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                                        Abstract 

 

An efficient one-pot cascade aerobic oxidative palladium-catalyzed multi-

component reaction was developed through isocyanide insertion between less active 

amide NH and aromatic amine.  This approach leads to an efficient synthesis of 2-

amino-substituted 4(3H)-quinazolinones. 
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Palladium Catalyzed Aerobic Oxidative 

Isocyanide Insertion Leading to 2-Amino 

Substituted 4(3H)-Quinazolinones 
 

1. Introduction: 

Recently, the development of Multi-Component Reactions (MCRs) is in the 

wide employment of transition metals which catalyze various reactions to synthesize 

heterocyclic molecules.
1
  MCR complies with several green principles, and is easier 

and less time consuming than the conventional synthesis.  It offers several 

remarkable advantages like convergence, operational simplicity, facile automation, 

reduction in the number of steps, work up, extraction, purification thus minimizing 

the waste generated and rendering the transformation green.
2
  Among the generally 

used transition metal catalysts like rhodium, ruthenium, palladium, iron and copper; 

palladium occupies a prominent position.  Palladium catalyses variety of reactions 

and the one that is in boom presently among MCRs is the imidoylative reaction.     

 The very useful carbonylation (CO insertion) reaction in heterocyclic 

synthesis is now being replaced by imidoylation (isocyanide insertion).  Even though 

isocyanides are known for its obnoxious odour, their synthetic utility is very huge in 

the field of heterocyclic synthesis.
3
  Isocyanide undergoes nucleophilic attack, 

electrophilic addition, imidoylation, oxidation etc.  The unique feature of isocyanide 

to act as a one carbon building block makes it important in drug design and 

discovery.  The property of electrophilicity and nucleophilicity on same carbon is the 

cause for its utility in MCRs and subsequent combination reactions for the synthesis 

of nitrogen heterocycles.
3
  This property is similar to that of CO which provides an 

opportunity for its replacement by isocyanide. Other advantages isocyanides have 

over CO are its easy handling and the property to bring about high diversity.  Thus, 

having seen the scope of transition metal catalyzed MCRs it was inspiring for us to 

develop a transition metal catalyzed MCR in one pot for the synthesis of 2-amino-

substituted 4(3H)-quinazolinone. 
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2. Biological and pharmaceutical importance: 

 

             2-amino-substituted 4(3H)-quinazolinone 

Heterocyclic compounds are well noted for their wide presence among 

natural compounds and more importantly for its potent biological and medicinal 

properties. It is quite interesting to know that, among them, 4(3H)-quinazolinone 

group has a broad range of biological activities which includes antibacterial, 

antifungal, antiviral, antitumor, anticonvulsant
4a

 etc. Apart from these, many 

alkaloids too incorporate this moiety.  Its highly potent properties make it a very 

goodpharmacophore and it occupies a key role in drug design and discovery.  For 

e.g. methaqualone
4a

 (antimalarial), afloqualone
4a

 (muscle relaxant).  Guanidine 

moieties are other well known functionalities for their wide occurrence among 

natural products.  They possess some unique properties with respect to their 

interaction with biological system which makes them important in medicinal 

chemistry.  They are known to exhibit potent antibacterial, antiviral, antiparasitic, 

anticancer etc properties.  For e.g. anagrelide
4b

 (thrombocytosis), norastemizole
4c

 

(rhinitis).                                                                                                                                                                                       

It can be said that when two biologically potent functionalities are present within a 

same molecule, its bioactivity would be enhanced. One such molecule is 2-amino-

substituted 4(3H)-quinazolinones.  They have antibacterial, anti-inflammatory, 

antimalarial properties.  These also act against plant pathogens like TMV, 

Xanthomonas oryzae, Sclerotinia sclerotiorum
4d

 etc and thus useful agriculturally 

too.  It is worth mentioning that, apart from these, 2-amino-substituted 4(3H)-

quinazolinone moieties also have potent activity against Parkinson’s and hypokinetic 

conditions which are now becoming common among people in the fast moving 

lifestyle.
4e

  For e.g nolatrexed
4f

 (anticancer), acyclovir
4g

  (antiviral) (Fig. 1).  Thus, 

the major role these molecules have was an impetus for us to work towards the 

synthesis of privileged 2-amino-substituted 4(3H)-quinazolinones, which are 

expected to be studied for their biological properties.  Even though there are several 

strategies for its synthesis, exploring newer and efficient protocols would always be 

in demand. 
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  Fig. 1: Clinically useful quinazolinone and guanidine-containing heterocycles. 

