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Abstract

Keeping in mind, that any context free language can be mapped to a subset of Dyck languages and by seeing various

database applications of Dyck, mainly verifying the well-formedness of XML file, we study the randomized streaming

algorithms for the recognition of Dyck(s) languages, with s different types of parenthesis. The main motivation of this

work is well known space bound for any T -pass streaming algorithm is Ω(
√
n/T ).

Let x be the input stream of length n with maximum height hmax. Here we present a single-pass randomized stream-

ing algorithms to decide the membership of x in Dyck(s) using Counting Bloomfilter (CBF) with space O (hmax) bits,

ploylog(n) time per letter with two-sided error probability. Two-sided error is because of the false negative and false

positives of counting bloomfilter. This algorithms denies the necessity of streaming reduction of Dyck(s) into Dyck(2),

that reduces the space even further by the factor of O (log s), compared to those uses streaming reduction.

We also present an improved single-pass randomized streaming algorithm for recognizing Dyck(2) with space O (
√
n)

bits, which is the proven lower bound. Time bound is same polylog(n), as other existing algorithms and error is one-sided.

In this algorithm, we extended the existing approach of periodically compressing stack information. Existing approach

uses two stacks and a linear hash function, instead of this we are using three stacks and same linear hash function to

achieve space lower bound of O (
√
n).

We also present another single-pass streaming algorithm with O (hmax) space that uses counting bloomfilter and

directly acts on Dyck(s).
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Chapter 1

Introduction

The area of streaming algorithms has experienced huge growth in various applications in recent past. These algorithms

sequentially scan entire input, letter by letter, in one pass or in very few number of passes (i.e. random access to the input

is not possible) and uses limited space (less than linear or nearly polylogarithmic in input size). Streaming algorithms

have various application like searching documents in web databases, analysis of Internet traffic[1], network monitoring

for elephant flows, counting the number of distinct flows, estimating size of a join in SQL, XML validation[2] etc. which

involves massive data that arrives rapidly and cannot be stored.

The work have been done to understand the applications of streaming algorithms in context of formal languages. We

explore Dyck(s) problem, where s represents the number of types of parentheses. In this problem one has to check the

well-formedness of the stream of parentheses. By the definition of regular language, they are decidable using deterministic

finite state automaton(DFA) and streaming algorithm within constant space. The Dyck languages is one of the simplest

context-free languages with significant importance in theory. Since every context-free language can be mapped to a subset

of Dyck(s) [3], we study some of the recognition algorithms for Dyck languages. This study is similar to the problem of

checking matching parentheses, which is very frequent in database applications like verifying the well-formedness of

XML files.

The context-free languages are recognizable in O((log n)2) space, if access to the input stream is random[4]. With

optimal tree representation[5] of Dyck(s), logarithmic space is sufficient as it has to check parentheses of same level at

each levels. Translating this approach into streaming algorithm is not easy, even with fewer number of passes over the

stream.

Single-pass deterministic streaming algorithm with logarithmic space uses a height counter to decide membership

in Dyck(1). For Dyck(2), deterministic Single-pass streaming algorithm requires linear space. The linear space can

be proved using one-way communication complexity argument for EQUALITY. Magniez, Mathieu, and Nayak in [6]

presented two randomized streaming algorithms for the membership problem of Dyck(2), that can easily be extended to

Dyck(s) using streaming reduction. First algorithms is single-pass algorithm with space of O
(√

n log n
)

and second is

two-pass bidirectional algorithm with space O((log n)2) bits. Both of these algorithm uses stack compression technique

to reduce the space requirement with polylog(n) time per letter and one-sided error.

We present an improved single-pass randomized streaming algorithm for Dyck(2) with space matching to the lower

bound i.e. O (
√
n/T ) where T ≥ 1 is the number of passes. Here the number of passes is only one and hence the space

is O (
√
n) with polylog(n) time per letter and one-sided error. This algorithms extends the approach of, Magniez et.al

[6], from two stacks to three stacks and reduces the space to match the lower bound. We also present another single-pass

streaming algorithm with O (hmax) space that uses counting bloomfilter and directly acts on Dyck(s).
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1.1 Overview of the Work

As part of thesis work, we propose two single-pass streaming algorithms (a) single-pass streaming algorithm using Count-

ing bloomfiler. The main benefit of this approach is, it avoids streaming reduction and can be applied directly to Dyck(s)

(b) Improved single-pass streaming algorithm using three stacks, in this algorithm we matches the proven lower bound.

We also provides the proof of correctness and space bound for both the algorithms.

1.2 Thesis Outline

The thesis is structured as follows. In chapter 2 we give a brief introduction of various similar problem on Dyck(s). We

discuss some standard definition, preliminaries and randomized data structure "Bloomfilter" in chapter 3. We explain the

single-pass and bidirectional algorithms to decide the membership of Dyck(s) in chapter 4. In Chapter 5 we describes our

two proposed algorithms, one of which matches the lower bound. We compare the space bound of our algorithms with

existing algorithms in chapter 6. We discuss future work in chapter 7.
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Chapter 2

Related work

The Dyck(s) membership problem has been studied earlier in the name of property testing algorithms for context free

language. In [7] [8] [9] authors has defined the problem of property testing, in which algorithms accepts if any string x

that satisfy the required property. A property tester for any language L accepts all strings x, if x ∈ L and rejects all those

string which are at ε distance (normalized hamming distance) from the strings in L. In same context, [10] has proved that,

any Dyck(1) is ε-testable in constant time, where ε > 0 is fixed constant and in [11] Parnas et. al. has proved that any

Dyck(s), for s > 0 is ε-testable in time O
(

n2/3
)

, with the lower bound of O
(

n1/11
)

.

[2] has presented an O(log n) pass deterministic streaming algorithm with O((log n)2) space for XML validation

problem (which is exactly same as Dyck(s) problem) with external memory. They have used FCNS encoding of the XML

file as in intermediate step in the streaming manner.

In [12] Nathanael Francois and Frederic Magniez has addressed the problem of checking priority queues in the setting

where sequence of insert and extract operation is given and one wants to decide a priory whether the sequence is valid.

They used the similar approach as bidirectional algorithm ( see algorithm 2) of Dyck(2) and reduced the memory to

O((log n)2).

[13] discusses the problem of efficiently computing edit distance to Dyck languages and proposes a near-linear time

algorithm. They proved that, if there exist an algorithm to calculate the edit distance of stream in α(n) time with β(n)-

approximation factor, then we can design an algorithm to calculate the edit distance of Dyck(s) in O
(

n1+ǫ + α(n)
)

with

an approximation factor of O

(

1

ǫ
β(n) logOPT

)

.

The two different works done by Chakrabarti, Cormode, Kondapally and McGregor [14] and Jain and Nayak [15]

respectively has proved that multiple passes of the same stream in one direction will not help. Any T-pass, where T >

1, streaming algorithm to decide the membership of a stream in Dyck(2) with constant error probability takes Ω(
√
n/T )

space.

[16] also addresses the similar problem of Dyck(s) recognition when string contains few errors ( called 1-turn-Dyck2).

