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Abstract: - Solar cells based on polycrystalline Cu(In,Ga)Se2 absorber layers have yielded 

higher conversion efficiency among all the thin-film technologies. CIGS thin-films possess large 

optical absorption coefficient (≈ 105 cm-1) and a suitable bandgap of ≈ 1.20 eV for an ideal 

stoichiometry of CuIn0.7Ga0.3Se2. In the present study, Direct Current (DC) and Pulsed Current 

(PC) electrodeposition techniques are employed to obtain the near ideal stoichiometric CIGS 

thin-films on a Mo foil using a two electrode system at a constant potential. The as-deposited 

films are annealed at 550 °C under Ar atmosphere. Characterization of the annealed CIGS films 

is performed using SEM-EDS, XRD, Raman Spectroscopy and Photoelectrochemistry to study 

the morphology, stoichiometry, phase constitution and the photoelectrochemical response under 

solar simulated light. PC electrodeposition offered suitable manipulation of various parameters, 

which has helped in obtaining a better quality stoichiometric single phase chalcopyrite structured 

CIGS thin films with the elimination of unwanted secondary phases like Cu2-xSe. An improved 

photoelectrochemical performance, characteristic of a p-type semiconductor, is observed for the 

PC deposited CIGS films. 

I. INTRODUCTION 

The usage of fossil fuels end up with contaminating the global environment and changing 

the global climate whereas the recently emerging photovoltaics remains one of the clean energy 

options for a pollution-free globe and is going to be the major means for future energy-

harvesting system. Solar cells directly convert the incident sunlight to electricity based on the 

principle of photovoltaic effect. The main component of a solar cell is the absorber layer in 

which the incident light excites the ground state electrons to higher energy levels. An ideal 

absorber material essentially has to be a direct band gap semiconductor having high absorption 



coefficient, long diffusion length and low recombination velocity and should be able to form a 

good electronic junction with suitably compatible materials. Extensive possibilities are being 

explored to increase the conversion efficiency and to fabricate low cost solar cells. 

 

Among various absorber materials employed for solar cells, silicon (though an indirect 

bandgap semiconductor) has yielded highest conversion efficiencies1. Although significant 

fraction of the total solar cell market for terrestrial applications is constituted by Si wafer solar 

cells, the market for thin film solar cells is booming and is expected to grow significantly in the 

coming years. Thin films are favored over conventional silicon as the absorber layer due to the 

cost arguments and the superior energy balance. Thin film solar cells not only have the key 

advantage of dimensionality but also offer a wide variety of choices in terms of device design 

and fabrication. Among the thin-film technologies, CuInSe2 with its direct bandgap, high optical 

absorption coefficient (≈ 105 cm-1) and electronically rather passive defects is preferable. 

Substitution of In by Ga such that the ratio of Ga/(Ga + In) is around 25 – 30 %, shifts the 

bandgap from 1.04 to 1.15 eV, which is nearly ideal for a single junction cell. Presently, Cu(In, 

Ga)Se2 thin-film solar cells are the most efficient thin-film based photovoltaics with laboratory 

efficiencies up to 20%2-4. Various processing techniques, including co-evaporation5, sputtering6 

and pulsed laser deposition7 (PLD) have been used for the fabrication of high quality CIGS thin 

films. However, these conventional vacuum methods have drawbacks such as complexity in 

processing, high production cost and difficulty in scaling up, which are to be solved prior to the 

commercialization of the CIGS-based solar cells. Several non-vacuum based methods such as, 

electrochemical, electroless and chemical bath deposition have been widely investigated to 

fabricate CIGS thin-films.  The above techniques involve electrochemical and chemical reactions 



leading to the coating on an immersed substrate. Particulate-based processes use solid particles 

dispersed in a solvent to form an ink, which can be coated onto a substrate. Chemical processes 

also consist of coating molecular precursor solutions onto a substrate by mechanical means such 

as spraying or spin coating8. Among the non-vacuum-based methods, electrodeposition, a simple 

and economic method applicable to large area films with high quality in addition to efficient 

material utilization with minimum waste and high rate deposition process, has already witnessed 

reasonably higher efficiency CIGS based devices9. Electrodeposition of CIGS films can be 

performed with precise control over the stoichiometry and thickness on various substrates. 