 

3. Previous Methodologies: 

Since these molecules possess interesting and wide range of biological 

properties, its synthesis has drawn attention of many chemists.  There are several 

reports regarding the synthesis of 2-amino-substituted 4(3H)-quinazolinones which 

employ quite different strategies.  Herein, are presented some of the previous 

methods. 

1. Solid-phase synthesis of 2-amino-substituted 4(3H)-quinazolinones.
5
 

 

 

 

2.  Molybdenum-mediated synthesis of quinazolin-4(3H)-ones.
6
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3. Palladium-catalyzed cyclocarbonylation of o-iodoanilines with 

heterocumulenes.
7 

 

 

4. Tandem palladium-catalyzed addition/cyclocarbonylation.
8
 

 

 

 

The highly useful 2-amino-substituted 4(3H)-quinazolinones has several 

reports for its synthesis, of which only a few relevant procedures are mentioned 

above.  Few drawbacks the earlier methods possess are explained as follows.
9
  Even 

though combinatorial chemistry has emerged as a powerful tool for the design and 

synthesis of pharmacologically relevant heterocyclic molecules, they have certain 

disadvantages like (a) one must take care that the functional groups of the 

components involved are compatible with the solid support used; (b) the desired 

properties of the target molecule must be retained after detaching from the support; 

(c) reaction conditions being heterogeneous do offer several shortcomings.  Keeping 

this strategy apart, there are also other reports known for its synthesis in one-pot 

which employs transition metals, ligands, base and CO. 

Thus, having gone through several available reports for the synthesis, we 

desired to employ one-pot MCR using the newly evolving strategy which involves 

aerobic oxidative isocyanide insertion catalysed by palladium.  When compared with 

the already existing protocols that are catalysed by Pd(OAc)2, we sought out to 

design a reaction that is ligand free, base free, use of readily available starting 

materials and replacement of highly toxic CO with isocyanide.  Hence, this strategy 

reduces the amount of waste generated, makes work-up easier and better and newer 

than the existing protocols, thus making it eco-friendly.  However, to the best of our 

knowledge there are no reports for the synthesis of 2-amino-substituted 4(3H)-

quinazolinones in one pot without base and ligand, starting with isatoic anhydride. 
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4. Result and Discussion: 

Currently, the number of transition metal catalysed reactions involving 

isocyanide insertion is increasing rapidly.  There are several reports for the synthesis 

of biologically important heterocycles, for e.g. (a) Palladium catalysed 

multicomponent synthesis of oxazoline and benoxazole,
10

 (b) Synthesis of 

pyridopyrimidines by palladium catalyzed isocyanide insertion,
11

 (c) Synthesis of 4-

aminophthalazine-1(2H)-ones by palladium catalyzed isocyanide insertion,
12

 (d) 

Palladium catalysed synthesis of 2-aminobenzoxazinones by aerobic oxidative 

coupling,
13

 (e) Palladium catalyzed reaction for the synthesis of isoquinolin-1(2H)-

ones,
14

 (f) Palladium catalyzed synthesis of isocoumarins and phthalides
15

 etc.  These 

reports on heterocyclic synthesis drove us to investigate an efficient method for the 

synthesis of 2-amino-substituted 4(3H)-quinazolinones catalyzed by palladium.  We 

began to proceed with isatoic anhydride which opens with amine to give the desired 

dinucleophile under inert conditions (Scheme 1).  To the same reaction mixture 

CyNC and catalyst were added, oxygen atmosphere which acts as oxidant in order to 

regenerate the catalyst was provided.  The obtained dinucleophile serves as a 

substrate for isocyanide insertion, of which one is less active amide NH and the other 

being aromatic NH2 (Scheme 1).  For optimizing the reaction condition various 

bases, solvents and isocyanides of different equivalents were examined (Table 1 & 