They proved that, if stream x contains at most k errors, then there exist a randomized single-pass streaming algorithm to

decide the membership of 1-turn-Dyck2 with space O (k log n), O (k log n) randomness, and poly(k log n) time per letter

with error at most 1/nΩ(1).
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Chapter 3

Definition and Preliminaries

Dyck language is the language consisting of strings that have properly balanced parentheses. The Dyck language

contains strings like aa and aaaaaa but not aa, where a represents upsteps and a represents downsteps. The well-

formedness/balancedness of the strings makes sense, if the types of parenthesis is more. If we see any programming

language or any XML file, then we can see such cases. Let A = {a1, . . . , ak} be the set representing upsteps and

A = {a1, . . . , ak} be the disjoint set of corresponding downstep symbols. For example, the pair A = {(, [, do, if,<
title >,< html >} and A = {), ], od, fi, < \title >,< \html >} represents the nested nature of programming lan-

guages and XML files. It is also important in the parsing of expressions that must have a correctly nested sequence of

parentheses, such as arithmetic or algebraic expression. XML documents are the perfect examples of Dyck language.

3.1 Notations

In the following discussion, x represent the input stream x1x2 . . . xn of length n from the alphabet
∑

2 = {a, b, a, b} or
∑

s = {a1, a1, a2, a2, . . . , as, as} . An upstep is represented by small letters like ai where as downstep by overlined letters

ai. Then for integers i ≤ j, x [i, j] represents a subword xixi+1 . . . xj and x [i] denotes the ith letter in the stream x. |x|p
represents the number of times p has occurred in x and |x| without subscript represent the length of the word x. wherever

we are using log, we mean log with base 2 through out this document.

3.2 Definition

Definition 3.1 (Height). Let x ∈ ∑n
2 and |x|a represents the number of upsteps of type a in x where as |x|a represents

the number of downsteps of type a in x .The height of x can be defined as

height (x) = |x|a + |x|b − |x|a − |x|b

Definition 3.2 (Matching pair). A pair (i, j), where 1 ≤ i < j ≤ n, for x is a matching pair if,

height (x [1, i− 1]) = height (x [1, j]) and

height (x [1, k]) > height (x [1, i− 1]) for all k ∈ {i, . . . , j − 1}

We can say the contribution of matching pair in the overall height of the stream is zero.

Definition 3.3 (Well-formed). A matching pair(i, j) for x is Well-formed, if (x[i], x[j]) equals (a, a) or
(

b, b
)

, ill-formed

4



otherwise. It means a letter xi at index i can form a matching pair with at most one letter at other index j.

Definition 3.4 (Partial order). we say two words u and v are partially ordered i.e u ≺ v, if and only if u can be obtained

by removing zero or more matching pairs from v.This order is well defined, and in particular transitive, since matching

pairs of u are still in v.

3.3 Preliminaries

Definition 3.5 (Dyck(s)). Let s ≥ 1 be a positive integer. Then Dyck(s) denotes the language over alphabets
∑

s =

{a1, a1, a2, a2, ...., as, as} defined recursively by

Dyck(s) = ǫ+
∑

i≤s

ai.Dyck(s).ai.Dyck(s)

where ai represents upstep, ai represents downstep and ǫ represents an empty string. The operator (+) represents the

alteration operation, that allows to chose one from the possible option. Operands around + is the possible options. The

operator (·) is the concatenation operator. We can always reduce any Dyck(s) into Dyck(2) using streaming reduction see

propostion 3.2 .

Definition 3.6 (Streaming algorithm). Fix an alphabet
∑

. A k-pass streaming algorithm A with space w (n) and time

t (n) is an algorithm such that for every input stream x ∈
∑n

:

1. A performs k sequential passes on x.

2. A maintains a memory space of size w (n) bits while reading x.

3. A has running time at most t (n) per letter xi.

4. A has pre-processing and post-processing time atmost t (n).

A is bidirectional if it is allowed to access the input in forward as well as in reverse direction. The parameter k is the

total number of passes in either direction.

Definition 3.7 (Streaming reduction). Fix two alphabet
∑

1 and
∑

2 for problem P1 and P2 respectively. Let f(n) :
∑

1 →
∑f(n)

2 be a function used for reduction. A problem P1 is f (n)-streaming reducible to a problem P2 with space

w (n) and time t (n), if for every input x ∈∑n
1 , there exist y = y1y2 . . . yn, with yi ∈

∑f(n)
2 , such that

1. yi can be computed deterministically from xi using space w (n) and time t (n);

2. From a solution of P2 with input y, a solution on P1 with input x can be computed with space w (n) and time t (n).

Proposition 3.1. Let P1 be f (n)-streaming reducible to a problem P2 with space w0 (n) and time t0 (n). Let A be a k-

pass streaming algorithm for P2 with space w (n) and time t (n). Then there is a k-pass streaming algorithm for P1 with

space w (n× f (n)) + w0 (n) and time t (n× f (n)) + t0 (n) with the same properties as A (deterministic/randomized,

unidirectional/bidirectional ).

Proposition 3.2. Dyck(s) is ⌈log s⌉-streaming reducible to Dyck(2) with space and time O (log s) .

Proof. We encode a parenthesis ai by a word of length l = ⌈log s⌉ with only parenthesis of type b, c. We let f (ai) be

the binary expansion of i over l bits where 0 is replaced by b and 1 by c. Then f (ai) is defined similarly, except that we

write the binary expansion of i in the opposite order and replace 0 by b and 1 by c. Then x1 . . . xn is in Dyck(s) if and

only if f (x1) . . . f (xn) is in Dyck(2).

5



Since the parameter s is a constant, independent of the length of the input stream, the above reduction can be imple-

mented with constant space and time.

For example, Let U = {t1, t2, t3, t4} be the set of s = 4, upsteps and U = {t1, t2, t3, t4} be the disjoint set of

corresponding downsteps. Let t = t1t2t4t4t3t3t2t1, be the input stream. Here log s = log 4 = 2, therefore t1 = 00, t2 =

01, t3 = 10, t4 = 11. Then we can write the encoding of t as 0001111110011000 = bbbccccccbbccbbb. We can generate

this encoding of the stream while reading itsefl, i.e.character by character .

From Proposition 3.1, it is enough to design streaming algorithms for Dyck(2), as we can convert any Dyck(s) into

Dyck(2). Which is the is discussed in the next section.

3.4 Bloomfilter and Counting Bloomfilter

A Bloomfilter[17], B is a randomized data structure which represents an un-ordered set S of n elements from a universe

U using an array of m bits, represented by B [1] , . . . , B [m], all initialized to 0. The Bloomfilter uses a set H of k

independent hash functions h1, . . . , hk with range {1, . . . ,m}, that independently hash each element in the universe to

a random number uniformly over the range. (This is a standard assumption and very convenient for the analysis of

Bloomfilter). For each element x ∈ S, the bits B [hi (x)] are set to 1 for 1 ≤ i ≤ k (a bit can be set to 1 multiple times.).