Bhattacharya et al. 9, studied electrodeposition of CIGS films by direct current (DC) deposition 

and have reported an efficiency of 14.1%. Aksu et al.10, have employed electroplating using 

constant current and have reported an efficiency of 15.36 % with the use of additives, 

complexing agents, etc. Fu et al.11, have explored different plating techniques including DC, 

pulse and pulse reverse electrodeposition for the fabrication of CIGS thin films and reported the 

elimination of undesired secondary phases like Cu2-xSe to obtain single phase pure chalcopyrite 

CIGS thin films.  Liu et al.12, have employed the PC electrodeposition with the variation of duty 

cycle to remove the excess In and to avoid In-Se compounds during the deposition for the 

preparation of CIGS thin films. The use of PC electrodeposition offers the manipulation of 

various parameters like amplitude of the current/potential, duty cycle, and the duration of 

deposition, thereby enables the control over the composition of individual elements in a 

ternary/quaternary system like CIS/CIGS to ultimately obtain the single phase CIGS by avoiding 

secondary phases like Cu-Se, In-Se, and Ga-Se, etc12. Also, with the variation of duty cycle, 

morphology of the thin films would evolve into a highly dense and compact form to yield higher 

performance of the device. However, very few reports are available on the preparation of CIGS 



films by pulse and pulse-reverse electrodeposition, which are expected to result in better control 

over stoichiometry and morphology. 

 

In the present study, we report the synthesis of stoichiometric CIGS thin films by DC and 

PC electrodeposition techniques using a two electrode system in an additive-free electrolyte. The 

additional step of selenization, which is conventionally used, is avoided in the present study. PC 

electrodeposition has improved the morphology and purity of CIGS which led to an 

improvement in the photoelectrochemical performance of CIGS thin films.  

 

II. EXPERIMENTAL 

Electrodeposition of CIGS films is done from a bath containing CuCl2 (3 mM), InCl3 (3.2 

mM), GaCl3 (8.5 mM), H2SeO3 (8.5 mM) and LiCl (250 mM) dissolved in a pH 3 Hydrion 

buffer solution. The pH of the final solution is adjusted between 2.15 and 2.35 with the use of 

HCl and no additives were used. Electrodeposition of CIGS films by the application of DC and 

PC (Dynatronix Model DuPR10-3-6 Pulse Power Supply) is performed with an optimized set of 

pulse parameters (Pulse period – 20 ms and duty cycle – 50 %) in a vertical cell with high purity 

graphite plate as anode and Mo foil as cathode. Both DC and PC electrodeposition of CIGS are 

carried out by applying a potential of about -1.5 V for 15 min, at room temperature and without 

stirring. The electrodeposited films are annealed at 550 °C for 30 min in Ar atmosphere13. 

 

X-ray diffraction (XRD) was employed to examine the phase constitution of the annealed 

CIGS films using a Bruker's D8 advanced X-ray diffractometer (Germany) employing Cu Kα 

radiation (λ = 1.54 Å). The diffraction patterns were collected in the range of 2θ = 10 – 90° with 



a scan rate of 1° per min. The microstructural and elemental analyses were performed using 

S3400N Scanning electron microscope (SEM) (Hitachi) with an attached EDAX system 

(Thermo Electron Corporation). Raman spectra of the samples were investigated using the 

Horiba Jobin Yvon-Lab Ram HR-800 Raman spectrometer with Ar ion laser as light source (514 

nm). Photoelectrochemical (PEC) performance of the CIS thin films was investigated using the 

CH Instruments electrochemical analyzer (Model 660A). The measurements were carried out 

potentiostatically in a classical three-electrode electrochemical cell with the CIGS thin film with 

a surface area of 1 cm2 as the working electrode, Pt foil and a Saturated Calomel Electrode 

(SCE) as the counter and reference electrodes respectively, in 0.5 M Na2SO4 solution. A Solar 

simulator (Newport) with AM 1.5 Global (80 mW/cm2) lens was used as the light source.  

