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Abstract
We report on the α -Fe2O3-based artificial synaptic resistive random access memory device,
which is a promising candidate for artificial neural networks (ANN) to recognize the images. The
device consists of a structure Ag/α-Fe2O3/FTO and exhibits non-volatility with analog resistive
switching characteristics. We successfully demonstrated synaptic learning rules such as long-
term potentiation, long-term depression, and spike time-dependent plasticity. In addition, we also
presented off-chip training to obtain good accuracy by backpropagation algorithm considering
the synaptic weights obtained from α-Fe2O3 based artificial synaptic device. The proposed
α-Fe2O3-based device was tested with the FMNIST and MNIST datasets and obtained a high
pattern recognition accuracy of 88.06% and 97.6% test accuracy respectively. Such a high
pattern recognition accuracy is attributed to the combination of the synaptic device performance
as well as the novel weight mapping strategy used in the present work. Therefore, the ideal
device characteristics and high ANN performance showed that the fabricated device can be
useful for practical ANN implementation.

Supplementary material for this article is available online

Keywords: memristor device, RRAM, potentiation, depression, artificial neural networks, spike
timedependent plasticity

(Some figures may appear in colour only in the online journal)

Introduction

Neuromorphic computing has emerged to give solutions to
the ‘Big Data’ pertinent to unstructured data formats such as
characters, images, and sounds those experiencing challenges
by current computing technology based on Von-Neumann
architecture [1, 2]. It is brain-inspired computing and consists
of advantages such as complex operations, massive paralle-
lism, in-memory computing, and structural plasticity [3]. The
brain consists of ∼1011 neurons and ∼1015 synapses which

receive signals in the form of action potentials from other
neurons and the transfer of signals is enabled by synapses
[4, 5]. A synapse is a two-terminal transmission line between
pre-synaptic input (axon firing spikes) and post-synaptic
output (dendrite receiving the transmitters) [6]. Therefore,
novel devices have been developed to mimic the behaviour of
biological elements of the neural network, such as spiking
neurons and learning process [7, 8].

Among various synaptic memory devices, resistive ran-
dom access memory (RRAM)-based synapses consist simple
architecture with CMOS compatibility [9]. Electronically one
can control conductance of RRAM synapses similar to neural
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spikes, which causes potentiation and depression of a biolo-
gical synapse [10, 11]. The change in synaptic weight of
biological synapses can be seen as a change in conductance
(resistance states) of artificial synapses based on RRAM
devices. It has been believed that change in resistance of these
devices is due to formation and rupturing of 1D filaments
those are made by oxygen vacancies up on application of
external electric field. [12]. The process of tuning the synaptic
RRAM device from HRS to LRS is termed as a SET process,
while the process of tuning RRAM from LRS to HRS is
known as the RESET process [12, 13]. Synaptic RRAM
devices show some similarities with biological synapses and
has been demonstrated to emulate various synaptic functions
such as long-term potentiation (LTP), long-term depression
(LTD), and spike time-dependent plasticity (STDP) [14–17].
The synaptic weights of LTP and LTD are used for software
training in Artificial neural network (ANN). The neuro-
morphic research has focused on aiming the development of
ANNs for high-accurate recognition of image, video, and
audio data [18]. ANNs are complex systems and connected
with artificial ‘neurons’ to perform various computational
tasks. These neurons are interconnected with each other via
‘synapses’, which can be assigned a weight to modulate the
strength of an input being received by a neuron [19]. To
achieve this, such networks are generally organized into
layers including an input layer, intermediate hidden layers,
and an output layer, where each layer is composed of a
number of nodes to allow for data processing [20]. In the
training phase, the weights of the ANN are adjusted to yield a
high train accuracy. Once the training is completed, the final
test accuracy is obtained by evaluating the ANN’s perfor-
mance on the test dataset.