2).  To our surprise, reaction went smoothly without any base and afforded very good 

yields with oxygen comparatively (Table 1).  Most of the isocyanide insertion 

reactions reported so far exclusively used tert-butylisocyanide to get the desired 

results in very good yields.  Moreover, reactions with primary and secondary 

isocyanides are reported to give low yields.  But, in our case the observations was 

inverse to this.  We obtained better results with secondary cyclohexylisocyanide 

while tert-butylisocyanide and various other isocyanides gave very low yields (Table 

3).  Thus, it is noteworthy to mention that reaction with tert-butylisocyanide failed to 

give expected results.  

As shown, good yields were obtained with toluene and DMSO as solvent.  In 

order to further expand the scope of reaction we chose DMSO as solvent with 1.5 

equiv. of cyclohexylisocyanide, oxygen as oxidant at 110 
o
C as our optimum 

condition (Entry 11).  We explored the generality of reaction with various amines 

like benzylic, aliphatic and aromatic amines.  We observed that formation of  
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dinucleophile took 30 minutes with aliphatic and benzylic amines while 2h with 

aromatic amines, which was 100% completed.  During the second step of the 

reaction we found that benzylic amines gave very good yields while aromatic and 

aliphatic amines gave low/no yields (Table 3).  In the case of benzylic amines with 

electron donating group very good yields were obtained. 

 

Scheme 1: Optimisation of reaction condition: 

 

Table 1
a 

 Screening of solvents with various bases and oxygen. 

Entry  Solvent Catalyst
b 

  Temp.(
o
C)       Additive

c
 Time (h) Yield

d 
(%) 

1. Toluene Pd(OAc)2 110 K2CO3/4ÅMS 30 35 

2. Dioxane Pd(OAc)2 90 K2CO3/4ÅMS 24 0 

3. Toluene Pd(OAc)2 110 Cs2CO3/4ÅMS 20 40 

4. Toluene Pd(OAc)2 110 Na
t
OBu/4ÅMS 30 40 

5. Toluene Pd(OAc)2 110 K
t
OBu/4ÅMS 30 45 

6. Toluene Pd(OAc)2 110 NaOMe/4ÅMS 30 10 

7. Toluene Pd(OAc)2 120             O2 24 30 

8. MeTHF Pd(OAc)2 77             O2 30 10 

9. Toluene Pd(OAc)2 110       O2/4ÅMS 17 72 

10. CH3CN Pd(OAc)2 85       O2/4ÅMS 17 0 

11. DMSO Pd(OAc)2 110       O2/4ÅMS 17 75 

a Reaction conditions: 1 (1 mmol), 2 (1 mmol), 4 (1.5 mmol), b 5 mol% of Pd(OAc)2, c 1.5 equiv. 
base., d isolated yield after column chromatography. 

 

Table 2
a 

 Screening of isocyanide equivalents and additive. 

Entry Solvent CyNC (equiv.)        Additive
c
    Time (h)    Yield

d
 (%) 

1. DMSO         1.0 K
t
OBu/4ÅMS 20 35 

2. DMSO         1.2 K
t
OBu/4ÅMS 30 40 

3. DMSO         1.5 K
t
OBu/4ÅMS 24 40 

4.  DMSO         1.2 O2/4ÅMS 24 30 

5. DMSO         1.5 O2/4ÅMS 17 75 
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6. Toluene         1.5 O2/4ÅMS 17 72 

7. Toluene         2.0 O2/4ÅMS 17 72 

a Reaction conditions: 1 (1 mmol), 2 (1 mmol),  5 mol% of Pd(OAc)2, 
c
 1.5 equiv., 

d
  isolated yield 

after column chromatography. 