 

III.  RESULTS AND DISCUSSION 

Stoichiometric chalcopyrite CIGS thin films with good adhesion to the Mo foil using a 

two electrode system by optimizing the precursor concentrations, pH of the electrolyte 

deposition potential and pulse parameters.  In a conventional three electrode system, although the 

reference electrode maintains a constant potential at cathode, it could possibly increase the 

impurities in the deposited film. Dharmadasa et al.14, reported that the absence of reference 

electrode changes the potential of the cathode only by a few mV indicating not much difference 

in the features of the deposit. In addition, a two electrode system is suitable for scaling up the 

process. During the process of optimization PC electrodeposition method, several parameters are 

varied for the deposition of CIGS thin films, however, the films are observed to have 

stoichiometry away from the ideal value, which resulted in presence of several other phases in 

addition to chalcopyrite CIGS. Hence in the present context, optimized CIGS thin films are being 



discussed. Electrodeposition of the CIGS films is also done by use of DC electrodeposition at a 

potential of -1.5 V for comparison. Figures 1a and 1b show the SEM micrographs of the 

annealed DC and pulse electrodeposited CIGS films respectively. It can be observed from Fig. 1a 

that the morphology of the DC electrodeposited CIGS film exhibits a porous structure with finer 

spherical particles and the film appeared to be rough. The porosity of the film could be due to the 

building-up of the material at existing nucleation sites and/or due to the entrapment of hydrogen, 

generally evolved during the direct current deposition. Unlike the DC electrodeposited CIGS 

films, highly dense and smooth films with slightly coarser spherical particles exhibiting good 

uniformity are observed for PC electrodeposited CIGS films (Fig. 1b). PC method can produce 

relatively more homogeneous surface with good adhesion to the substrate because the rate-

determining step of the deposition process is controlled by a mass-transfer process. Relaxation 

time in the PC electrodeposition not only allows the diffusion of ad-atoms but also facilitates the 

formation of new nucleation sites thereby leading to the homogeneous and compact structure 

unlike the DC deposition. Compositional analysis of CIGS thin films is performed by energy 

dispersive X-ray spectroscopy (EDS). The stoichiometry of the annealed DC and pulse 

electrodeposited CIGS films is obtained to be Cu1.10In0.54Ga0.23Se2.13 and Cu0.98In0.73Ga0.25Se2.03 

respectively. The stoichiometry of DC deposited CIGS films is slightly away from the ideal 

value whereas near ideal stoichiometry is observed for the PC electrodeposited CIGS film.  

 



 

Figure 1: SEM Micrographs of annealed CIGS films prepared using a) DC and b) PC 

Electrodeposition 

 

Figure 2 shows the XRD patterns of annealed DC and PC electrodeposited CIGS thin 

films. These patterns show preferred orientation corresponding to (112) and other orientations to 

(211), (220), (312) and (424) for CIGS (JCPDS diffraction file no. 35-1102) are observed in the 

film11. This confirms the presence of crystalline chalcopyrite CIGS phase in the film. In addition 

peaks representing MoSe2 (JCPDS diffraction file no. 29-0914) and Mo (substrate, JCPDS 

diffraction file no. 42-1120) are also observed for both DC and PC electrodeposited films. Wada 

et al.13, have reported that at the Mo/CIGS interface, a thin layer (≈ 100-150 nm) of MoSe2 forms 

at temperatures higher than 500 °C, which not only improves the adhesion between Mo and 

CIGS but also enhances the ohmic contact. Except for the diffraction peaks from Mo substrate, 

MoSe2 and CIGS films, the Cu2-xSe secondary phase (JCPDS diffraction file no. 53-0523) is also 

observed in specimen fabricated with the DC electrodeposition technique. However, the 



secondary phase was absent in the specimens prepared by the pulse electrodeposition technique. 

This indicates that the pure phase of CIGS is successfully fabricated by the pulse 

electrodeposition technique (V = -1.5 V vs. SCE with Ton = 10 ms and Toff = 10 ms and total 

time of deposition is 15 min).  

