of the desirable properties like interpolativity,
continuity, robustness, approximation capability and monotonicity which are available for the BKS
inference mechanisms with residuated implications are also available for the proposed modified
BKS inference mechanisms when we employ the Yager’s families of fuzzy implications, which do
not come from a residuated structure.

We have obtained necessary and sufficient conditions for interpolativity of both the BKS-f and
BKS-g inference mechanisms. Note that these conditions are similar, but not identical, to those of
the inference mechanisms which employ operations from a residuated lattice structure.

Following this, we have shown that both the BKS-f and BKS-g inference mechanisms, in fact,
a much larger class of FRIs, are capable of approximating a continuous function over a closed
interval. While proving this, we have given a constructive proof and also have shown that the
approximator function is also continuous. It should be mentioned that the results are valid for a
larger class of fuzzy implications, which includes the family of residuated implications and Yager’s
families of fuzzy implications.

Finally, we have shown that both the BKS-f and BKS-g inference mechanisms are also mono-
tonic. The results corresponding to monotonicity are once again valid for a larger class of fuzzy
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implications, which includes the Yager’s families of fuzzy implications.
Thus, we believe that these results are very much applicable in most of the practical and desir-

able contexts and show that a much larger class of fuzzy implications other than what is typically
considered in the literature can be employed meaningfully in FRIs based on implicative models.

8.2 Problems for further exploration

While discussing the interpolativity, continuity and robustness of the proposed modified BKS infer-
ence mechanism, we have considered only one family of fuzzy implications which is not a residual
implication. It can be seen that there are many other families of fuzzy implications other than the
Yager’s families of fuzzy implications which do not come from a residuated lattice structure. Thus
it remains to study these inference mechanisms as well.

Problem 8.2.1. What are the conditions under which a modified BKS inference mechanism with an im-
plicative rule base is admissible, when the fuzzy implications neither come from a residuted lattice structure
nor from Yager’s families?

While discussing approximation capability of BKS (rather FRIs with reducible composition) we
have considered fuzzy implications, I ∈ IOP ∪ I

+

ND1
. We have seen that when an I /∈ IOP ∪ I

+

ND1
is

employed, the resulting output can be empty, which is not at all desirable. Of course, note also that
there are some assumptions on the other components of the inference mechanisms. Changing these
assumptions suitably it may still be possible to get non-empty output when a fuzzy implication
I /∈ IOP ∪ I

+

ND1
is employed.

Problem 8.2.2. Do BKS inference mechanisms with fuzzy implications I /∈ IOP ∪ I
+

ND1
give reasonable

outputs? Is the concept of ’Weak Coherence’ proposed in this thesis sufficient, or should it be made even more
lenient? Further, are such modified BKS inference mechanisms universal approximators?

Based on our intuition from some simulation results, we believe that FRIs in which we employ
fuzzy implications which are positive but NI 6= ND1 are capable of universal approximation.

In our proofs exhibiting the monotonicity of an FRI with implicative rules, we have considered
a subclass Ist ( I+. In the results related to monotonicity of an FRI, we have considered only the
MOM defuzzification technique. Noting that the MOM defuzzification takes the value from the
core of the output fuzzy set, we may formulate the following question:

Problem 8.2.3. Are BKS inference mechanisms with fuzzy implications I ∈ I \ Ist monotonic? Further,
does the monotonicity remain if one were to consider more general defuzzification techniques which take value
from the core of the output fuzzy set?

Based on some numerical simulations, we once again believe that keeping the other parameters
fixed, such FRIs are capable of preserving monotonicity.

As a final observation, we have the following to state: In all the existing FRIs, the underlying
operations are either t-norms T or a fuzzy implication I . As was stated in the introduction, these
are but a generalisation of a conjunction and an implication to multi-valued logic, where the truth
values lie in [0, 1] instead of {0, 1}. Our work in this thesis has shown that the often used or required
adjoint relation or the residuation property between the pair (T, I) can be dispensed with, without
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majorly affecting the properties of the FRIs. One then wonders, if we could also consider a more
general (Conjunctor, Implicator) pair in FRIs. Alternatively, the question that naturally arises is the
following:

Problem 8.2.4. What are the conditions and properties required of a (Conjunctor, Implicator) pair (C, I :

[0, 1]2 → [0, 1]) to make it admissible in an FRI without sacrificing the desirable properties of an FRI?

Some preliminary results along these lines were recently published in the following work:

• Sayantan Mandal and Balasubramaniam Jayaram, ” Suitability of FRIs based on generalised
Operators”, 12th International Conference on Fuzzy Set Theory and Applications, FSTA 2014,
Ján Liptovský, Slovakia, January 26 - 31, 2014.
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