RRAMs have been demonstrated as a neuromorphic
synaptic memristor device with different switching materials
such as WOx [21], HfOx [22], TaOx [23], MoOx [24],
InGaZnO [25], RGO+chitosan [26], TiO2 [27] and Graphene
oxide [28] respectively. Apart from the above, iron (Fe) is an
inexpensive material as it is the fourth element in the Earth’s
crust. On the other hand, Fe2O3 is stable and has been utilized
in diverse applications ranging from medicine, electronics,
metallurgy, automotive sector, building construction, energy,
textiles and art [29, 30]. Earlier, Xiaobing Yan et al has
proved change in resistive switching model of α-Fe2O3 by
electroforming in the films [31]. Digital switching with high
performance and low power consumption have been
demonstrated on Ag/Fe2O3/FTO-based RRAM device [32].
Yet in another study, Xian Wan et al have reported a Bio-
mimicked atomic-layer-deposited iron oxide-based memristor
with synaptic potentiation and depression functions [33].
Changhong Wang et al have investigated the effect of the
compliance current on the analog behaviour of the device
using the Pt/FeOx/Pt structure [34]. In this work, we
demonstrate neuronal functionalities such as (a) long-term
potentiation (LTP) (b) long-term depression (LTD) (c) spike
time-dependent plasticity (STDP) of α-Fe2O3 based artificial
synapse. In addition, we also present off chip training to
obtain good accuracy by backpropagation algorithm con-
sidering the synaptic weights obtained from α-Fe2O3 based

artificial synaptic RRAM device for FMNIST data set
using ANNs.

Experiments

The RRAM device with a structure of Ag/α-Fe2O3/Fluorine
doped tin oxide (FTO) was fabricated to establish resistive
switching (RS) characteristics. Prior to the device fabrication,
the substrate FTO was cleaned by the ultra-sonication process
with deionized water, acetone, and 2-propanol individually.
The iron-thin films were deposited using a thermal evaporator
(make advanced processing technology (APT)). The base
vacuum pressure was 7.5 × 10−6 mbar and during the
deposition, the operating pressure was 1.8 × 10−5 mbar. The
power applied to the target boat for the iron to evaporate was
196.5 Watts. The deposited iron (Fe) films on the FTO sub-
strate were annealed at 400 °C in a box furnace for four hours
to oxidize Fe films. The cross-sectional imaging and the
thickness of the thin film was determined using scanning
electron microscope (SEM) and found 0.87 μm as thickness
of α-Fe2O3. Image pertinent to SEM shown in supporting
information (figure S1). Then silver conducting epoxy was
used as a top electrode. The diameter of top electrode is 0.5
mm, while, the distance between two electrodes is 3 mm. The
resistance of FTO is approximately 15 Ω. The crystalline
phase of the thin films was determined using Rigaku smart lab
SE x-ray diffractometer. The phase purity of the α-Fe2O3 thin
film is confirmed with the grazing incidence x-ray diffraction
(GI-XRD) with a grazing angle of 0.5° and 2θ range of 10°
−80°. Indeed, such graph is shown in the supporting infor-
mation (figure S2). The electrical measurements were carried
out using Keithley 4200 SCS semiconductor characterization
system with a current compliance of 7 mA for
Ag/α-Fe2O3/FTO device respectively. During our measure-
ments, a negative bias voltage was applied to Ag top electrode
and positive bias to the bottom FTO electrode in the current
perpendicular to the plane (CPP) configuration. Pulsed I–V
characteristics were performed using Keithley 4200 SCS and
are shown in figures 3(a) and (c) by applying continuous
pulses with pulse amplitude of 1 V and pulse width of 150 μs.
For the image recognition, the training is performed -on
FMNIST data set of 60 000 images and test dataset of 10 000
images. This database is widely used for training and testing
in the field of machine learning and image processing.