 

Table 3: Scope of various amines and isocyanides for the synthesis of 2-amino-

substituted 4(3H)-quinazolinones (5a-r).
 a

 

        

  

 

 
a Reaction conditions: 1 (1 mmol), 2 (1 mmol), 4 (1.5 mmol), 5 mol% of Pd(OAc)2, isolated yield    

  after column chromatography.  
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5. Mechanism: 

 

 

Plausible mechanism involves the formation of dinucleophile (3) from isatoic 

anhydride 1 and amine 2.  Catalyst a reacts with the dinucleophile to form 3a, which 

is followed by isocyanide insertion giving rise to intermediate 4a.  This eventually 

undergoes reductive elimination to afford Pd
0 

which is stabilized by coordination of 

multiple isocyanides and oxidized by molecular oxygen to regenerate the catalyst. 

 

6. Conclusion 

 In conclusion, we were successful in developing a novel and facile one-pot 

palladium catalysed isocyanide insertion by aerobic oxidation for the synthesis of 

biologically important 2-amino-substituted 4(3H)-quinazolinones.  The procedure is 

operationally simple, employs Pd(OAc)2 which is of low cost relatively, eliminates 

the use of additional ligand or base. 



16 

 

 

 

 

7. Experimental Section 

General: IR spectra were recorded on a Bruker Tensor 37 (FTIR) spectrophotometer.  

1
H NMR spectra were recorded on Bruker Avance 400 (400 MHz) spectrometer at 

295 K in CDCl3; chemical shifts (δ in ppm) and coupling constants (J in Hz) are 

reported in standard fashion with reference to either internal standard 

tetramethylsilane (TMS) (δH =0.00 ppm) or CHCl3 (δH =7.25 ppm).  
13

C NMR 

spectra were recorded on Bruker Avance 400 (100 MHz) spectrometer at RT in 

CDCl3; chemical shifts (δ in ppm) are reported relative to CHCl3 (δC = 77.00 ppm).  

In the 
1
H-NMR, the following abbreviations are used throughout: s = singlet, d = 

doublet, t = triplet, q = quartet, qui = quintet, m = multiplet and br s = broad singlet, 

sept = septet.  The assignment of signals were confirmed by 
1
H and 

13
C spectral data.  

High-resolution mass spectra (HR-MS) were recorded on an Agilent 6538 UHD Q-

TOF using multimode source.  Melting points were determined using melting point 

apparatus manufactured by GUNA enterprises, India and are uncorrected.  Reactions 

were monitored by TLC on silica gel using a combination of hexane and ethyl acetate 

as eluents.  Solvents were distilled prior to use.  

 

General Procedure: 

In an oven dried Schlenk tube under nitrogen atmosphere, were added isatoic 

anhydride (1 equiv., 0.609 mmol), amine (1 equiv., 0.609 mmol) and activated 4Å 

molecular sieves (150 mg) followed by addition of dry DMSO (2 mL).  The reaction 

mixture was stirred at 110 
o
C for 30 minutes to 2 h.  The completion of first step was 

monitored by TLC.  Once dinucleophile was formed Pd(OAc)2 (5mol%), CyNC (1.5 

equiv., 0.913 mmol) were added under nitrogen atmosphere.  It was evacuated and 

filled with O2 using balloon.  The resulting reaction mixture was stirred at 110 
o
C.  

Progress of the reaction was monitored by TLC.  The reaction mixture was then 

quenched with water and the product was extracted with ethyl acetate.  The organic 

layer was dried over Na2SO4 and concentrated in vacuo.  The crude product (5a-r) 

was purified by column chromatography on silica gel using petroleum ether/ethyl 

acetate as eluent, which afforded the desired product. 
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Spectral Data 

 

 

3-Benzyl-2-(cyclohexylamino)quinazolin-4(3H)-one (5a): White solid (75%),  Mp 

106-108 
o
C. IR (MIR-ATR, 4000–600 cm

-1
): ʋmax = 3324, 3059, 2921, 1627, 1584, 

1517, 1487, 1384, 1230, 1198, 1029, 951, 751, 640.
 1

H NMR (CDCl3, 400 MHz): δH 

= 8.18 (dd, 1H, Ja = 8.1 and Jb = 1.2 Hz), 7.60-7.56 (m, 1H), 7.38-7.30 (m, 4H), 7.29-

