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We describe the details of the numerical approach and the validation of our numerical algorithm in this supplemen-
tary material.

Numerical approach

A finite-volume approach in the diffuse-interface framework is incorporated to solve the system of equations (1),
(5) and (6) of the main text, which are discretized on a staggered grid. The scalar variables (the pressure and the
volume fraction of the outer fluid) and the velocity components are defined at the cell-centres and at the cell faces,
respectively. A weighted-essentially-non-oscillatory (WENO) scheme is used for discretization of the advective term
in Eq. (6), and a central difference scheme is used to discretize the diffusive term. In order to achieve second-order
accuracy in the temporal discretization, the Adams-Bashforth and the Crank-Nicholson methods are used for the
advective and second-order dissipation terms in Eq. (5), respectively. We assume the flow to be axisymmetric about
the axis x = 0, and the Neumann boundary conditions are used at the rest of the boundaries which are kept sufficiently
far away from the bubble/drop as mentioned in the main manuscript.

Some of the results in the present paper are for bubbles with density and viscosity about 3 orders of magnitude less
than that of the surrounding fluid. This regime is tough to simulate and generally generates spurious currents due
to wrong calculation of surface tension at the interface. Thus the open-source finite-volume fluid flow solver, Gerris
created by Popinet [13] was used for the validation of our code. Gerris minimizes problem of spurious currents by using
the balanced-force continuum surface force formulation for the calculation of surface tension. In Gerris, a volume of
fluid (VOF) formulation has been used to track the interface, wherein the piecewise linear interface reconstruction is
used for the volume fraction c to rebuild the interface, which remains thin in the prescribed limit for all the times.
This code also allows for dynamic adaptive grid refinement at the interface separating the fluids. The details of the
implementation can be found in the papers by Popinet [13, 14].

As mentioned in the main manuscript, apart from Gerris, recent developments in the field of lattice Boltzmann
simulations [8, 9] allow one to simulate multiphase flows with high density ratios (of 500 or more) by using a clever
doubly-attractive pseudo-potential. A high surface tension can be obtained here by defining this force from the
superposition of two simultaneously attractive and repulsive potentials. This approach can hence accommodate high
density ratios. Although, this method has not been used in the present study, we would like to mention that this
approach may give computational advantages over classical flow solvers.
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FIG. 1: Effect of domain size on the bubble shape at (a) t = 4, and (b) t = 7 for Ga = 3.09442, Bo = 29, r = 7.4734 × 10−4

and m = 8.1536× 10−6. The solid and dot-dashed lines correspond to computational domains 8× 24 and 16× 48, respectively.
The results are generated using square grid of ∆x = ∆z = 0.015.

We checked our simulations for different domain sizes and found that increasing domain size beyond 16 × 48 has
no significant effect on the flow for Re > 2 (see for example Figure 1, which has been generated for Ga = 3.09442,
Bo = 29, r = 7.4734 × 10−4 and m = 8.1536 × 10−6 at two time instants). The Reynolds number defined using the
terminal velocity in this case is Re ≈ 1.8. It is to be noted here that larger computational domains are required to
study the flow dynamics for smaller Re, and care has been taken to provide results which are independent of domain
size. For very low Re (figure 2 in the main paper), a computational domain of size 40× 80 was used with Gerris [13]
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with adaptive grid refinement, which reduced the computation time considerably (by about 4 times). The shape of
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FIG. 2: Effect of grid refinement on the shape of the bubble at (a) t = 4, and (b) t = 7. The solid and dot-dashed lines
correspond the results obtained using ∆x = ∆z = 0.015 and 0.0133, respectively. The rest of the parameter values are the
same as those used in Figure 1.

the bubble at t = 4 and 7 for two different grids (∆x = ∆z = 0.02 and 0.0133) in a computational domain of size
16× 48 are shown in Figure 2. It is found that a square grid with ∆x = ∆z = 0.015 is enough to get results to within
0.1% accuracy.

Validation

Comparison with numerical simulations of Sussman & Smereka [5]
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FIG. 3: Comparison of the shape of the bubble obtained from our simulation (shown by red line) with Sussman & Smereka
[5] (dashed line) at various times: (a) t = 0, (b) t = 0.8, (c) t = 1.6 and (d) t = 2.4. The parameter values are Ga = 100,
Bo = 200, r = 0.001 and m = 0.01.