To answer a query of the form Does y ∈ S ?, we check whether all B[hi (y)] are set to 1 .If not, y is not a member of S,

by the construction. If all B[hi (y)] are set to 1 ,it is assumed that y is in S, and hence a Bloomfilter may yield a false

positive. The probability of a false positive for an element not in the set can be derived easily. If p is the fraction of ones

in the filter, it is simply pk. A standard combinatorial argument gives that p is concentrated around its expectation

p =

(

1−
(

1− 1

m

)kn
)

≈
(

1− e−kn/m
)

(3.1)

So false positive probability f which is equal to pk will be:

f ≈
(

1− e−kn/m
)k

(3.2)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3.1: m bits Bloomfilter all filled with 0’s

hash each xi ∈ S using k hash function. If hi (xi) = a, B [a] = 1

0 1 1 0 1 1 0 1 0 1 1 0 1 1 0

Figure 3.2: Bloomfilter after inserting each xi ∈ S

To answer y ∈ S? Check B [hi (y)] for all i. All must be 1.

0 1 1 0 1 1 0 1 0 1 1 0 1 1 0

Figure 3.3: Bold 1’s show the presence of y in S

6



B [hi (z)] is 1 for all i. But z is not present.

0 1 1 0 1 1 0 1 0 1 1 0 1 1 0

Figure 3.4: False positives in Bloomfilter

The expressions 3.1, 3.2 are minimized when k = ln 2 · (m/n), giving a false positive probability f ≈ (1/2)
k ≈

(0.6185)m/n. In practice, k must be an integer, and both n/m (the number of bits per set element) and k should be treated

as constants. For example, when n/m = 10 and k = 7 the false positive probability is just over 0.008. Deleting elements

from a Bloomfilter cannot be done simply by changing ones back to zeros, as a single bit may correspond to multiple

elements. Standard Bloomfilter can be extended to Counting Bloomfilter(CBF) to support deletion at the cost of 4X space

increment. A CBF uses an array of n counters instead of bits; the counters track the number of elements currently hashed

to that location. Deletions can now be safely done by decrementing the relevant counters. A CBF can be converted to

standard Bloomfilter by just setting all non-zero counters to 1. Counters must be chosen large enough to avoid overflow;

for most applications, four bits suffice. We generally use the rule of four bits per counter when comparing results of our

data structure with a standard CBF, although this can be reduced with some additional complexity.

Bloomfilter has been studied and modified in various ways to support deletion. Standard approach of using counter

instead of a bit opens the door of improvement in space requirement, lookup performance, false positive and false negative

rate. Some of the important variants are the compressed Bloomfilter[18], counting Bloomfilter (CBF)[19], distance-

sensitive Bloomfilter [20], space-code Bloomfilter[21], spectral Bloomfilter[22], generalized Bloomfilter[23], Bloomier

filter[24],Variable-increment counting Bloomfilter[25], d-left counting Bloomfilters (dl-CBFs). dl-CBFs, which adopt a

hash table-based approach constructs a hash table for all known items by d-left hashing [6], but replaces each item with a

short fingerprint (i.e., a bit string derived from the item using a hash function). The dl-CBFs can reduce the space cost of

counting Bloomfilters, but still require twice the space of a space-optimized Bloomfilter.

There is one more data structure called "Cuckoo filter" recently proposed by Bin Fan et. al.[26] which gives the

same functionality like CBF. It supports dynamic adding, removing of elements and gives higher lookup performance.

Surprisingly it uses very less space compared to the standard non-deletion-supporting type Bloomfilter at the cost of false

positive rate < 3%.
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Chapter 4

Existing Algorithms

4.1 Single-pass Streaming Algorithm with O
(√

n log n
)

space

The following algorithm given by Magniez, Mathieu and Nayak[6] addresses the problem of deciding membership in

Dyck(s). They have shown that any Dyck(s) language is streaming reducible (Proposition 3.2) to Dyck(2) with just log s

factor of expansion in the length of input stream. The approach in this algorithm is easiest to understand if we consider

input stream x = uv, where u is the continuous sequence of upsteps and v is the continuous sequence of only downsteps

in equal numbers. This algorithm is motivated from the naive approach of stack, instead of using stack of size n/2 it uses

stack Stemp of size q =
√
n log n. While reading letters from the first half of stream x it stores the upstep in Stemp (

see figure 4.1). Once the stack is filled, it calculates the hash of all q elements of the stack and stores it in another stack

S (assuming n is divisible by 2q). Stack S stores one entry for each block of q elements, hash([iq + 1, (i+ 1) q]) for

each i ∈ {0, 1, . . . , n/2q − 1}. While reading the second half of the same stream it adds hash([jq + 1, (j + 1) q]) to

the hash([iq + 1, (i+ 1) q]) for j = n/q − i − 1 and check for the sum to be zero. If the sum is 0, then the stream is

well-formed and in Dyck(2) otherwise ill-formed.

Algorithm 1 tries to collect sequence of l upsteps, while doing so, it checks for the matching pairs,by using standard

stack-based algorithm. Upstep followed by downstep is checked for the well-formedness and then discarded. This check

is performed using stack Stemp, it checks for every matching pair encountered in the stream till the limit of Stemp reaches.

Once the stack Stemp is filled with l upsteps, then algorithm hashes v = v1v2v3 . . . vl (sequence of l upsteps) to hash(v)

u11u12 . . . u1q u21u22 . . . u2q . . . uj1uj2 . . . ujq vj1vj2 . . . vjq . . . v21v22 . . . v2q v11v12 . . .1q

hash(u(j−1)1...u(j−1)q), q

. . .

. . .

. . .

hash(u21u22 . . . u2q), q

hash(u11u12 . . . u1q), q

Stack S

|S| = √n/ log n

ujq

uj(q−1)

. . .

. . .

uj2

uj1

Stack Stemp

|Stemp| = q =
√
n log n

Figure 4.1: Shows the condition of stacks Stemp and S just before reading v. x = uv, is the input stream, where u is the

continuous sequence of only upsteps and v is of only downsteps is same number.
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and empties Stemp. The hash value h and along with the height l is pushed onto the stack S. Each entry of the stack S is

of the form (h, l) and encodes the subword v of the stream x such that h = hash (v) and l = height (v). The algorithm

uses stack S to store the information about the blocks read so far.

When algorithm reads any downstep y, it either tries to match downstep with the top element of the Stemp or if Stemp is

empty, adds the hash value of y to top element of stack S. More precisely, it updates given (h, l) = (hash (v) , height (v))

by hash(vy) = h+ hash(y) and height(vy) = l − 1. In this way it incorporates the information of y in the stacks. The

hash function which is used and its correctness is explained in the following section .

4.1.1 Hash Function

In the streaming model of Dyck(1) membership problem, one-pass of the stream using height counter is sufficient to decide

membership. This is a deteministic algorithm takes only logarithmic space. But in case of Dyck(2), it can only ensure

that, at any instant, number of upsteps are always greater than or equal to the number of downsteps in the stream. After

processing whole stream, if the height is zero, it ensures that number of upsteps and downsteps are equal but possibly

ill-formed. This algorithm uses following hash function which keeps track of well-formedness while accepting any stream.