7.26 (m, 1H), 7.17 (t, 1H, J = 7.6 Hz), 5.32 (s, 2H), 4.36 (d, 1H, J = 6.8 Hz), 3.99-

3.91 (m, 1H), 1.83 (dd, 2H, Ja = 8.6 and Jb = 3.7 Hz), 1.53-1.46 (m, 3H), 1.40-1.29 

(m, 2H), 1.18-0.98 (m, 3H).
 13

C NMR (CDCl3, 100 MHz): δC = 163.2, 149.5, 149.2, 

135.3, 134.4, 129.4, 128.2, 127.4, 126.6, 124.9, 122.4, 116.9, 49.7, 44.6, 42.5, 25.6, 

24.2. HR-MS (ESI+) m/z calculated for [C21H24N3O]
+
 = [M+H]

+
: 334.1914; found: 

334.1901.. 

 

 

 

3-Benzyl-2-(tert-butylamino)quinazolin-4(3H)-one (5b): White solid (40%), Mp 

110–112 
o
C. IR (MIR-ATR, 4000–600 cm

-1
): ʋmax = 3435, 3032, 2961, 2925, 1672, 

1584, 1567, 1477, 1362, 1208, 1148, 976, 766, 695. 
1
H NMR (CDCl3, 400 MHz): δH 

= 8.18 (dd, 1H, Ja = 8.1 and Jb = 1.2 Hz), 7.58-7.56 (m, 1H), 7.38-7.31 (m, 4H), 7.26 

(d, 2H, J = 7.3 Hz), 7.19-7.15 (m, 1H), 5.3 (s, 2H), 4.32 (s, 1H), 1.32 (s, 9H). 
13

C 

NMR (CDCl3, 100 MHz): δC = 163.3, 149.1, 148.4, 135.5, 134.2, 129.3, 128.2, 

127.3, 126.7, 125.3, 122.4, 116.9, 52.6, 44.9, 28.8. 
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2-(Cyclohexylamino)-3-(4-methoxybenzyl)quinazolin-4(3H)-one (5c): White solid 

(78%), Mp 130-132 
o
C. IR (MIR-ATR, 4000–600 cm

-1
): ʋmax = 3421, 2999, 2928, 

2852, 1662, 1610, 1578, 1561, 1475, 1450, 1346, 1247, 1176, 1033, 982, 765, 693. 

1
H NMR (CDCl3, 400 MHz): δH = 8.18 (dd, 1H, Ja = 7.8 and Jb = 1 Hz ), 7.60-7.56 

(m, 1H), 7.37 (d, 1H, J = 8.3 Hz), 7.21 (d, 2H, J = 8.8 Hz), 7.17 (m, 1H), 6.88 (d, 2H, 

J = 8.3 Hz), 5.26 (s, 2H), 4.44 (d, 1H, J = 6.8 Hz), 3.99-3.93 (m, 1H), 3.79 (s, 3H), 

1.88-1.86 (dd, 2H, Ja = 8.1 and Jb = 3.7 Hz ), 1.54-1.52 (m, 3H), 1.41-1.32 (m, 2H), 

1.20-1.15 (m, 1H), 1.10-1.01 (m, 2H). 
13

C NMR (CDCl3, 100 MHz): δC = 163.4, 

159.7, 149.4, 149.3, 134.3, 127.9, 127.3, 127.2, 124.9, 122.3, 116.9, 114.7, 55.3, 

49.7, 44.1, 32.6, 25.6, 24.3. 

. 