 

Figure 1: X-Ray Diffraction Patterns of annealed DC and Pulse electrodeposited CIGS thin films 

 

Figure 3 shows the Raman spectra of the annealed DC and PC electrodeposited CIGS 

thin films. A1, B2 and E modes of the CIGS film are found at 176, 205 and 232 cm-1 respectively 

for both CIGS thin films11. In addition to these peaks, a less intense peak corresponding to A1 

mode of Cu2-xSe is found at 260 cm-1 in case of DC electrodeposited CIGS thin film. This Cu2-

xSe secondary phase is generally dispersed on the surface (Is it the dendritic part) of CIGS thin 

films. However, the A1 mode of the Cu2-xSe secondary phase is not found in the thin film 

fabricated by the PC electrodeposition technique. It is suggested that the CIGS thin film 

fabricated by the PC electrodeposition technique with a pulse period of 20 ms and duty cycle of 

50 % can effectively remove the Cu2-xSe secondary phase and produce a single phase of CIGS 

chalcopyrite structure. As it can be seen from the stoichiometry of the DC and PC 

electrodeposited CIGS films (Cu1.10In0.54Ga0.23Se2.13 and Cu0.98In0.73Ga0.25Se2.03), excess Cu is 



being deposited in case of DC deposited CIGS led the film to be away from the near ideal 

stoichiometry and hence facilitated the formation of the undesired Cu2-xSe secondary phase. Use 

of complexing agents in the electrolyte during deposition and/or etching of the deposited CIGS 

film using KCN are in practice for the removal of excess Cu and hence the secondary Cu2-xSe 

phase15. However, use of complexing agents might lead to the impurities in the film and KCN 

etching is found to make the film rough. Hence, in the present study, PC electrodeposition is 

employed with suitable optimization of parameters to control the composition of individual 

elements and aided the elimination of undesired Cu2-xSe secondary phase.  

 

 

Figure 2: Raman Spectra of annealed DC and pulse electrodeposited CIGS thin films 

 

The photoelectrochemical performance of annealed DC and PC electrodeposited CIGS 

thin films is studied in 0.5 M Na2SO4. Current vs. potential curves are obtained in the potential 

range of -0.1 to -0.7 V vs. SCE with a sweep rate of 10 mV/s. Figure 4 shows the I-V curve in 

dark and under AM 1.5 G solar simulated light for the CIGS thin films. An increase in cathodic 

photocurrent in the third quadrant, a characteristic of a p-type semiconductor, is observed with 

increase in cathodic potential in both the cases. This behavior is attributed to an incomplete 



photonic conversion, which causes a recombination of charge carriers at the grain boundary of 

the semiconductor12, 16. Photocurrent densities of 49 and 85 μA/cm2 at a potential of -0.6 V vs. 

SCE are observed for DC and PC electrodeposited CIGS thin films respectively. Relatively 

higher dark current is observed for the DC deposited CIGS over PC electrodeposited CIGS, 

which could be attributed to the presence of Cu2-xSe secondary phase. Cu2-xSe, being a 

degenerate semiconductor; is highly conductive and results in high dark currents17, is generally 

present in the CIGS films deposited by direct current (DC) deposition11. Near ideal stoichiometry 

and highly dense uniform morphology of the CIGS film and the reduction in quantity of Cu2-xSe, 

the undesired secondary phase by PC electrodeposition have resulted in the improved 

photocurrent densities.  

 

 

Figure 3: Photoelectrochemical response of annealed DC and pulse electrodeposited CIGS films 

 

 

IV. CONCLUSIONS 

 



CIGS thin films are deposited using DC and PC electrodeposition techniques in an 

additive free electrolyte by avoiding the additional step of selenization. DC electrodeposited 

CIGS films are slightly away from the near ideal stoichiometry and observed to have porous 

morphology with high surface roughness. However, parameters are successfully optimized for 

PC electrodeposition to produce near-ideal stoichiometric single phase chalcopyrite structured 

CIGS films with the elimination of undesired secondary phases. In addition, a highly dense 

uniform morphology is observed for PC deposited CIGS films which ultimately resulted in the 

improved photoelectrochemical performance of CIGS thin films. The characteristic of p-type 

semiconductor is observed in the both the DC and PC deposited CIGS thin films. 
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