Figure 1(a) shows the schematic diagram of fabricated
Ag/α-Fe2O3/FTO- based synaptic RRAM device.
Figure 1(b) reveals the I–V characteristics of
Ag/α-Fe2O3/FTO device in logarithmic scale respectively.
Initially, we tried to develop the RS in the device. Here FTO
acts as the bottom electrode and silver as the top electrode and
α-Fe2O3 acts as an active layer. The current perpendicular to
the plane (CPP) configuration was used to perform I–V
characteristics in the device. The electrical measurements
were carried out under ambient conditions (300 K) and at the
current compliance of 7 mA to prevent dielectric breakdown.
A DC sweeping voltage of +2.3 to −1.6 V was applied to
measure the I–V response of the device. The device showed
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reversible analog bipolar resistive switching where SET is
taking place at −1.2V and RESET at +2.1 V. The arrow
marks on the I–V characteristics indicate the direction of the
voltage sweep that we used during the measurements.
Figure 1(c) shows a stable analog switching performance for
nearly for 100 cycles. The inset graph of figure 1(c) indicates
the endurance characteristics of the device, which hints that

the device is stable up to 275 cycles with a switching window
of 10. Indeed, such a switching window is sufficient to dis-
tinguish HRS and LRS. Figure 1(d) shows DC I–V bipolar
switching curves of Ag/α-Fe2O3/FTO-based synaptic
RRAM device for different compliance currents. It is evident
from figure that multistage conductance prevails by changing
the compliance current from 100 μA to 1mA. We observe the

Figure 1. (a) Schematic diagram of fabricated Ag/ α- Fe2O3/FTO device where fluorine doped tin oxide (FTO) was used as bottom electrode
and Ag as top electrode. (b) I–V characteristics of Ag/ α- Fe2O3 /FTO device with compliance current of 7 mA (c) I–V characteristics of the
device with different laps under single logarithmic coordinates. Inset figure shows the endurance characteristics up to 150 cycles. (d)
Multilevel resistance switching under different compliance current. Inset figure shows the retention characteristics of RRAM device up to
1.49 × 104 s. Double logarithmic scale for I–V curve indicate (e) Trap controlled SCLC mechanism for HRS state and (f) Ohmic conduction
for LRS state.
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gradual increase in conductance with an increase in com-
pliance current as shown in figure 1(d), which is suitable for
neuromorphic applications. Inset figure 1(d) represents
retention characteristics of the Ag/ α-Fe2O3 /FTO device.
From the figure it is evident that the device consists good
retentivity up to 1.49 × 104 s. The power consumed to
operate the present device is found to be 8 mW.

Several models have been sought to interpret the resistive
switching phenomenon in oxide materials including ln I α ln
V (space- charge limited current, or (SCLC)) [35], ln I/V α 1/
V (Fowler–Nordheim tunneling) [36], ln I/V α V (Poole–
Frenkel emission) [37], ln I α V (Schottky emission) [38].
In order to investigate the electron transport mechanism, the
HRS and LRS states are plotted in a double logarithmic scale
shown in figures 1(e) and (f). As depicted in figure 1(e), the
HRS of Ag/α-Fe2O3/FTO is fitted well with a space charge
limited conduction mechanism (SCLC). The HRS is divided
into two regions based on the slopes. At the lower voltage
region, the slope is equal to ∼1.07 (J α V) as shown in
figure 1(e). Indeed, this is typical for the ohm’s law and
corresponding equation can be expressed as [39–44]

m
=J
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the effective density of states of electron in the conduction
band, k is the Boltzmann constant; m* is the electron effective
mass, h is the Planck’s constant; μn is the electron mobility; d
is the thickness of switching layer. Therefore, at low voltage
region the current is dominated by free carriers. At higher
voltage region the slope is ∼2.19. If the applied voltage is
higher than the transition voltage (Vtr) it follows trap-filled
limit voltage (VTFL) and can be expressed as [40, 45]:
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c t( ) [( ) ]/ is the free charge

carrier fraction of all integrated carriers (free and trapped),
and Nt is the trap density, Ec − Et is the electron trap depth.
Over here, ε and θ are the static dielectric constant and the
ratio of the free carrier density to all carriers respectively.
After all the traps are filled by the injected charge carriers,
current increases rapidly which shows Ohmic behaviour in
LRS with a slope ∼1.06 as shown in figure 1(f) that repre-
sents the transition from HRS to LRS.

