Improvement of Water Hyacinth Bioconversion by Different Organic and Mineral Acid Pretreatment and the Effect of Post-pretreatment Washing

Gundupalli, Marttin Paulraj and Tantayotai, Prapakorn and Chuetor, Santi and Cheenkachorn, Kraipat and Joshi, Sanket and Bhattacharyya, Debraj and et al, . (2022) Improvement of Water Hyacinth Bioconversion by Different Organic and Mineral Acid Pretreatment and the Effect of Post-pretreatment Washing. BioEnergy Research. ISSN 1939-1234

Full text not available from this repository. (Request a copy)

Abstract

Water hyacinth is a non-edible plant having a severe impact on aquatic ecosystems through native vegetation displacement and lower dissolved oxygen concentration. High cellulose and low lignin content make water hyacinth a potential source for biofuel production. Water hyacinth was subjected to acid pretreatment using organic acids (citric acid (CA) and oxalic acid (OA)) and mineral acid (hydrochloric acid (HA)) to enhance enzymatic saccharification, and ethanol and biogas production. Under optimized pretreatment condition, the reducing sugars released from enzymatic saccharifications of CA-, OA-, and HA-pretreated samples increased by 2.56-, 1.71-, and 1.62-fold, respectively, than untreated sample. Maximum ethanol yield (8.97 g/L) was observed for OA-pretreated (1.68-fold increase) than untreated water hyacinth, whereas CA-pretreated sample produced the highest biogas yield (3421.5 mL) after anaerobic digestion for 45 days. The increase in the yield of ethanol and biogas for OA and CA is attributed to the changes in the hemicellulose and lignin structure. The change in the structural morphology was observed through FTIR characterization of untreated and treated water hyacinth. In addition, the effect of post-washing after pretreatment on fermentation efficiency was evaluated and the result suggested that CA residues had no negative effect on ethanol production. Pretreatment of water hyacinth using organic acids could benefit the biorefineries through the biofuel production and reduction of wastewater generated from this process.

[error in script]
IITH Creators:
IITH CreatorsORCiD
Bhattacharyya, DebrajUNSPECIFIED
Item Type: Article
Additional Information: The authors are thankful to the King Mongkut's University of Technology North Bangkok (Grant Contract No. KMUTNB-66KNOW-03, KMUTNB-Post-65-05) and Srinakharinwirot University (Grant Contract No. 410/2565-SWU) for the financial support during this work.
Uncontrolled Keywords: BIOGAS PRODUCTION,SULFURIC-ACID,FERMENTATION
Subjects: Civil Engineering
Divisions: Department of Civil Engineering
Depositing User: . LibTrainee 2021
Date Deposited: 31 Oct 2022 10:06
Last Modified: 31 Oct 2022 10:06
URI: http://raiith.iith.ac.in/id/eprint/11110
Publisher URL: http://doi.org/10.1007/s12155-022-10528-9
OA policy: https://v2.sherpa.ac.uk/id/publication/16122
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 11110 Statistics for this ePrint Item