Let p be a prime number such that n1+γ ≤ p ≤ 2n1+γ , for some fixed γ > 0. Pick a uniformly random α ∈ [0, p− 1].

Algorithms uses random hash function hash(·) that maps subword v of x to integer in [0, p− 1], as follows:

hash (xi1 , xi2 , . . . , xim) =
∑

j

hash
(

xij

)

, where (4.1)

hash (xi) =



















αheight(x[1,i−1])mod p if xi = a,

−αheight(x[1,i−1])mod p if xi = a,

0 otherwise

(4.2)

Given x and v, the value of hash(v) is a polynomial in α of degree bounded by the maximum height of a prefix of x,

which is at most n. A polynomial of degree d over Fp has at most d roots. Therefore, if hash(v) is not identically zero,

for a uniformly random α, the probability that hash(v) = 0 is at most n/p ≤ n − γ.

Proposition 4.1. Let x ∈∑n
be such that every prefix of x has non-negative height, and let v = xi1xi2 . . . be a subword

of x. If v ∈ Dyck(2), then hash(v) = 0 for all α. Moreover, if there is a height d at which v has single ill-formed pair (

and possible other ill-formed matching pairs at height 6= d ), then hash(v) = 6= 0 with probability at least 1− n−γ , for a

uniformly random integer α ∈ [0.p− 1]

Proof. If v ∈ Dyck(2), then v is well-formed and then each well-formed matching pair (i, j) at height d contributes







αd − αd = 0, if(xi, xj) = (a, a);

0− 0 = 0, if(xi, xj) = (b, b).

Therefore, we get hash(v) = 0.

Now, assume there is a height d at which v has a single ill-formed pair. Since every prefix of x has non negative

height, the value hash(v) is a polynomial q (z) evaluated at z = α. Every well-formed pair at height d cancels, and so

the coefficient of zd in q is +1 if (xi, xj) =
(

a, b
)

, and -1 if (xi, xj) = (b.a). Thus q is not identically zero. The claim

follows from the uniformly random choice of α.

For any letter xi we may compute hash(xi) in time polylog(n) and space O (log n). Moreover, for any word v the

value of hash(v) can be maintained with O (log n).
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Theorem 4.1. Algorithm 1 is a single-pass randomized streaming algorithm for Dyck(2) with space O
(√

n log n
)

and

time polylog (n). If the stream belongs to Dyck(2) then the algorithm accepts it with certainty; otherwise it rejects it with

probability at least 1− n−c, where c > 0 is a constant.

Proof. For proof of the theorem refer [6].

Algorithm 1 Single-pass streaming algorithms using two stacks Stemp and S

1: Stemp ← empty stack of upsteps; S ← empty stack of items (h, l)
2: (htemp, ltemp)← (0, 0) {This pair encodes the subword contained in Stemp }

3: Compute a prime p such that n1+γ ≤ p ≤ 2n1+γ ; Pick a uniformly random α ∈ [0, p− 1] {The pair (p, α) are used in

the function hash; γ > 0 is a constant of our choice.}

4: while stream is not empty do

5: read next letter y from stream

6: if y is an upstep then

7: push y on Stemp

8: update (htemp, ltemp) with y : htemp ← (htemp + hash (y)modp) ; ltemp ← ltemp + 1
9: if Stemp has size ⌈

√
n log n⌉ then

10: push (htemp, ltemp) on to S and reset Stemp to empty; (htemp, ltemp)← (0, 0)
11: end if

12: else {y is a downstep}

13: if Stemp is not empty then

14: pop z from Stemp

15: check that zy is well-formed: zy ∈ {aa, bb} (if not,reject: "mismatch")

16: update (htemp, ltemp) for removal of z : htemp ← (htemp − hash (z)modp) ; ltemp ← ltemp − 1
17: else {Stemp is empty}

18: pop (h, l) from S (if empty, reject: "extra closing parenthesis")

19: update (h, l) with y : h← (h+ hash (y)mod p) ; l← l − 1
20: if l = 0 then check that h = 0 (if not, reject: "mismatch")

21: else push (h, l) on S
22: end if

23: end if

24: end if

25: end while

26: if S and Stemp are not both empty then reject: "missing closing parenthesis"

27: end if

28: accept

4.1.2 Space Analysis

This algorithm uses two stacks namely Stemp and S to store the sequence of upsteps in compressed manner. Each entry

in Stemp and S takes space O (1) and O (log n) respectively. When Stemp gets filled, a new element is pushed into S. To

get new element in S, algorithm has to process at least ⌈
√
n log n⌉ letters for every new element in S, which bounds the

size of S by
√

n/ log n . We know the size of each entry in S is O (log n). Hence S uses O
(√

n log n
)

space. So the

total space requirement by the algorithm is O
(√

n log n
)

+ O
(√

n log n
)

= O
(√

n log n
)

.

4.2 Bidirectional Streaming Algorithm with O((log n)2) space

This algorithm , as name suggests, processes the stream from both the directions. It maintains the binary decomposition

of stream seen so far. Binary decomposition involves breaking of the stream x where |x| = n, from left to right into

m ≤ log n contiguous blocks of decreasing length, where length of each block is in power’s of 2. For example, if stream
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seen so far is x[1, j] then the lengths of blocks will be 2im , 2im−1 . . . 2i1 such that j =
∑m

t=1 2
it . It also assumes that the

length of stream n = 2k, for some k ≥ 1, if not we can append the word (aa) to x.

Now the bidirectional algorithm (algorithm 2), applies algorithm 3 from both direction, first pass from left to right and

second from right to left. During first pass it adds the necessary number of word aa to make |x| = 2k, while in second

pass, letters a, b are treated as a, b and a, b as a, b respectively. The key idea of the algorithm is that, if we process the

stream from both direction then, each matching pair will be checked at least once in either direction.

Algorithm 2 Bidirectional Algorithm

Compute a prime p such that n1+γ ≤ p ≤ 2n1+γ ; Pick a uniformly random α ∈ [0, p− 1]
{The pair (p, α) are used in the function hash; γ > 0 is a constant of our choice.}

Run Algorithm 3, reading the stream from left to right

Run Algorithm 3, reading the stream from right to left

{ while reading the stream right to left,←−a , b are interpreted as a, b, respectively (and vice-versa)}

accept

Algorithm 3 One-pass of the bidirectional algorithm

1: Stemp ← empty stack of items (h, l, f)
2: j ← 0 { This records the length of the stream read so far}

3: while stream is not empty do

4: read next letter y, and set j ← j + 1
5: if y is an upstep then

6: push the item (hash (y) , 1, j) on to S {This encodes the letter y}

7: else {y is a downstep}

8: pop (h, l, f) from S (if empty,reject: "extra closing parenthesis")

9: update (h, l, f) with h : h← (h+ hash (y)modp) ; l← l − 1
10: if l = 0 then check that h = 0 (if not, reject: "mismatch")

11: else push (h, l, f) on S
12: end if

13: end if

14: while the top 2 elements of S both start in the last block of the binary partition of [1, j] do

15: combine them into one element: pop (h2, l2, f2) ; (h1, l1, f1) ; push (h1 + h2, l1 + l2, f1)
16: end while

17: end while

18: if S is not empty then reject: "missing closing parenthesis"

19: end if

Theorem 4.2. Algorithm 2 is a bidirectional two-pass randomized streaming algorithm for Dyck(2) with space O
(

(log n)
2
)

and time polylog (n). If the stream belongs to Dyck(2) then the algorithm accepts it with certainty; otherwise it rejects it

with probability at least 1− n−c, where c > 0 is a constant.