Now we discuss the conceivable mechanism that
explains the origin of the RS in the present device. Figure 2
represents the schematic diagram to explain the RS mech-
anism in Ag/α-Fe2O3/FTO device. Initially, the device is in
HRS, where the defects are distributed homogeneously as
shown in figure 2(a). For the Ag/α − Fe2O3/FTO when a
negative bias is applied to the top electrode and a positive bias
to the bottom electrode, the oxygen ions are pulled towards
the bottom electrode shown by the arrow in figure 2(b).
Indeed, this leads to generation of the oxygen vacancies.
These oxygen vacancies gather and form 1D conduction
channels as shown in figure 2(b). When the polarity changes,
rupturing of the filaments take place and HRS state can be
obtained as shown in figure 2(c).

From figure 3, it is clear that there exists analog
switching in the Ag/α-Fe2O3/FTO synaptic device, which
may be useful for neuromorphic computing. To realize
whether the device is suitable for the neuromorphic comput-
ing it is crucial to explore and demonstrate synaptic learning
rules such as (a) LTP, (b) LTD and (c) STDP. To mimic this
functionality in Ag/α-Fe2O3/FTO device, single and
sequentially triggered pulses are applied to the top electrode.
The conductance of the device enhances or diminishes
depending on the amplitude and duration of the applied pulse.
The conductance of α- Fe2O3 is equivalent to the synaptic
weight of the biological synapse. When a negative pulse with
an amplitude of Vset = −1 V and pulse width of 150 μs of 80
pulses (figure 3(a)) is applied to the top electrode of the

Figure 2. Schematic to demonstrate (a) Oxygen defects in Ag/α-Fe2O3/FTO based device. (b) the formation of conductive filaments due to
oxygen defects when negative bias is applied to top electrode and positive bias to bottom electrode in Ag/α-Fe2O3/FTO device. (c)
Rupturing of the filament when the polarity of voltage changed in Ag/α-Fe2O3/FTO device.
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device, the conductance of the Ag/α-Fe2O3/FTO increases
as shown in figure 3(b), which represents the LTP. On the
other hand, by applying a positive pulse with an amplitude of
Vreset = +1 V and pulse width of 150 μs of 80 pulses
(figure 3(c)) the conductance decreases as shown in
figure 3(d) which represents the LTD. These both LTP and
LTD plots are fitted with exponential functions. Apart from
the above, we also investigated the pulse training

performances as a function of pulse amplitude from −0.8 to
−1.6 V with a fixed pulse width of 150 μs for LTP and +0.8
to +1.6 V for LTD shown in supporting information
(figure S3.)

Furthermore, we have investigated the STDP rule which
is another important learning rule in the neural system. It is
the relationship between change of synaptic weight (Δw) and
time interval (Δt) that results from activity variations of the

Figure 3. (a) Conductance modulation by applying a constant negative pulse amplitude of −1 V with pulse width 150 μs (b) Gradual SET
process indicating LTP characteristics. (c) Conductance modulation by applying positive pulse +1 V with a pulse width of 150 μs. (d)
Gradual RESET process, which indicates LTD characteristics. (e) Schematic presentation of STDP setup and pulse used for the experiment.
(f) STDP characteristics of the device that shows the relationship between time delay with synaptic weight change.
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pre- and post-neurons [46, 47]. The change in conductance or
weight (%) is calculated using formula [28]