 

2-(Cyclohexylamino)-3-(4-methylbenzyl)quinazolin-4(3H)-one (5d): White solid 

(78%), Mp 138–140 
o
C.  IR (MIR-ATR, 4000–600 cm

-1
): ʋmax = 3422, 2926, 2853, 

1659, 1562, 1475, 1346, 1224, 1147, 1069, 986, 765, 695. 
1
H NMR (CDCl3, 400 

MHz): δH = 8.18 (dd, 1H, J = 7.8 Hz), 7.59-7.55 (m, 1H), 7.37 (d, 1H, J = 8.3 Hz), 

7.18-7.16 (m, 5H), 5.28 (s, 2H), 4.4 (d, 1H, J = 6.8 Hz), 3.90-3.99 (m, 1H), 2.33 (s, 

3H), 1.80-1.87 (m, 2H), 1.50 (d, 3H, J = 10.3 Hz), 1.30-1.41 (m, 2H), 1.12-1.19 (m, 

1H), 0.99-1.08 (m, 1H). 
13

C NMR (CDCl3, 100 MHz): δC = 163.2, 149.5, 149.3, 

138.0, 134.3, 132.21, 130.0, 127.3, 126.6, 124.9, 122.4, 116.9, 49.8, 44.4, 32.5, 25.6, 

24.2, 21.1. 
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2-(Cyclohexylamino)-3-(4-fluorobenzyl)quinazolin-4(3H)-one (5e): White solid 

(68%), Mp 118-120 
o
C. 

1
H NMR (CDCl3, 400 MHz): δH = 8.17 (dd, 1H, Ja= 8.1 and 

Jb = 1.2 Hz), 7.61-7.57 (m, 1H), 7.38 (d, 1H, J = 7.38 Hz), 7.20-7.16 (m, 1H), 7.06 (t, 

2H, J = 8.6 Hz), 5.29 (s, 2H), 4.27 (d, 1H, J = 7.3 Hz), 4.00-3.94 (m, 1H), 1.90-1.86 

(m, 2H), 1.52 (d, 3H, J = 10.3 Hz), 1.42-1.33 (m, 2H), 1.18-1.14 (m, 1H), 1.08-1.00 

(m, 2H).
 13

C NMR (CDCl3, 100 MHz): δC = 163.7, 163.1, 161.3, 149.4, 148.9, 134.5, 

131.1, 131.0, 128.4, 128.3, 127.3, 125.0, 122.5, 116.8, 116.4, 116.2, 49.8, 43.9, 32.6, 

25.6, 24.3. 

 

 

 

3-(2-Chlorobenzyl)-2-(cyclohexylamino)quinazolin-4(3H)-one (5f): White solid 

(72%), Mp 108-110 
o
C. 

1
H NMR (CDCl3, 400 MHz): δH  = 8.08-8.06 (m, 1H), 7.51-

7.47 (m, 1H), 7.30 (dd, 2H, Ja= 16.9 and Jb = 8.1 Hz), 7.16-7.11 (m, 1H), 7.09-7.04 

(m, 3H), 5.34 (s, 2H), 4.28 (d, 1H, J = 7.3 Hz), 3.89 (dtd, 1H, Ja = 10.1, Jb = 6.7 and 

Jc = 3.9 Hz), 1.82-1.78 (m, 2H), 1.47 (d, 3H, J = 8.8 Hz), 1.31-1.22 (m, 2H), 1.08-

1.00 (m, 3H). 
13

C NMR (CDCl3, 100 MHz): δC = 163.2, 149.5, 148.5, 134.5, 132.6, 

132.4, 129.6, 129.4, 128.2, 127.9, 127.3, 125.0, 122.4, 116.7, 50.1, 41.1, 32.7, 25.6, 

24.5. 