Proof. For proof of the theorem refer [6].

4.2.1 Time Analysis

Processing time of this bidirectional algorithm for every element in the stream is dominated by the computation of the hash

function as it involves modular exponentiation, which takes polylog(n) time[27]. So time per letter will be polylog(n).

The time to perform push and pop operation in the stacks is constant. So the overall processing time of the algorithm is

O (polylog (n)) per letter.
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4.2.2 Space Analysis

This algorithm, unlike single-pass algorithm, uses only one stack. Each element of stack takes space O (log n). As this

algorithm stores binary decomposition of stream in the stack, the stack size is bounded by 2 log n, hence the required

space is O
(

(log n)
2
)

.

single-pass streaming algorithm takes O
(√

n log n
)

time and the bidirectional algorithm takes O((log n)
2
) time. It

seems that if we can do multiple passes of the stream like bidirectional algorithm then we can reduce the space. But the

two different works done by Chakrabarti, Cormode, Kondapally and McGregor [14] and Jain and Nayak [15] respectively

has proved that multiple passes of the same stream in one direction will not help. Any T-pass, where T > 1, streaming

algorithm to decide the membership of a stream in Dyck(2) with constant error probability takes Ω(
√
n/T ) space.
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Chapter 5

Proposed Algorithms

5.1 Single-pass Streaming Algorithm Using Counting Bloomfilter (CBF)

Let x be a stream of alphabets from
∑

2 then the naive approach to decide x ∈ Dyck (2) is to use a stack of size O (n) and

whenever there is an upstep (a or b), push it in the stack and whenever there is a downstep
(

a or b
)

, pop the top element

from the stack and compare it with the current element. If they are of same type, continue the process else declare that

x /∈ Dyck (2). In the end after processing complete stream, if the stack is empty then stream is in Dyck (2).

Proposition 5.1. Let s = |∑s |, where
∑

s is the alphabet set. In the stack based approach for deciding membership in

Dyck(s), the size of stack at any instant is always less than or equal to the maximum height attained by the stream.

Proof. Let stream x = x1x2 . . . xn. The proof is simple, whenever there is an upstep we push an element into the stack

and pop when there is a downstep. So the number of element in the stack is max{height(x[1, i]) = |x|ai
− |x|ai

} for all

i ≤ n.

This naive approach works fine in the case of Dyck(2) where size of each upstep or downstep is fixed to one character.

But to achieve this property we have to go through the process of streaming reduction which will increase the space and

time by the factor of O (log s). Because of the streaming reduction of Dyck(s) to Dyck(2) each character in the reduced

stream is of 1 bit and so the each entry of the stack. Thus the space required by the stack, having maximum of n elements

of O (1) bit, is O (n).

To reduce the space requirement, many works used various stack compression techniques, as discussed in the previous

sections. Like in first algorithm, Magniez et. al. are using linear hash function to periodically (after every
√

n/ log n

letters) compress the stack. In this approach they used two stacks Stemp and S. The size of Stemp is
√
n log n and the size

of each entry in Stemp is one bit where as size of S is
√

n/ log n and the size of each entry is O (log n). This streaming

algorithm which takes single-pass of the stream uses O
(√

n log n
)

space and polylog (n) time per letter to decide the

membership of stream in Dyck(2). If the stream belongs to Dyck(2) then the algorithm accepts it with certainty; otherwise

it rejects it with probability at least 1− n−c where c > 0 is a constant.

One of the most important application of this Dyck problem is XML verification. The XML verification problem is

same as deciding the membership of Dyck(s) where, each opening xml-tag is considered as the opening parenthesis and

the closing xml-tag as closing parenthesis in the stream of tags from the set of xml tags. But the problem is, size of each

tag can be different. So the single-pass deterministic (randomized) streaming algorithms that takes linear i.e O (n) ( or

O(
√
n log n) for the randomized algorithm) time cannot support the case of variable size tag without using streaming

reduction. In other words, streaming reduction is a necessary step to decide the membership in Dyck(s) for variable size

parenthesis.
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In the proposed algorithm (single-pass streaming algorithm using counting Bloomfilter), we are not doing streaming

reduction of the stream to Dyck(2) as our algorithm can handle any number of parenthesis of any size, Secondly, unlike

previous approaches of using stack and then using compressing techniques to reduce the space, we are using Counting

Bloomfilter (CBF). Our approach is simple, whenever there is an upstep (ai), hash it to the CBF i.e, increment the counter

at all k locations and whenever there is a downstep (ai), decrement the counters at all k hash locations. If all the entries

of the CBF is zero at the end after processing whole stream, it means stream is in Dyck(S). At the same time during the

computation of hash function, algorithm keep track of the height. It rejects if the height of any prefix is negative. The

space, time and error of the algorithm is discussed in the following section.

Algorithm 4 Single-pass algorithm using Counting Bloomfilter

1: Initialize counting bloomfilter B with all zeros.

2: Initialize k {It defines the number of hash function to be used}

3: Compute a prime p such that n1+γ ≤ p ≤ 2n1+γ ; {The pair (p, α) are used in the function hash; γ > 0 is a constant of

our choice.}

4: Initialize hash function hi for all i ∈ {1, 2, . . . , k} {Pick αi for all hi uniformly at random in the range [0, p− 1] }

5: while stream is not empty do

6: read next letter y
7: if y is an upstep then

8: for all i ∈ {1, 2, . . . , k} do

9: calculate hash location for y using hi

10: increment the B [hi (y)]
11: end for

12: else {y is a downstep}

13: for all i ∈ {1, 2, . . . , k} do

14: calculate hash location for y using hi {Assuming y as upstep of the same type}

15: if B [hi (y)] > 0 then

16: decrement the B [hi (y)]
17: else

18: reject: "mismatch"

19: end if

20: end for

21: end if

22: end while

23: if All entries in the B is not zero then reject: "missing closing parenthesis"

24: end if

25: accept

5.1.1 Space Analysis

Space requirement of our algorithm depends on the size of the Counting Bloomfilter (CBF). The size of CBF depends on

the number of unique elements(keys) that are going to be hash on the CBF and the number of hash functions used. k, the

number of hash function is a user defined parameter, generally k = 7 suffices with very high probability. Specially, when

the ratio between the number of elements in the stream and number of unique elements in the stream is 10. (as explained

in section 3.4).

Proposition 5.2. In algorithm 4, at any instance, no two hashed elements in the counting bloomfilter will have same

height.