D =
-

G
G G

G
,after before

before

Gbefore is the conductance before pre- and post—spike pairs
and Gafter is the conductance after pre-and post- spikes.
Obviously for an RRAM device top and bottom electrodes are
compared to pre-and post- synaptic neurons and pulses
applied on to the electrode can mimic spikes by biological
synapse. The schematic of applied pre-and post- pulses of
pulse amplitude 1 V with time delay of 1 ms is shown in
figure 3(e). The STDP characteristics of Ag/α-Fe2O3/FTO
synaptic device are shown in figure 3(f). From the figure 3(f).
it is clear that when Δt (= tpre − tpost)> 0 or as the relative
timing between pre and post pulse decreases, there is an
increase in weight change (ΔW), which proves the enhance-
ment in the conductance that represents potentiation. On the
other hand, when Δt < 0 or relative timing between pre and
post pulses increases, ΔW decreases, mimics the depression
behaviour. Based on the above results, it can be concluded
that Ag/α-Fe2O3/FTO based synaptic device shows STDP
behaviour by changing the time delay between pre and post
synaptic pulses. Indeed, the behaviour mimics the biological
synapses.

In order to evaluate the neuromorphic learning capability
of the fabricated synaptic device based on Ag/α-Fe2O3/FTO,
the variation of the conductance pertinent to LTP and LTD
recorded and is shown in figure 4. Over here, the conductance
is used as synaptic weight elements for a simulated image
recognition task. We designed a single hidden layer ANN
based on the Fashion Modified National Institute of Standards
and Technology (FMNIST) dataset [48] for off-chip image
recognition task [49]. Figure 5(a) shows the schematic
structure of the ANN for identification of a sample image
from the FMNIST dataset. The ANN consists of 784 input
neurons (linearized 28 × 28 FMNIST patterns), 512 hidden
neurons and 10 output neurons. All the ANN simulations are
implemented using the open source Pytorch package [50].

The FMNIST dataset consists of 28 × 28 grayscale images of
fashion articles grouped into 10 categories. The training
dataset has 60 000 images and the test dataset has 10 000
images. We used a mini-batch stochastic gradient descent
(SGD) algorithm [51] for the weight update after each epoch
during the ANN training process. The rectified linear unit
(ReLU) function was the activation function, and the mean
cross-entropy loss function is used for calculating the loss
during the ANN training process. We use a total of 100
epochs for the training process where each epoch corresponds
to one full pass of the training data and its subsequent eva-
luation on test data. Table 1 depicts the list of Hyperpara-
meters and their names/ values that we used for ANN
simulations.

After the ANN training, we adapt a post-training quan-
tization procedure for the inference process. The trained
software weight values (Wsw) are scaled to the range of
absolute device conductance values (G) extracted from the
LTP/LTD characteristics exist in figure 4. The scaling
equation [52] is given as:

d= ´ +G W
G

W
G, 3fn sw

m

m
( )

Here, Gfn denotes the scaled conductance value to be intro-
duced into the hardware sense synaptic array. Wm represents
the maximum software trained weight for the particular hid-
den layer whereas Gm represents the maximum device con-
ductance value. The error term δG incorporates the various
synapse array errors like conductance drift, cycle-to-cycle
conductance changes etc. In fact, we have used a mean of
zero and a standard deviation of one for sampling the δG
values [52]. The conductance distribution of our device fol-
lows a Gaussian distributionas shown in the figure S4
(supporting information). The maximum standard deviation
for our measured LTP/LTD determined to be close to 0.75
mS. Taking into account any further measurement errors or
non-idealities like the device-to-device variation, we have
chosen an upper limit of 1 mS as the standard deviation for
our simulations.