 

 

2-(Cyclohexylamino)-3-(3-methoxybenzyl)quinazolin-4(3H)-one (5g): White solid 

(65%), Mp 108–110 
o
C. IR (MIR-ATR, 4000–600 cm

-1
): ʋmax = 3423, 2969, 2853,  
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1662, 1579, 1563, 1476, 1347, 1261, 1147, 1049, 985, 766, 694. 
1
H NMR (CDCl3, 

400 MHz): δH = 8.19 (dd, 1H, Ja = 7.8 and Jb = 1.0 Hz), 7.62-7.57 (m, 1H), 7.38 (d, 

1H, J = 8.3 Hz), 7.31-7.27 (m, 1H), 7.18 (t, 1H, J = 7.1 Hz), 6.86 (dd, 2H, Ja = 7.1 

and Jb = 4.2 Hz), 6.82 (s, 1H), 5.30 (s, 2H), 4.41 (d, 1H, J = 6.8 Hz), 3.97 (dd, 1H, Ja 

= 7.6 and Jb = 4.2 Hz), 3.78 (s, 3H), 1.86 (dd, 2H, Ja = 8.3 and Jb = 3.9 Hz), 1.55-

1.49 (m, 3H), 1.42-1.33 (m, 2H), 1.21-1.15 (m, 1H), 1.10-1.02 (m, 2H). 
13

C NMR 

(CDCl3, 100 MHz): δC = 163.1, 160.5, 149.4, 149.2, 136.9, 134.3, 130.4, 127.3, 

124.9, 122.4, 118.9, 116.8, 113.78, 112.2, 55.3, 49.7, 44.6, 32.5, 25.5, 24.2. 

 

 

 

 

3-(2-(1H-indol-2-yl)ethyl)-2-(cyclohexylamino)quinazolin-4(3H)-one (5h): 

Yellow solid (62%), Mp 108-110 
o
C. 

1
H NMR (CDCl3, 400 MHz): δH = 8.40 (br s, 

1H), 8.02 (d, 1H, J = 8.3 Hz), 7.54 (d, 1H, J = 7.3 Hz), 7.43-7.39 (m, 1H), 7.26 (d, 

1H, J = 7.8 Hz), 7.18 (d, 1H, J = 8.3 Hz), 7.13-7.09 (m, 1H), 7.07-6.99 (m, 2H), 6.77 

(s, 1H), 4.17 (t, 2H, J = 6.1 Hz), 3.61 (d, 1H, J = 7.3 Hz), 3.44-3.41 (m, 1H), 3.15 (t, 

2H, J = 6.1 Hz), 1.44-1.33 (m, 6H), 1.16-0.99 (m, 3H), 0.80-0.74 (m, 1H). 
13

C NMR 

(CDCl3, 100 MHz): δC = 163.3, 149.6, 149.3, 136.7, 134.2, 126.8, 126.6, 124.8, 

123.2, 122.8, 120.2, 118.0, 117.1, 111.9, 111.8, 49.7, 43.5, 31.9, 25.5, 24.8, 24.1.  

 

  

 

 2-(Tert-butylamino)-3-cyclohexylquinazolin-4(3H)-one (5i): White solid (32%), 

Mp 82–84 
o
C. IR (MIR-ATR, 4000–600 cm

-1
): ʋmax = 3496, 2930, 2856, 1669, 1568, 

1519, 1478, 1361, 1205, 1137, 953, 764, 697. 
1
H NMR (CDCl3, 400 MHz): δH = 8.07 

(dd, 1H, Ja = 8.2 and Jb = 1.2Hz), 7.54-7.50 (m, 1H), 7.34-7.26 (m, 1H), 7.12-7.08 

(m, 1H), 5.14 (br s, 1H), 4.6 (br s, 1H), 2.16-2.04 (m, 2H), 1.94-1.70 (m, 6H), 1.60- 
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1.42 (m, 2H). 
13

C NMR (CDCl3, 100 MHz): δC = 163.5, 148.7, 148.3, 133.9, 127.1, 

124.8, 122.1, 52.6, 30.4, 29.3, 26.6, 25.7. 