Proof. We will prove it by contradiction. Let two elements xi and xj , where i < j, are hashed to CBF with the same

height d. Then,

ht(xi) = height(x[1, i]) = d and ht(xj) = height(x[1, j]) = d
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which means,

height(x[i+ 1, j − 1]) = 0

Both xi and xj are upsteps, since both elements are still in CBF,

Then,

ht(xj) = height(x[1, j]) = ht(xi) + height(x[i+ 1, j − 1]) + 1

ht(xj) = height(x[1, j]) = d+ 0 + 1 6= ht(xi)

Which contradicts our assumption. Hence two hashed elements in the CBF can not have same height.

The hash functions that we are using uses type of parenthesis i.e ai and the height(ai) to calculate the hash location

in CBF. In case of Dyck(s) language, number of unique elements is same as the number of different combination of ai

and height(ai). The important thing to notice is, no two elements in the CBF can have same height. So the number of

elements in the CBF, at any instance is less than or equal to the maximum height attained. Hence the space required is in

order of maximum height of the stream.

Proposition 5.3. Let s = |∑s |, where
∑

s is the alphabet set. In the CBF based approach for deciding membership in

Dyck(s), the number of unique elements in CBF at any instant is always less than or equal to the maximum height attained

by the stream.

Proof is similar as Proposition 5.1.

In the worst case, when the stream x is of the form x = uv, where u has only upsteps and v has only downsteps, in

equal numbers. Then the stream will have all possible height from 1 to n/2 distributed (assume equally for calculation)

among ai’s where i ∈ {1, 2, . . . , s}. So the space requirement in the worst case will be
(

n
2s · s · k

)

, which is O (n), as k

is almost a constant. If we consider the case where upsteps and downsteps are randomly distributed (which is generally

the case with practical application of Dyck like, XML recognition), then the maximum height of the stream will be very

less, so is the number of combinations of ai and height(ai) and so the space required is O (h) where h is the maximum

height of the stream x.

The algorithm described above works directly on Dyck(s) and does not require streaming reduction. It means, our

algorithm saves O (log s) times of space that other algorithms use to reduce Dyck(s) into Dyck(2).

5.1.2 Time Analysis

Processing time of any element in the stream is dominated by the computation of the hash function. And we have seen

in the previous algorithms that time to calculate hash function is polylog(n), which takes polylog(n) time[27]. So in our

case also time per letter will be polylog(n), as we have seen in section 3.4 constant number of hash function is enough to

give very less error probability, so we can consider k as a constant, so the time is O (polylog (n)) per letter.

5.1.3 Error

Error involved in the algorithm is because of the following reasons:

• The probabilistic calculation of prime number in polylog(n) time[27]. The standard and most efficient procedure

to find a prime number p such that n1+γ ≤ p ≤ 2n1+γ , outputs a prime number with probability 1 − n−γ where

γ > 0 is a constant.
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• In our algorithm, whenever an upstep appears it increments all the k counters and when a downstep appears it tries to

decrements the same counter using the same hash function. To decrements the same counter it raises a membership

query to check the presence of corresponding upstep. While doing so because of the false positive error ( Section

3.4 ), counting Bloomfilter can answer wrong with error probability equal to the false positive rate of CBF.

• Latest research by Deke Gua et. al.[28] has proved that Bloomfilter returns false negatives because of incorrect

deletion caused by the false positive rate. So the Bloomfilter can give wrong answer with probability equal to false

negative rate of CBF.

5.2 Improved Single-pass Streaming Algorithm with O (
√
n) space

This algorithm is same as the existing single-pass streaming algorithm explained briefly in section 4.1. In that algorithm

Magniez et. al. [6] are using two stacks Stemp and S. The size of Stemp is
√
n log n and the size of each entry in Stemp

is O (1) bit where as size of S is
√

n/ log n and the size of each entry is O (log n). This streaming algorithm which takes

single-pass of the stream uses O
(√

n log n
)

space and polylog (n) time per letter to decide the membership of stream in

Dyck(2).

As we know the standard stack based approach uses only one stack and takes linear space to decide the membership

where as algorithm explained earlier that two stack to do the same with reduced space, O
(√

n log n
)

. Two stacks, one

for removing matching pairs and other for storing the fingerprints of the letters seen so far that remain to be checked. It

gives an intuition that if we increase the number of stacks we can reduce the space further. Keeping in mind that the space

lower bound[14][15] proved for the Dyck(2) membership problem is Ω(
√
n/T ), where T is the number of passes that

algorithm performs over the input stream in either direction. And the best existing algorithm till now in terms of space

takes O
(√

n log n
)

. So we increase the number of stacks from two to three which results in the following algorithm that

takes space matching to the proven lower bound i.e. O (
√
n).

u11u12 . . . u1q u21u22 . . . u2q . . . uj1uj2 . . . ujq vj1vj2 . . . vjq . . . v21v22 . . . v2q v11v12 . . .1q

∑

hk,
∑

lk
. . .

. . .

. . .
∑

h2,
∑

l2
∑

h1,
∑

l1

Stack S2

|S| = log n

hash(u(j−1)1...u(j−1)q), q

. . .

. . .

. . .

hash(u(i+1)1 . . . u(i+1)q), q

hash(ui1 . . . uiq), q

Stack S1

|S1| =
√
n/ log n

ujq

uj(q−1)

. . .

. . .

uj2

uj1

Stack Stemp

|Stemp| = q =
√
n

Figure 5.1: Shows the condition of stacks Stemp S1 and S just before reading v. x = uv, is the input stream, where u is

the continuous sequence of only upsteps and v is of only downsteps is same number. Stemp stores the upsteps, S1 stores

the hash of q letter once Stemp is filled and S2 stores the sum of the items of S1, once filled.

Algorithm 5(see figure 5.1) also tries to collect sequence of l upsteps, but this time l = ⌈√n⌉,while doing so, it

checks for the matching pairs,by using standard stack-based algorithm. Upstep followed by downstep is checked for

the well-formedness and then discarded. This check is performed using stack Stemp, it checks for every matching pair

encountered in the stream till the limit of Stemp reaches. Once the stack Stemp is filled with l upsteps, then algorithm

hashes v = v1v2v3 . . . vl (sequence of l upsteps) to hash(v) and empties Stemp. The hash value h along with the height l

is pushed into the stack S1. If stack S1 reaches its limit, then comes the role of stack S2. The purpose of S2 is same as
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S1, only difference is, it takes values only when S1 gets filled. S2 stores the encoding ( say sum of all the hash values

in stack S1 ) of stack S1. To do so for every entry in S1, update h1 as h1 = h1 + htemp and l1 as l1 = l1 + ltemp and

whenever there is an entry in stack S2 reset both h1 and l1. Each entry of the stack S1 ans S2 is of the form (h, l) encodes

the subword v of the stream x such that h = hash (v) and l = height (v). The algorithms uses stack S1 and S2 to store

the information about the blocks read so far. The hash function used in this algorithm is also same as defined in section

4.1.1.