Since the device conductance values are only positive, a
differential conductance pair [15] with opposite polarity ( +Gfn

and -Gfn ) are used to map the positive and negative weights to
the hardware sense synaptic array to improve simulation
convergence

¢ = -+ -G G G . 4fn fn fn ( )

The as-mapped differential pair device conductance
values are subsequently used for the inference task.
Figure 5(b) shows the FMNIST image recognition accuracy
evolution during the training process. We observe that the
device-based ANN records a high-test accuracy of 88.06% on
the FMNIST image recognition task. This is comparable to
the purely software-based ANN test accuracy of 88.8%. We
also studied the effect of quantized weight levels on the image
recognition performance of the synaptic device. Weight
quantization [53] is an important consideration in designing
compact neuromorphic hardware especially for inference
applications like face recognition, smart sensors etc. From the

Figure 4. Shows the synaptic weights of Long-term potentiation
(LTP) at −1.4 V and long-term depression (LTD) at +1.6 V.
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inset of figure 5(b), we observe that a high image recognition
accuracy of ∼88% is retained with 5 bit (25 = 32 levels)
weight quantitation below which there is a sharp drop in
accuracy. However, it is also interesting to note that the
synaptic device-based ANN retains a test accuracy of greater

than 68% for the highly quantized 2 bit weights. Weight
values mapped to synaptic arrays are prone to write noise
which adversely affects the synaptic device performance for
pattern recognition. Hence, we have tested the performance of
the device-based ANN after incorporating write noise in the
mapped conductance values obtained from equation (2).
Write noise has been calculated as percentage random noise
in proportion to the actual mapped weight value. From
figure 5(c), we clearly observe that the test accuracy remains
above 85% till a relatively high write noise of 20%. Such a
high write noise resilience is advantageous for the practical
neuromorphic hardware realization.

To further evaluate the performance of our synaptic
device-based ANN, we have used the confusion matrix for
understanding the capability of the ANN towards output class
distinction. The confusion matrix for the synaptic device
based ANN figure 6(a) shows a high value along the main
diagonal axis which shows the number of normalized

Figure 5. (a) Illustration of the artificial neural network (ANN) used for the FMNIST image recognition (b) Test accuracy (%) evolution
during the training process with respect to the number of epochs. Blue curve depicts the fully software-based implementation whereas the red
curve depicts the synaptic device Ag/α-Fe2O3/FTO based ANN. Inset shows the test accuracy (%) dependence on the number of quantized
device weights levels (c) Test accuracy (%) variation with the write noise (%).

Table 1. Hyperparameters and their names/ values that we used for
Artificial neural network (ANN) simulations.

Hyperparameter Name/Value

Batch size 32
Learning rate 0.01
Bias No
Training epochs 100
Activation function Rectified linear unit (ReLU)
Loss function Cross entropy loss
Optimiser Stochastic gradient descent
Number of nodes in Hidden layer 512
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predictions which match the target output label [54]. This
shows the capability of the synaptic device-based ANN
towards output class separability. Finally, we evaluated the
performance of our synaptic device- based ANN on the
popular Modified National Institute of Standards and Tech-
nology (MNIST) dataset to compare the performance of our
synaptic device with previously published reports with a
similar ANN configuration. From figure 6(b), we can confirm
that the device based ANN reports a high recognition acc-
uracy of 97.67% which is higher than previous reports [55],
[56]. Such a high pattern recognition accuracy might be due
to a combination of the synaptic device performance as well
as the novel weight mapping strategy used in this report.

Summary

In summary, we have investigated the analog bipolar resistive
switching behaviour in Ag/α-Fe2O3/FTO based RRAM
device. The device showed stable and reproducible switching
with good endurance and retentivity characteristics. Synaptic
learning rules such as LTP, LTD and spike time dependent
plasticity (STDP) behaviour are demonstrated. The proposed
α -Fe2O3-based RRAM device was successfully utilised as a
synaptic element for pattern recognition task resulting in a
high-test accuracy of 88.06% and 97.6% on the FMNIST and
MNIST datasets respectively. The ideal device characteristics
and high ANN performance showed that the fabricated device
can be useful for practical ANN implementation.
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