In order to validate our code, in Figure 3 we compare our results obtained for Ga = 100, Bo = 200, r = 0.001 and
m = 0.01 with those of Sussman & Smereka [5], who studied the fluid dynamics of rising bubble with topology change
in the framework of a level-set approach. The dashed lines on the left hand side of each panel are the results from
Sussman & Smereka [5], whereas the present results are plotted by solid red lines on the right hand side of the panels.
It can be seen that the topology changes observed in our simulation agree excellently with the results of Sussman &
Smereka [5].

Comparison with the experimental result of Bhaga & Weber [2]

In Figure 4, we compare the shape of the bubble obtained from our simulation (shown by the red line) with the
corresponding results given in the experiment of Bhaga & Weber [2] (shown by the gray scale picture). The parameter
values used to generate this figure are Ga = 3.09442, Bo = 29, r = 7.4734× 10−4 and m = 8.1536× 10−6, which are
the values at which the experimental shape is presented in [2], after suitable transformation, as follows:

Ga =

(
Bo3BW

64MoBW

) 1
4

, and Bo =
BoBW

4
, (1)
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where MoBW = gµ4
o/ρoσ

3, BoBW = 4gR2ρo/σ, where the subscript BW refers to Bhaga & Weber. It can be seen that
the shape of the bubble obtained from our numerical simulation is in qualitative agreement with the experimentally
obtained drop of [2]. Note that a dimple at the bottom of the bubble (if one exists) in the experiment will not be
visible in this photograph, and would appear just a horizontal edge at the bottom.

FIG. 4: Comparison of the shape of the bubble obtained from the present diffuse interface simulation (shown by red line) with
that of Bhaga and Weber [2]. The parameter values are Ga = 3.09442, Bo = 29, r = 7.4734× 10−4 and m = 8.1536× 10−6.

Comparison with Han & Tryggvason [6]

The simulation domain was taken to be the same as that of Han & Tryggvason [6], i.e. 10 × 30 and the grid size
was taken to be ∆x = ∆z = 0.015 for the parameter values stated in figure 5. The dimensionless time at which the
drop breaks up (tbr ≈ 25.0) is in agreement with the that of [6]. The oscillations in velocity are well replicated too.
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FIG. 5: Variation of velocity of center of gravity of the drop with time for Ga = 219.09, Bo = 240, r = 1.15 and m = 1.1506.
The dashed line is the result due to Han & Tryggvason [6] and the solid line is the present result. The figure is plotted till
breakup.

Comparison with analytical results

The next two comparisons are not so much for validation, since the analytical results are for idealised limits, but a
demonstration that the analytical results are valid in a range of parameters lying near the idealized limits.
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Cases Joseph [1] Present work
a 0.864 0.883
b 0.882 0.906

TABLE I: Comparison of the terminal velocities by Joseph [1] and the present work for the parameter values: (a) Ga = 50,
and (b) Ga = 100. The rest of the parameter values are Bo = 10, r = 0.001 and m = 0.01.

In the Hadamard [3] limit

By balancing the drag force with the weight of the bubble/drop, and neglecting the inertial and surface tension
forces, Rybczinsky [4] and Hadamard [3] analytically derived an expression for terminal velocity (famously known as
Hadamard-Rybczinsky equation), which is given by

Vt =
2

3

R2g(r − 1)ρ1
µ1

(
1 +m

2 + 3m

)
. (2)

Thus the dimensionless terminal velocity can be written as:

Ṽt =
2Ga(1− r)

3

(
1 +m

2 + 3m

)
. (3)

In an example simulation with the parameters Ga = 0.1, Bo = 0.1, r = 0.001 and m = 0.01, we found that the terminal
velocity is Vt = 0.0328 for a domain of size 16 × 48 and larger. The corresponding dimensionless velocity obtained
using equation (3) is 0.0333. In Figure 6 (a) and (b), we plot streamlines obtained from the Hadamard solution
and our numerical simulations for Ga = 0.1. The qualitative similarity is apparent. The small discrepancies may be
attributed to the fact that at Re → 0 an infinitely large computational domain is required for accurate solutions,
and also to small deviations from a spherical shape at our finite surface tension values, whereas the analytical result
assumes a perfectly spherical bubble.