Algorithm 5 Single-pass streaming algorithm with three stacks Stemp, S1 and S2

1: Stemp ← empty stack of upsteps; S1 ← empty first stack of items (h, l); S2 ← empty second stack of items (h, l)
2: (htemp, ltemp)← (0, 0) {This pair encodes the subword contained in Stemp }

3: (h1, l1)← (0, 0) {This pair encodes the subword contained in stack S1 }

4: Compute a prime p such that n1+γ ≤ p ≤ 2n1+γ ; Pick a uniformly random α ∈ [0, p− 1] {The pair (p, α) are used in

the function hash; γ > 0 is a constant of our choice.}

5: while stream is not empty do

6: read next letter y from stream

7: if y is an upstep then

8: push y on Stemp

9: update (htemp, ltemp) with y : htemp ← (htemp + hash (y)mod p) ; ltemp ← ltemp + 1
10: if Stemp has size ⌈√n⌉ then

11: update (h1, l1) such that h1 ← (h1 + htemp) ; l1 ← l1 + ltemp

12: push (htemp, ltemp) on to S1 and reset Stemp to empty; (htemp, ltemp)← (0, 0)
13: if S1 has size ⌈√n/ log n⌉ then

14: push (h1, l1) on to S2 and reset S1 to empty; (h1, l1)← (0, 0)
15: end if

16: end if

17: else {y is a downstep}

18: if Stemp is not empty then

19: pop z from Stemp

20: check that zy is well-formed: zy ∈ {aa, bb} (if not, reject: "mismatch")

21: update (htemp, ltemp) for removal of z : htemp ← (htemp − hash (z)mod p) ; ltemp ← ltemp − 1;

22: else if S1 is not empty then

23: pop (h, l) from S1

24: update (h, l) with y : h← (h+ hash (y)mod p) ; l← l − 1;

25: if l = 0 then check that h = 0 (if not, reject: "mismatch")

26: else push (h, l) on S1

27: end if

28: else if S2 is not empty then

29: pop (h, l) from S2 (if empty, reject: "extra closing parenthesis")

30: update (h, l) with y : h← (h+ hash (y)mod p) ; l← l − 1;

31: if l = 0 then check that h = 0 (if not, reject: "mismatch")

32: else push (h, l) on S2

33: end if

34: else reject: "extra closing parenthesis"

35: end if

36: end if

37: end while

38: if any of S2 , S1 and Stemp is not empty then reject: "missing closing parenthesis"

39: end if

40: accept

For brevity, consider the same stream x = uv where u = u1u2 . . . un/2 is the continuous sequence of only upsteps

and v = v1v2 . . . vn/2 is the continuous sequence of same number of only downsteps. To decide membership of x in

Dyck(2), we read input in blocks of length q. For each block x[iq + 1, (i + 1)q] where i ∈ {1, 2, . . . n/2q − 1} store

17



item (hi, li) where hi = hash
(

vi1vi2 . . . viq
)

and length li = q in the stack S1. Similarly when S1 gets filled we store

(
∑

i hi,
∑

i li) in stack S2.

Now in order to process v, sequence of downsteps, we either check for the match with top element of stack Stemp

or add it to the top element of stack S1 and decrements l. If S1 is empty then add to the top element of stack S2 and

decrement l. After decrementing, if l becomes zero and h is still non-zero then reject. If all three stacks are empty after

processing the stream then algorithm outputs that, x ∈ Dyck(2) else outputs x /∈ Dyck(2).

5.2.1 Correctness

The correctness of this algorithm relies on the linearity of the hash function. Consider algorithm is correct upto first

level stack i.e. S1 as all the steps are same as previous "Single-pass streaming algorithm with O
(√

n log n
)

space" refer

section 4.1 till this point. Now it remains to verify if the use of second level stack i.e. S2 preserves the order of upsteps

or not.

Theorem 5.1. Algorithm 5 is a single-pass randomized steaming algorithm for Dyck(2) with space O (
√
n) and time

polylog (n). If the stream belongs to Dyck(2) then the algorithm accepts it with certainty; otherwise it rejects it with

probability at least 1− n−c, where c > 0 is a constant.

Proof. Proof for both space and time complexity of the algorithm is explained in following section.

Lemma 5.1. Let v = v11v12 . . . v1q . . . vj1vj2 . . . vjqvtemp be the subword encoded by (Stemp, S1, S2), where vi1 . . . viq ,

for all i ∈ {1, 2, . . . n/2q−1} are the subwords encoded by S1(in bottom-up order) as (hi, li). S2 stores
(

∑

1≤i≤k hi,
∑

1≤i≤k li

)

(in bottom-up order), where k =
√
n/ log n, is the size of stack S1. vtemp is the sequence of upsteps in Stemp (in bottom-

up order). Then the polynomial of degree
q
√
n

log n
represented by an entry in S2 is same as the sum of k polynomials of

degree q, represented by stack S1 just before pushing into S2.

Proof. For simplicity, assume v is the continuous sequence of upsteps of only one type i.e. a. So the height of vij

represented as ht(vij) = height(x[1, iq + j − 1]) (just to simplify the notation). Then ht(vij) = 1 + ht(vi(j+1)), for

1 ≤ j ≤ q and ht(viq) = 1 + ht(v(i+1)1), for i ∈ {1, 2, . . . , n/2q − 1}.
Let vi1vi2 . . . viq , for 1 ≤ i ≤ k, be the subword encoded as (hi, li) by the ith entry of S1 then,

h1 = αht(v11) mod p + αht(v12) mod p + · · ·+ αht(v1q) mod p

h2 = αht(v21) mod p + αht(v22) mod p + · · ·+ αht(v2q) mod p

...
...

...
...

hk = αht(vk1) mod p + αht(vk2) mod p + · · ·+ αht(vkq) mod p

So the sum of k polynomials of degree k will be

∑

1≤i≤k

hi = αht(v11) mod p + · · ·+ αht(v1q) mod p · · ·+ αht(vk1) mod p + · · ·+ αht(vkq) mod p

Since the degree of each term is greater than it preceding term, therefore

∑

1≤i≤k

hi = h1 + h2 + · · ·+ hk

∑

1≤i≤k

li = l1 + h2 + · · ·+ lk
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which is the polynomial in α of degree
q
√
n

log n
.

Now consider the case where both types of upsteps (a, b) are present. According to the hash function used, hash value for

the upsteps of type b will be zero, but it will still contribute to the height calculation. So these terms will be missing in the

polynomial. But the degree of the polynomial depends on the highest degree term which will be from a type upsteps and

will be same for both the polynomials represented by the entries of S1 and S2. Hence the polynomial will be same.

5.2.2 Space Analysis

This algorithm uses three stacks namely Stemp, S1 and S2 to store the sequence of upsteps in compressed manner. Each

entry in Stemp, S1 and S2 takes space O (1) , O (log n) and O (log n) respectively. Size of stack Stemp is bounded by

⌈√n⌉, therefore it uses space O (
√
n). When Stemp (where size of Stemp is

√
n) get filled, a new element is pushed into

the S1 and Stemp is emptied. Size of stack S1 is bounded by ⌈√n/ log n⌉, therefore it uses space O (
√
n).

