Mineralization of Endosulfan from Water by Nonthermal Plasma: A Green Approach for Treatment of Pesticide Contaminated Water

P. Manoj Kumar Reddy, Shaik Mahammadunnisa and Ch. Subrahmanyam*

Energy and Environmental research laboratory, Department of Chemistry, Indian Institute of Technology (IIT)-Hyderabad, 502205, Andhra Pradesh, India.

Supporting Information

1. Characterization of the ceria catalyst

1.1. Nitrogen adsorption-desorption isotherm

The N2 adsorption – desorption isotherms shown in Fig. S1. The BET surface area of the ceria was deduced from adsorption – desorption isotherms it is around 89 m2/g and pore size 19.2 Å and pore volume 0.073 cc/g.

![Fig. S1: Nitrogen adsorption and desorption isotherm of powder CeO₂ prepared by combustion synthesis.](image)

1.2. X-ray diffraction

The formation of ceria fluorite structure was confirmed by XRD pattern as shown in Fig. S₂ (JCPDF#810792). The crystal size calculated from the Debye-Scherrer method and it was found that the size of the synthesized CeO₂ is around 15 nm.
1.3. Raman spectroscopy

Raman spectroscopy is one of the powerful tools for characterization of ceria. The strong peak at 464 cm\(^{-1}\) was assigned to F2g Raman active interior phonon mode of CeO\(_2\) fluorite structure, whereas, the second peak around 600 cm\(^{-1}\) was due to the presence defect induced oxygen vacancies (D-band) on the surface. The presence of Ce\(^{3+}\)/Ce\(^{4+}\) (oxygen vacancies) is believed to be the cause of the high reactivity of CeO\(_2\) for ozone decomposition catalyst.