 

 

 

 3-(2-Bromophenyl)-2-(cyclohexylamino)quinazolin-4(3H)-one (5j): White solid 

(48%), Mp 162-164 
o
C. IR (MIR-ATR, 4000–600 cm

-1
): ʋmax = 3288, 2920, 2851, 

1735, 1631, 1602, 1567, 1474, 1329, 1231, 1119, 1020, 957, 758, 648. 
1
H NMR 

(CDCl3, 400 MHz): δH = 8.13 (dd, 1H, Ja = 7.8 and Jb =1 Hz), 7.82 (dd, 1H, Ja = 8.1 

and Jb = 1.2 Hz), 7.63-7.59 (m, 1H), 7.56-7.52 (m, 1H), 7.44-7.37 (m, 3H), 7.18-7.14 

(m, 1H), 4.07-4.02 (m, 1H), 3.71 (d, 1H, J = 7.3Hz), 2.04-1.92 (m, 2H), 1.70-1.57 

(m, 3H), 1.45-1.31 (m, 3H), 1.18-1.02 (m, 2H).
 13

C NMR (CDCl3, 100 MHz): δC = 

162.0, 149.8, 147.9, 134.7, 134.5, 134.3, 131.4, 130.9, 129.5, 127.3, 125.0, 123.6, 

122.4, 117.4, 49.8, 32.9, 32.8, 29.7, 28.8, 26.4, 25.6, 24.6, 24.5. HR-MS (ESI+) m/z 

calculated for [C20H21BrN3O]
+
 = [M+H]

+
: 398.0863; found: 398.0879. 

 

 

 

 

2-(Cyclohexylamino)-3-(3,4,5-trimethoxyphenyl)quinazolin-4(3H)-one (5k): 

White solid (30%), Mp 162–164 
o
C. 

1
H NMR (CDCl3, 400 MHz): δH = 8.02-8.00 (m, 

1H), 7.63-7.59 (m, 1H), 7.26-7.23 (m, 3H), 7.17-7.13 (t, 1H, J = 7.6 Hz), 4.76 (br s, 

1H), 3.86-3.80 (m, 1H), 2.07-2.04 (m, 2H), 1.78-1.73 (dt, 2H, Ja= 13.4 and Jb = 3.8 

Hz), 1.67-1.63 (m, 4H), 1.48-1.38 (m, 3H), 1.30-1.18 (m, 9H).
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2-(Cyclohexylamino)-3-phenylquinazolin-4(3H)-one (5l): White solid (35%), Mp 

158–160 
o
C.  

1
H NMR (CDCl3, 400 MHz): δH = 8.01 (dd, 1H, Ja = 8.1 and Jb =1.2 

Hz), 7.69-7.58 (m, 2H), 7.42-7.23 (m, 2H), 7.14 (m, 1H), 4.90 (br s, 1H), 3.81 (m, 

1H), 2.06 (dd, 1H, Ja = 12.2 and Jb = 2.9 Hz), 1.77-1.72 (m, 3H), 1.65-1.61 (m, 1H), 

1.48-1.37 (m, 2H), 1.30-1.18 (m, 3H). 
13

C NMR (CDCl3, 100 MHz): δC = 160.1, 

150.6, 136.6, 128.7, 124.2, 123.4, 119.9, 113.2, 50.2, 32.9, 25.4, 24.6. 

 

 

 

 3-Cyclohexyl-2-(cyclohexylamino)quinazolin-4(3H)-one (5r): White solid (38%), 

Mp 162–164 
o
C. 

1
H NMR (CDCl3, 400 MHz): δH = 8.02 (dd, 1H, Ja = 8.1 and Jb =1.2 

Hz), 7.64-7.66 (m, 1H), 7.27-7.25 (m, 1H), 7.16 (t, 1H,J = 7.6 Hz), 4.82 (br s, 1H), 

4.15-4.07 (m, 1H), 3.86-3.79 (m, 1H), 2.07 (dd, 3H, Ja = 13.0 and Jb = 3.7 Hz), 1.79-

1.63 (m, 8H), 1.49-1.39 (m, 4H), 1.31-1.19 (m, 5H). 
13

C NMR (CDCl3, 100 MHz): 

δC = 160.1, 150.6, 136.7, 128.7, 124.2, 123.4, 50.2, 32.9, 25.4, 24.6. 

 

 

 

Copies of 
1
H, 

13
C NMR Spectral Data 
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H NMR (400MHz) spectrum of compound 5h in CDCl3. 
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