Lemma 5.2. Each entry in S2 is the sum of k entries of S1. If size of each entry of S1 is O (log n), then size of entry in

S2 is also O (log n).

Proof. Proof is just a simple calculation of number of bits required to store sum of k O (log n) bits numbers. Each entry of

S1 is of size O (log n) and there are k =
√
n/ log n entries in S1. Maximum value an entry can take is 2O(logn) = O (n).

So the maximum value that sum (hs) of k entries can take is equal to k ·O (n) =
√
n/ log n ·O (n) = O

(

n3/2/ log n
)

≤
O
(

n3/2
)

. Hence the number of bits required to store the sum hs = O
(

log n3/2
)

= O (log n).

Similarly, when S1 get filled, a new element is pushed into S2. To get new element in S2, algorithm has to process at

least ⌈
√
n

log n
×√n⌉ = ⌈ n

logn⌉ (size of S1 times size of Stemp) letters for every new element in S2, which bounds the size

of S2 by log n. We know (by lemma 5.2 ) the size of each entry in S2 is O (log n). Hence S2 uses O
(

(log n)
2
)

space.

So the total space requirement by the algorithm is O (
√
n) + O (

√
n) + O

(

(log n)
2
)

= O (
√
n).

5.2.3 Time Analysis

Processing time of every element in the stream is dominated by the computation of the hash function as it involves modular

exponentiation. We have seen in the previous algorithms that time to calculate hash function is polylog(n). So in our case

also time per letter will be polylog(n). The time to perform push and pop operation in the stacks is constant. The time

to calculate the sum of entries in S1 is also constant as we are summing them up in incremental fashion. So the overall

processing time of the algorithm is O (polylog (n)) per letter.

5.2.4 Error

Error involved in the algorithm is because of the following reasons:

• The probabilistic calculation of prime number in polylog(n) time[27]. The standard and most efficient procedure

to find a prime number p such that n1+γ ≤ p ≤ 2n1+γ , outputs a prime number with probability 1 − n−γ where

γ > 0 is a constant.

• Hash function, while calculating hash value forms a polynomial of degree d in α, where d is bounded by the

maximum height of the stream, at most n and α is a randomly selected number in the range [1, p − 1]. This

polynomial of degree d can have at most d roots (n in worst case). So the probability that hash(v) = 0 even when

stream is not in Dyck(2) is at most n/p ≤ n−γ .
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Input

Stream

y

If Stemp empty ?

If S1 empty ?

If S2 empty ?

Push y in Stemp

Update(htemp, ltemp)
htemp = htemp + hash(y)

ltemp = ltemp + 1

if |Stemp| == ⌈√n⌉

Push (htemp, ltemp) in S1

Update(h1, l1)
h1 = h1 + htemp; l1 = l1 + ltemp

reset (htemp, ltemp) ← (0, 0);

if |S1| == ⌈√n/log n⌉

Push (h1, l1) in S2

reset (h1, l1) ← (0, 0);

Pop z from Stemp

if yz is a matching pair

Update(htemp, ltemp)
htemp = htemp − hash(z)

ltemp = ltemp − 1
else reject "Mismatch";

Pop (h, l) from S1

Update(h, l) with y
h = h + hash(y); l = l − 1
if(l == 0 and h! = 0) reject;

Push(l, h) to S1

Pop (h, l) from S2

Update(h, l) with y
h = h + hash(y); l = l − 1
if(l == 0 and h! = 0) reject;

Push(l, h) to S2

Reject

"Extra closing parenthesis";

accept

If Stemp, S1 and S2 are empty;
empty

downsteps

empty

empty

upsteps

empty

Figure 5.2: Flow chart explains the flow of algorithm, it accepts stream x, if all three stacks Stemp, S1 and S2 are empty

in the end after processing whole stream.Then input stream x ∈ Dyck(2).
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Chapter 6

Results

In the table 6 we compare the space, time and error bound of our proposed algorithms with the algorithms presented by

Frederic et. al. in [6]. The time bound for both single-pass streaming algorithms and for two-pass bidirectional algorithm

is O (polylog (n)) . All algorithms explained in this report, except the one uses counting bloomfilter, gives only one-

sided error. All these algorithms uses the same linear hash function for stack compression and gives same one-sided error

(1−n−γ). The two-sided error in one-pass streaming algorithm with counting bloomfilter is because of the false positives

and false negatives of CBF. False positive in bloomfilter is well know problem where as false negative problem of CBF is

observed recently by Deke et. al in [28].

The space requirement of existing single-pass streaming algorithm is O
(√

n log n
)

, which is not close enough to

the lower bound ( which is Ω(
√
n/T ), for T pass algorithm ). This algorithm uses two stacks Stemp and S of size√

n log n and
√

n/ log n respectively, to reduce the space requirement from linear time. In the proposed improved single-

pass streaming algorithm, instead of two we are using three stacks Stemp, S1 and S2 of sizes
√
n,
√
n/ log n and log n

respectively. By doing so we got the significant improvement in the space requirement from O
(√

n log n
)

to O (
√
n)

which matches the lower bound.

Single-pass streaming algorithm that uses counting bloomfilter takes space O (hmax), where hmax is the maximum

height of the input stream. This algorithm directly acts on the Dyck(s), avoiding the necessity of streaming reduction.

This algorithm saves the O (log s) expansion in the length of input stream, and so the space. Even in the worst case when

stream is the continuous sequence of upsteps followed by the same number of downsteps, the space requirement will we

O (log s) time less than the naive approach. If there is any bloomfilter compression technique like stack compression,

then we can achieve the similar lower bound as for Dyck(2), that too without streaming reduction.

Number of Passes Time per letter Space Error Remarks

1 (unidirectional) O (polylog (n)) O
(√

n log n
)

1− n−γ uses two stacks S and Stemp

2 (bidirectional) O (polylog (n)) O
(

(log n)
2
)

1− n−γ uses one stack with binary decomposition

1 (unidirectional) O (polylog (n)) O (
√
n) 1− n−γ uses three stacks and matches lower bound

1 (unidirectional) O(1) O (hmax) fpp of CBF uses CBF and acts on Dyck(s)

Table 6.1: Comparison of algorithm
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Chapter 7

Conclusion and Future Work

In this work we presented two single-pass randomized streaming algorithm, (a) Single-pass Streaming Algorithm us-

ing Counting Bloomfilter, (b) Improved Single-pass Streaming Algorithm with (
√
n) space. Algorithm (a) uses space

O(hmax) to decide membership in Dyck(s) and (b) is the extension of existing approach of two stacks to three stacks. In

(b) approach we achieved the lower bound (
√
n), for the space. We have proved the correctness and space bound for both

the algorithm. We proved that error in (a) is one-sided and in (b) error is two-sided beause of false positives and false

negatives in CBF.

We have seen that algorithm (a) takes space in the order of maximum height of the stream. In worst case height of the

stream can be linear, so to reduce the space one can think for some bloomfilter compression techniques and can achieve

better bound. The three stacks approach of Dyck(2) can be used to address the problem of checking priority queues as

defined in [12].
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