(a) (b)

FIG. 6: Streamlines obtained from (a) the analytical result for Hadamard flow (Re → 0) in a spherical bubble, and (b) the
present simulation.

Comparison with potential flow solution

In Table I we compare the terminal velocities obtained from our numerical simulations for Ga = 50 and 100 with
those obtained from the analytical solution of [1], who studied a rising spherical cap bubble in the potential flow regime.
The other parameter values are Bo = 10, r = 0.001 and m = 0.01. In this parameter range, the computationally
obtained bubble resembles a spherical cap. It can be seen that the potential flow assumption is able to predict the
terminal velocity qualitatively.

The residual vorticity

A detailed discussion of what is the best way to estimate rotation within a drop is available in [11]. In axisymmetric
flow the velocity-gradient tensor may be spilt into a symmetric part and an anti-symmetric part. The anti-symmetric
part is the vorticity, of magnitude ω, oriented azimuthally. The eigenvalues of the symmetric part are given by ±s/2,
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FIG. 7: (a) Evolution of bubble shape with time for r = 0.9, m = 0.5, Re = 50, Bo = 50, (b) evolution of drop shape with
time for r = 1.125, m = 0.625, Re = 50, Bo = 50. The initial shape of both drop and bubble was kept spherical and the initial
velocity given to the fluid blobs is U0 = 1 for both.

FIG. 8: (a) Evolution of bubble shape with time for r = 0.52, m = 0.05, Re = 50, Bo = 50, (b) evolution of drop shape with
time for r = 13, m = 1.25, Re = 50, Bo = 50. The drop breaks up in the bag-breakup mode. The initial shape of both drop
and bubble was kept spherical and the same initial velocity U0 given to both fluid blobs.
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where s = (4u2 + (u+ w)2)1/2. The vorticity in turn must can be decomposed into shear part and a pure rotational
part. The latter is termed the residual vorticity, defined [10] as

ωres = 0 for |s| > |ω|
= sgn(ω)(|ω| − |s|) for |s| ≤ |ω| (4)

where sgn(ω) is the signum function. The more standard Okubo-Weiss parameter

W = s2n + s2s − ω2, (5)

wherein sn(≡ ∂xu − ∂zw) and ss(≡ ∂xw − ∂zu) are the normal and the shear components of the strain rate tensor
respectively, is another measure of rotation in the flow. Both measures give similar images of the vortex cores in our
simulations, but since the residual vorticity takes care to remove the shear part of the vorticity, we present results
using this quantity.

FIG. 9: Variation of dimple distance versus time for Bo = 8, r = 7.4734× 10−4, m = 8.5136× 10−6.

FIG. 10: Variation of dimple distance Dd versus time for Bo = 29, r = 7.4734× 10−4, m = 8.5136× 10−6.

Dynamics in zero-gravity

To study dynamics in zero gravity, we replace the Gallilei number by a Reynolds number Re ≡ U0R/ν based on
the initial drop velocity U0. Figure 7 shows a bubble and drop whose densities are close to that of the surrounding
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fluid, and these evolve in a manner similar to each other. For a density ratio far from unity however, figure 8 gives an
example where the drop breaks up in a bag-breakup mode while the bubble oscillates for some time but ultimately
attains an equilibrium spherical shape.

Effects of viscosity

In this section we study the effects of viscosity on the tendency to break-up. That decreasing external fluid viscosity
(increasing Gallilei number) will increase the tendency to break-up is demonstrated in figures 9 and 10 for two Bond
numbers. Also oscillations become more prominent at higher Ga. If the viscosity ratio is low enough, the outer fluid
is able to shear-break the drop. It is already known (see [12]) that a higher Weber number is required to break a drop
when the surrounding fluid is more viscous. This indicates that the more the viscous drag, i.e. the less the inertia of
the blob, the less willing it is to break. If the surrounding fluid is more viscous, we would need to increase gravity or
reduce surface tension to break a blob. Thus, in effect, a higher Bond number is needed to break a blob. Figure 10
shows that when all the physical properties are kept the same while the kinematic viscosities are reduced in the same
proportions for inner and outer fluids, the bubble tends to break up.
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